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Abstract

Optimal harvest rates for mixed stocks of fish are
calculated using stochastic dynamic programming. This
technique is shown to be superior to the best methods
currently described in the literature. The Ricker stock
recruitment curve is assumed for two stocks harvested
by the same fishery. The optimal harvest rates are
calculated as a function of the size of each stock, for
a series of possible parameter values. The dynamic pro-
gramming solution is similar to the fixed escapement
policy only when the two stocks have similar Ricker pa-
rameters, or when the two stocks are of equal size.
Normally, one should harvest harder than calculated from
fixed escapement analysis.

Introduction

It is well recognized that many fisheries exploit more
than one stock of fish: a stock may consist of separate
species at various trophic levels, as in tropical fisheries,
or genetically isolated races of the same species, as in Pacific
salmon. The problem of optimal harvesting of these mixed fish-
eries is interesting because the biological understanding of
the stock dynamics is frequently quite advanced relative to the
methodological tools to deiermine the optimal harvest. Paulik
et al. [7] have presented techniques for calculating the optimal
harvest rate for fisheries consisting of up to twenty separate
stocks. They use the basic Ricker equation of stock dynamics
(Ricker [9] which assumes a deterministic relationship between
spawning stock and resultant run. Their solution involves
solving a set of equations iteratively by computer to arrive at
the optimal exploitation rate.
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There are several weaknesses in their solution, which are
due to the analytic intractability of the problem. The authors
calculate only the optimal exploitation rate, assuming the
population is at equilibrium. There is incredible variation in
the actual stock recruitment relationships for salmon populations,
and current management practice uses the concept of fixed
escapement instead of fixed harvest rate. The fixed escape-
ment policy recognizes that the long term yield is maximized by
allowing a fixed number of adult salmon to reach the spawning
grounds, irrespective of the number of salmon in the total run.
When the stock is at high numbers it can be harvested at a
higher rate than when it is at low numbers. Ricker [10] has
calculated optimal escapement for several stock recruitment re-
lationships using numerical methods. Paulik et al. calculated
the total run and optimal exploitation rate of all stocks at
equilibrium. To derive the escapement one multiplies total run
times the exploitation rate. It is not clear, however, that a
fixed escapement policy is optimal for mixed fisheries. It
is shown later in this paper that the optimal escapement is not
independent of the relative abundances of the different stocks.
Specifically, if the fishery consists of two stocks, deter-
mination of the optimal explcitation rate, or escapement, will
depend on the sizes of the two stocks. This is not just a
theoretical possibility; data collection associated with cur-
rent management of salmon provides reasonably accurate run
estimates of stock sizes so that it is definitely possible to
implement these policies.

Methods

Current methods for determination of optimal exploitation
rates use simple analytic analysis of very simple stock re-
cruitment models to determine optimal exploitation rates at
equilibrium. Much more complicated computer simulation models
have been used to study fish stock dynamics, (Larkin and
Hourston [5]; Ward and Larkin [15])--but these models have not
been used to determine optimal exploitation rates. It is
possible to use more complex models to test very simple control
laws; for instance, constant harvest or constant escapement.
You simply have the same harvest taken every year and then
calculate the average catch by simulating a large number of
years. This method has been used to look at the role of
stochastic variation on simple stock recruitment models
(Ricker [10], Larkin and Hourston [5]). It is theoretically
possible and computationally practical to do the same sort of
analysis on very complex models (Peterman [8]). The main
limitation is that the harvest policy must be the same every
year. The harvest policy cannot be tied to the size of the
various stocks except by fixing a total escapement. If we try
to use a simulation approach for every possible combination of
harvest rates as a function of stock sizes, the number of compu-
tations required rapidly exceeds the ability of modern digital



computers. It is easy to understand that we wish to harvest
harder when a stock is high than when it is low, as the fixed
escapement policy automatically does for a single stock. But
for a two-stock example, a fixed escapement policy does not
differentiate between a case where two stocks are at moderate
densities, and a case where one stock is very low and one is
very high. The long term harvest can be increased by determin-
ing the harvest rate as a function of the stock sizes of both
stocks, when harvesting a mixed stock.

A new methodology has recently been introduced to fisheries
management (Walters [14] which eliminates the computational
constraints and greatly widens the scope of optimization in
fisheries. Walters used the technique of stochastic dynamic
programming first develcped by Bellman. (See Bellman [1];
Bellman and Dreyfus [2]; Bellman and Kalaba [3]. For other
applications of dynamic programming to ecological problems, see
Shoemaker [13], and Sancho [11].) For a good description of
stochastic dynamic programming, see Walters [14]. Briefly,
stochastic dynamic programming allows one to calculate optimal
control policies by a procedure that involves the number of
computations increasing linearly, instead of geometrically, with

the number of time steps. It requires approximation due to
discretization of the state variables (stock size) and the con-
trol policies (harvest rates). Walters used an example of a

single salmon stock, discretized into thirty population levels,
with thirty discretized exploitation rates and ten discrete
stochastic possibilities. This requires running a simulation of
the stock dynamics 9000 times per year. Using the simulation
approach of following all possible paths into the future, say

twenty years, this would have required 900020 simulations,
clearly beyond the scope of current computers. However, using
stochastic dynamic programming, only 9000 x 20 simulations were
required. This requires only a few seconds on a modern digital
computer.

Stochastic dynamic programming has five main advantages
over previous analytic techniques. They are:

1) The stock recruitment model can be as complex as
desired; the number of parameters in the model does
not affect the computation time required or the re-
liability of the results.

2) Parameters may be stochastic. However, as the number
of stochastic possibilities considered for the param-
eter values increase, so does computation time.

3) There may be judgmental uncertainty about parametric
values. This is analogous to the stochastic vari-
ability of parameters, but conceptually distinct.

4) The objective function (what is maximized) can be
as complex as desired. It does not need to be



"long term catch"; it can be "dollar value of catch,"”
"total employment generated from the fishery," or any
combination of factors.,

5) Discounting rates can be introduced into the model
with no problem. The total objective does not need to
be summed over time [Z(0.,)], but may be multiplicative
[T(1 + 0,)1. *

i

Although the number of computations goes up linearly with

the number of time intervals, it goes up geometrically with
the number of state variables and stochastic parameters. Thus
we are practically restrained to optimizing models with on the
order of five state variables.

I have chosen to use the standard Ricker stock recruitment

model of salmon dynamics (Ricker [9]). Most will remember:
_ S
R =S5 exp (a(l = E)) , (1
where
R = the total number of offspring that will return as adults,
S = the number of spawners,
o = a parameter of productivity,

B = the number of spawners at which the average number of
returning fish per spawner is one.

I have chosen this model because it has been used by almost
all recent work on salmon stock dynamics, and particularly by
Paulik et al. [7], and Walters [14]. This facilitates com-
parison of results. I used twenty discrete levels for each stock
of eighteen discrete harvest rates, and ten stochastic out-
comes. Although a Ricker model was used for the stock recruit-
ment relationship, other commonly used models of fish stock
recruitment such as the Beverton-Holt (Beverton and Holt [4])
or the Schaefer model (Schaefer [12]) could be substituted.

The state of a single stock at a time interval is described
by a single number, the stock size., We can in theory deal with
up to about five separate stocks without running into compu-
tational problems. However, it is difficult to present and
understand the results of optimization with five state vari-
ables, so I have chosen to use just two stocks for demonstration
purposes. If this technique were used in actual management;
it could easily be used on mixed stocks of five separate stocks.



Results

Since the calculation of optimal control policies requires
computations on a computer, no general solution can be pre-
sented. What I will do is present optimal control solutions
for a series of possible parameter values for two stocks, and
generalize from these results. From equation (1) we can see
that the dynamics of each stock are governed by two parameters,
@ and B. For any two stocks, there are five unique relation-
ships between parameters. They are:

1) o values are the same and B values are the same;

2) one stock has a higher o value, and B values are the
same;

3) stock 1 has a lower o value, and stock 2 has a lower
B value;

4) stock 1 has a lower a value and a lower B value;
5) the o values are the same, but one has a lower B value.

Stochastic dynamic programming calculates a control law
(harvest rate) as a function of the state variables (the two
run sizes). To present the control laws generated by the opti-
mization procedure, I drew harvest rate isoclines on a grid
with the run size of stock 1 on the X-axis and the run size of
stock 2 on the Y-axis. Figure 1 presents the control laws
for a case where stock 1 has an a value of 1.0 and a B value of
1.0. ©Stock 2 has an a value of 2.2 and a B value of 0.4.

These parameters correspond to case 3 above.

The isoclines for harvest rates of 0, 0.3, 0.5, and 0.7
are drawn. Since stock 2, on the Y-axis, is more productive,
there is a higher harvest rate for low values of stock 2 than
there is for low values of stock 1. In order to compare
these results with a constant escapement policy, we must util-
ize some simple relationships. We know that:

Escapement = (Run of stock 1 + Run of stock 2) (2)
* (Harvest rate)

From this we can calculate that

Escapement

Run of stock 2 = - Run of stock 1. (3)

Harvest Rate

This equation enables us to plot the harvest rate isoclines
on the stock 1, stock 2 surface. It is also evident that all
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Figure 1.

STOCK 1

Harvest rate isoclines derived
from dynamic programming (thick
solid line) and fixed escapement
(dashed line). o and B values
are 1.0 and 1.0 for stock 1,

and 2.2 and 1.0 for stock 2.



isoclines will have a slope of -1. This means that using a
constant escapement policy, the optimal harvest rate lines will
always be the same shape, independent of the parameters o and
B. The harvest rate isoclines under a fixed escapement policy
have been drawn as darhed lines in Fig. 1. It is obvious that
the optimal solution from the dynamic programming algorithm is
quite different from tlLe fixed escapement law derived from
Paulik et al. [7]. Figures 2 and 5 present similar plots for
cases 1, 2, 4 and 5.

Discussion

From the results in Figures 1 - 5, it is clear that fixed
escapement is the optimal policy only when the two stocks
have the same o and B values (case 1). Thus, a fixed escape-
ment policy for managing mixed stocks of salmon is optimal
only under very restrictive circumstances. The results obtained
above suggest that in general one should harvest a mixed stock
harder when the ratio of the two stocks strays away from 1:1.

This suggests that as one stock becomes much more signi-
ficant than the other, the management should proceed as if it
were the only stock. It appears that the expected benefits
from reducing the harvest rates when one stock becomes low
are outweighed by the loss of catch from the reduced harvest.
It must be stressed however, that these conclusions apply only
for the objective function maximized: expected annual average
yield. If other factors such as stock diversity were to be
included in the objective function, the optimal control laws
would undoubtedly change.

Stochastic dynamic programming appears to be the best
current method for producing control laws for mixed stocks of
fishes. The fact that the above examples were worked for
Pacific salmon should not cause one to forget that the tech-
nigues used are completely generalizable to a very large class
of fisheries and other ecological problems. The primary limi-
tation is in the number of state variables, but for any re-
newable resource where some analog of a stock recruitment curve
can be constructed, then a single variable, the stock, is suf-
ficient to describe the population, and stochastic dynamic
programming can be used. The main limitations occur when age/
class phenomena become important, so that several numbers are
required to describe a population. However, for almost all
fisheries problems, a stock-recruitment relationship is the
basis of present management, so using dynamic programming as an
optimization technique would seem to be most appropriate. (See
Parrish [6].)
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Figure 2.

STOCK 1 2

Harvest rate isoclines for case
1 in text. Solution from
dynamic programming and fixed
escapement are identical. o and
B values for both stocks are 1.8
and 1.0.
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Figure 3.

STOCK 1 2

Harvest rate isoclines derived
from dynamic programming (thick
solid lines) and fixed escape-
ment (dashed lines). o and B
values are 1.0 and 1.0 for stock
1, and 2.2 and 1.0 for stock 2.
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STOCK 2

STOCK 1

Harvest rate isoclines derived
from dynamic programming (thick
solid lines) and fixed escape-
ment (dashed lines). & and B
values are 1.0 and .4 for stock
1, and 2.2 and 1.0 for stock 2.
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Figure 5.

Harvest rate isoclines derived
from dynamic programming (thick
solid lines) and fixed escape-
ment (dashed lines). o and B
values are 1.8 and .4 for stock
1, and 1.8 and 1.0 for stock 2.



Table 1.

Case No.
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o and B values used in optimizations.

Stock 1 Stock 2
a B a B
1.8 1.0 1.8 1.0
1.0 1.0 2,2 1.0
1.0 1.0 2.2 0.4
1.0 0.4 2.2 1.0
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