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Abstract 

Optimal harvest rates for mixed stocks of fish are 
calculated using stochastic dynamic programming. This 
technique is shown to be superior to the best methods 
currently described in the literature. The Ricker stock 
recruitment curve is assumed for two stocks harvested 
by the same fishery. The optimal harvest rates are 
calculated as a function of the size of each stock, for 
a series of possible parameter values. The dynamic pro- 
gramming solution is similar to the fixed escapement 
policy only when the two stocks have similar Ricker pa- 
rameters, or when the two stocks are of equal size. 
Normally, one should harvest harder than calculated from 
fixed escapement analysis. 

Introduction 

It is well recognized that many fisheries exploit more 
than one stock of fish: a stock may consist of separate 
species at .~arious trophic levels, as in tropical fisheries, 
or genetically isolated races of the same species, as in Pacific 
salmon. The problem of optimal harvesting of these mixed fish- 
eries is interesting because the biological understanding of 
the stock dynamics is frequently quite advanced relative to the 
methodological tools to de~ermine the optimal harvest. Paulik 
et al. [ 7 ]  have presented techniques for calculating the optimal 
harvest rate for fisheries consisting of up to twenty separate 
stocks. They use the basic Ricker equation of stock dynamics 
(Ricker [9] which assumes a deterministic relationship between 
spawning stock and resultant run. Their solution involves 
solving a set of equations iteratively by computer to arrive at 
the optimal exploitation rate. 
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There are several weaknesses in their solution, which are 
due to the analytic intractability of the problem. The authors 
calculate only the optimal exploitation rate, assuming the 
population is at equilibrium. There is incredible variation in 
the actual stock recruitment relationships for salmon populations, 
and current management practice uses the concept of fixed 
escapement instead of fixed harvest rate. The fixed escape- 
ment policy recognizes that the long term yield is maximized by 
allowing a fixed number of adult salmon to reach the spawning 
grounds, irrespective of the number of salmon in the total run. 
When the stock is at high numbers it can be harvested at a 
higher rate than when it is at low numbers. Ricker [lo] has 
calculated optimal escapement for several stock recruitment re- 
lationships using numerical methods. Paulik et al. calculated 
the total run and optimal exploitation rate of all stocks at 
equilibrium. To derive the escapement one multiplies total run 
times the exploitation rate. It is not clear, however, that a 
fixed escapement policy is optimal for mixed fisheries. It 
is shown later in this paper that the optimal escapement is not 
independent of the relative abundances of the different stocks. 
Specifically, if the fishery consists of two stocks, deter- 
mination of the optimal expl::.itation rate, or escapement, will 
depend on the sizes of the two stocks. This is not just a 
theoretical possibility; data collection associated with cur- 
rent management of salmon provides reasonably accurate run 
estimates of stock sizes so that it is definitely possible to 
implement these policies. 

Methods 

Current methods for determination of optimal exploitation 
rates use simple analytic analysis of very simple stock re- 
cruitment models to determine optimal exploitation rates at 
equilibrium. Much more complicated computer simulation models 
have been used to study fish stock dynamics, (Larkin and 
Hourston [5]; Ward and Larkin [15])--but these models have not 
been used to determine optimal exploitation rates. It is 
possible to use more complex models to test very simple control 
laws; for instance, constant harvest or constant escapement. 
You simply have the same harvest taken every year and then 
calculate the average catch by simulating a large number of 
years. This method has been used to look at the role of 
stochastic variation on simple stock recruitment models 
(Ricker [I 01 , Larkin and Hourston [5] ) . It is theoretically 
possible and computationally practical to do the same sort of 
analysis on very complex models (Peterman [81). The main 
limitation is that the harvest policy must be the same every 
year. The harvest policy cannot be tied to the size of the 
various stocks except by fixing a total escapement. If we try 
to use a simulation approach for every possible combination of 
harvest rates as a function of stock sizes, the number of compu- 
tations required rapidly exceeds the ability of modern digital 



computers. It is easy to understand that we wish to harvest 
harder when a stock is high than when it is low, as the fixed 
escapement policy automatically does for a single stock. But 
for a two-stock example, a fixed escapement policy does not 
differentiate between a case where two stocks are at moderate 
densities, and a case where one stock is very low and one is 
very high. The long term harvest can be increased by determin- 
ing the harvest rate as a function of the stock sizes of both 
stocks, when harvesting a mixed stock. 

A new methodology has recently been introduced to fisheries 
management (Walters [I41 which eliminates the computational 
constraints and greatly widens the scope of optimization in 
fisheries. Walters used the technique of stochastic dynamic 
programing first developed by Bellman. (See Bellman [I]; 
Bellman and Dreyfus [2]; Bellman and Kalaba [3]. For other 
applications of dynamic programming to ecological problems, see 
Shoemaker [I 31 , and Sancho [ I  1 1  . ) For a good description of 
stochastic dynamic programming, see Walters [141. Briefly, 
stochastic dynamic programming allows one to calculate optimal 
control policies by a procedure that involves the number of 
computations increasing linearly, instead of geometrically, with 
the number of time steps. It requires approximation due to 
discretization of the state vari.ables (stock size) and the con- 
trol policies (harvest rates). Walters used an example of a 
single salmon stock, discretized into thirty population levels, 
with thirty discretized exploitation rates and ten discrete 
stochastic possibilities. This requires running a simulation of 
the stock dynamics 9 0 0 0  times per year. Using the simulation 
approach of following all possible paths into the future, say 

20  
twenty years, this would have required 9 0 0 0  simulations, 
clearly beyond the scope of current computers. However, using 
stochastic dynamic programming, only 9 0 0 0  x 2 0  simulations were 
required. This requires only a few seconds on a modern digital 
computer. 

stochastic dynamic programming has five main advantages 
over previous analytic techniques. They are: 

1) The stock recruitment model can be as complex as 
desired; the number of parameters in the model does 
not affect the computation time required or the re- 
liability of the results. 

2) Parameters may be stochastic. However, as the number 
of stochastic possibilities considered for the param- 
eter values increase, so does computation time. 

3) There may be judgmental uncertainty about parametric 
values. This is analogous to the stochastic vari- 
ability of parameters, but conceptually distinct. 

4) The objective function (what is maximized) can be 
as complex as desired. It does not need to be 



" long  t e r m  c a t c h " ;  it can  be " d o l l a r  v a l u e  o f  c a t c h , "  
" t o t a l  employment gene ra t ed  from t h e  f i s h e r y , "  o r  any 
combinat ion o f  f a c t o r s .  

5 )  Discoun t ing  r a t e s  can  be  i n t roduced  i n t o  t h e  model 
w i t h  no problem. The t o t a l  o b j e c t i v e  does  n o t  need t o  
be  summed o v e r  t i m e  [ C ( O i ) ] ,  b u t  may be  m u l t i p l i c a t i v e  
[ n u  + o i l ] .  

Although t h e  number o f  computa t ions  goes  up l i n e a r l y  w i t h  
t h e  number o f  t i m e  i n t e r v a l s ,  it goes  up g e o m e t r i c a l l y  w i t h  
t h e  number o f  s t a t e  v a r i a b l e s  and s t o c h a s t i c  pa ramete r s .  Thus 
w e  a r e  p r a c t i c a l l y  r e s t r a i n e d  t o  o p t i m i z i n g  models w i t h  on t h e  
o r d e r  of  f i v e  s t a t e  v a r i a b l e s .  

I have chosen t o  u s e  t h e  s t a n d a r d  Ricker  s t o c k  r e c r u i t m e n t  
model o f  salmon dynamics (Ricker  [ 9 ] ) .  Most w i l l  remember: 

R =  s exp ( a ( l  - g ) )  , ( 1  

where 

R = t h e  t o t a l  number o f  o f f s p r i n g  t h a t  w i l l  r e t u r n  a s  a d u l t s ,  

S  = t h e  number o f  spawners,  

a  = a  pa ramete r  o f  p r o d u c t i v i t y ,  

B = t h e  number o f  spawners a t  which t h e  ave r age  number o f  
r e t u r n i n g  f i s h  p e r  spawner i s  one.  

I have chosen t h i s  model because  it has  been used by a lmos t  
a l l  r e c e n t  work on salmon s t o c k  dynamics, and p a r t i c u l a r l y  by 
P a u l i k  e t  a l .  [ 7 ] ,  and Wa l t e r s  [ 14 ] .   his f a c i l i t a t e s  com- 
p a r i s o n  o f  r e s u l t s .  I used twenty  d i s c r e t e  l e v e l s  f o r  e ach  s t o c k  
o f  e i g h t e e n  d i s c r e t e  h a r v e s t  r a t e s ,  and t e n  s t o c h a s t i c  o u t -  
comes. Although a  Ricker  model was used f o r  t h e  s t o c k  r e c r u i t -  
ment r e l a t i o n s h i p ,  o t h e r  commonly used models of  f i s h  s t o c k  
r e c r u i t m e n t  such a s  t h e  Beverton-Holt  (Bever ton and H o l t  [ 4 1 )  
o r  t h e  Schae fe r  model (Schae fe r  [ I21 ) cou ld  be s u b s t i t u t e d .  

The s t a t e  o f  a  s i n g l e  s t o c k  a t  a  t i m e  i n t e r v a l  i s  d e s c r i b e d  
by a  s i n g l e  number, t h e  s t o c k  s i z e .  W e  can  i n  t h e o r y  d e a l  w i t h  
up t o  abou t  f i v e  s e p a r a t e  s t o c k s  w i thou t  runn ing  i n t o  compu- 
t a t i o n a l  problems. However, it i s  d i f f i c u l t  t o  p r e s e n t  and 
unde r s t and  t h e  r e s u l t s  o f  o p t i m i z a t i o n  w i t h  f i v e  s t a t e  v a r i -  
a b l e s ,  s o  I have chosen t o  u s e  j u s t  two s t o c k s  f o r  demons t r a t i on  
purposes .  I f  t h i s  t e chn ique  w e r e  used i n  a c t u a l  management; 
it cou ld  e a s i l y  be  used on mixed s t o c k s  o f  f i v e  s e p a r a t e  s t o c k s .  



Resu l t s  

S ince  t h e  c a l c u l a t i o n  of opt imal  c o n t r o l  p o l i c i e s  r e q u i r e s  
computations on a  computer, no g e n e r a l  s o l u t i o n  can be pre-  
sen ted .  What I w i l l  do i s  p r e s e n t  op t imal  c o n t r o l  s o l u t i o n s  
f o r  a  s e r i e s  of p o s s i b l e  parameter va lues  f o r  two s t o c k s ,  and 
g e n e r a l i z e  from t h e s e  r e s u l t s .  From equa t ion  ( 1 )  we can s e e  
t h a t  t h e  dynamics of each s t o c k  a r e  governed by two parameters ,  
a and B. For any two s t o c k s ,  t h e r e  a r e  f i v e  unique r e l a t i o n -  
s h i p s  between parameters .  They a r e :  

1 )  a va lues  a r e  t h e  same and B va lues  a r e  t h e  same; 

2 )  one s tock  has  a  h igher  a va lue ,  and B v a l u e s  a r e  t h e  
same; 

3)  s tock  1 has  a  lower a va lue ,  and s tock  2 has  a  lower 
B va lue ;  

4 )  s t ock  1 has  a  lower a va lue  and a  lower B va lue ;  

5) t h e  a v a l u e s  a r e  t h e  same, b u t  one has  a  lower B va lue .  

S t o c h a s t i c  dynamic programming c a l c u l a t e s  a  c o n t r o l  law 
( h a r v e s t  r a t e )  a s  a  f u n c t i o n  of t h e  s t a t e  v a r i a b l e s  ( t h e  two 
run  s i z e s ) .  To p r e s e n t  t h e  c o n t r o l  laws genera ted  by t h e  o p t i -  
miza t ion  procedure ,  I drew h a r v e s t  r a t e  i s o c l i n e s  on a  g r i d  
w i th  t h e  run  s i z e  of s tock  1 on t h e  X-axis and t h e  run  s i z e  of 
s tock  2 on t h e  Y-axis. F igure  1 p r e s e n t s  t h e  c o n t r o l  laws 
f o r  a  c a s e  where s t o c k  1 has an a va lue  of 1.0 and a  B va lue  of 
1.0. Stock 2 has  an a va lue  of 2.2 and a  B va lue  of 0.4. 
These parameters  correspond t o  c a s e  3  above. 

The i s o c l i n e s  f o r  h a r v e s t  r a t e s  of 0, 0.3, 0.5, and 0.7 
a r e  drawn. S ince  s t o c k  2 ,  on t h e  Y-axis, i s  more produc t ive ,  
t h e r e  is  a  h igher  h a r v e s t  r a t e  f o r  Low va lues  of s tock  2 t han  
t h e r e  i s  f o r  low v a l u e s  of s tock  1 .  I n  o r d e r  t o  compare 
t h e s e  r e s u l t s  w i t h  a  c o n s t a n t  escapement p o l i c y ,  we must u t i l -  
i z e  some s imple  r e l a t i o n s h i p s .  We know t h a t :  

Escapement = (Run of s t o c k  1 + Run of s t o c k  2) ( 2 )  
* (Harvest  r a t e )  . 

From t h i s  we can c a l c u l a t e  t h a t  

Run of s t o c k  2  = 
Escapement - Run of s tock  1  . (3 )  
Harvest  Rate 

This  equa t ion  enab le s  u s  t o  p l o t  t h e  h a r v e s t  r a t e  i s o c l i n e s  
on t h e  s tock  1 ,  s t ock  2 s u r f a c e .  I t  i s  a l s o  e v i d e n t  t h a t  a l l  



S T O C K  1 

F i g u r e  1 .  H a r v e s t  r a t e  i s o c l i n e s  d e r i v e d  
f r o m  dynamic  programming ( t h i c k  
s o l i d  l i n e )  and  f i x e d  e s c a p e m e n t  
( d a s h e d  l i n e ) .  a and  B v a l u e s  
a r e  1 . 0  and  1 .0  f o r  s t o c k  1 ,  
a n d  2 . 2  arid 1 . 0  f o r  s t o c k  2. 



i s o c l i n e s  w i l l  have a  s l o p e  of -1. Th i s  means t h a t  u s i n g  a  
c o n s t a n t  escapement p o l i c y ,  t h e  op t imal  h a r v e s t  r a t e  l i n e s  w i l l  
a lways be t h e  same shape,  independent  of t h e  pa ramete r s  a and 
B. The h a r v e s t  r a t e  i s o c l i n e s  under a  f i x e d  escapement p o l i c y  
have been drawn a s  d a ~ h e d  l i n e s  i n  F ig .  1 .  I t  i s  obv ious  t h a t  
t h e  op t ima l  s o l u t i o n  from t h e  dynamic programming a lgo r i t hm i s  
q u i t e  d i f f e r e n t  from t h e  f i x e d  escapement law d e r i v e d  from 
P a u l i k  e t  a l .  [ 7 ] .  F i g . ~ ~ r e s  2  and 5  p r e s e n t  s i m i l a r  p l o t s  f o r  
c a s e s  1 ,  2 ,  4 and 5. 

Discuss ion  

From t h e  r e s u l t s  i n  F i g u r e s  1  - 5, it i s  c l e a r  t h a t  f i x e d  
escapement i s  t h e  op t ima l  p o l i c y  on ly  when t h e  two s t o c k s  
have t h e  same a and B v a l u e s  ( c a s e  1 ) .  Thus, a  f i x e d  escape-  
ment p o l i c y  f o r  managing mixed s t o c k s  of salmon i s  op t ima l  
o n l y  under ve ry  r e s t r i c t i v e  c i rcumstances .  The r e s u l t s  o b t a i n e d  
above s u g g e s t  t h a t  i n  g e n e r a l  one should  h a r v e s t  a  mixed s t o c k  
h a r d e r  when t h e  r a t i o  of  t h e  two s t o c k s  s t r a y s  away from 1 : l .  

Th i s  s u g g e s t s  t h a t  a s  one  s t o c k  becomes much more s i g n i -  
f i c a n t  t h a n  t h e  o t h e r ,  t h e  management should  proceed a s  i f  it 
w e r e  t h e  o n l y  s t o c k .  I t  appea r s  t h a t  t h e  expec ted  b e n e f i t s  
from r educ ing  t h e  h a r v e s t  r a t e s  when one s t o c k  becomes low 
a r e  outweighed by t h e  l o s s  of  c a t c h  from t h e  reduced h a r v e s t .  
I t  must be s t r e s s e d  however, t h a t  t h e s e  conc lu s ions  app ly  o n l y  
f o r  t h e  o b j e c t i v e  f u n c t i o n  maximized: expec ted  annua l  average  
y i e l d .  I f  o t h e r  f a c t o r s  such a s  s t o c k  d i v e r s i t y  w e r e  t o  be 
i nc luded  i n  t h e  o b j e c t i v e  f u n c t i o n ,  t h e  op t imal  c o n t r o l  laws 
would undoubtedly  change.  

S t o c h a s t i c  dynamic programminq appea r s  t o  be t h e  b e s t  
c u r r e n t  method f o r  producing c o n t r o l  laws f o r  mixed s t o c k s  of  
f i s h e s .  The f a c t  t h a t  t h e  above examples w e r e  worked f o r  
P a c i f i c  salmon shou ld  n o t  c ause  one  t o  f o r g e t  t h a t  t h e  t ech-  
n iques  used a r e  comple te ly  g e n e r a l i z a b l e  t o  a ve ry  l a r g e  c l a s s  
of  f i s h e r i e s  and o the r  e c o l o g i c a l  problems. The pr imary l i m i -  
t a t i o n  i s  i n  t h e  number o f  s t a t e  v a r i a b l e s ,  b u t  f o r  any re- 
newable r e s o u r c e  where some ana log  of  a  s t o c k  r e c r u i t m e n t  cu rve  
can  be c o n s t r u c t e d ,  t h e n  a  s i n g i e  v a r i a b l e ,  t h e  s t o c k ,  i s  su f -  
f i c i e n t  t o  d e s c r i b e  t h e  popu l a t i on ,  and s t o c h a s t i c  dynamic 
programming can be used.  The n a i n  l i m i t a t i o n s  occur  when age/  
c l a s s  phenomena become impor t an t ,  s o  t h a t  s e v e r a l  numbers a r e  
r e q u i r e d  t o  d e s c r i b e  a  popu l a t i on .  However, f o r  a lmos t  a l l  
f i s h e r i e s  problems,  a  s t ock - r ec ru i tmen t  r e l a t i o n s h i p  i s  t h e  
b a s i s  o f  p r e s e n t  management, s o  u s i n g  dynamic programming a s  a n  
o p t i m i z a t i o n  t e chn ique  would s e e m  t o  be most a p p r o p r i a t e .  (See  
P a r r i s h  [ 6 ]  . ) 



F i g u r e  2 .  H a r v e s t  r a t e  i s o c l i n e s  f o r  c a s e  
1  i n  t e x t .  S o l u t i o n  from 
dynamic programming and  f i x e d  
escapement a r e  i d e n t i c a l .  a and 
B v a l u e s  f o r  b o t h  s t o c k s  a r e  1 .8  
and 1  . O .  



STOCK 1 

F i g u r e  3 .  Harves t  r a t e  i s o c l i n e s  d e r i v e d  
from dynamic programming ( t h i c k  
s o l i d  l i n e s )  and f i x e d  escape-  
ment (dashed l i n e s ) .  a and B 
v a l u e s  a r e  1.0 and 1.0 f o r  s t o c k  
1 ,  and 2 . 2  and 1 . 0  f o r  s t o c k  2 .  



STOCK 1 

F i g u r e  4 .  H a r v e s t  r a t e  i s o c l i n e s  d e r i v e d  
f rom dynamic programming ( t h i c k  
s o l i d  l i n e s )  and f i x e d  e s c a p e -  
ment (dashed  l i n e s )  . a and B 
v a l u e s  a r e  1 .0  and . 4  f o r  s t o c k  
1, and 2 . 2  and 1 . 0  f o r  s t o c k  2 .  



F i g u r e  5. H a r v e s t  r a t e  i s o c l i n e s  d e r i v e d  
from dynamic programming ( t h i c k  
s o l i d  l i n e s )  and f i x e d  e scape -  
ment (dashed  l i n e s )  . a and El 
v a l u e s  a r e  1 . 8  and . 4  f o r  s t o c k  
1 ,  and 1 . 8  and 1 . 0  f o r  s t o c k  2 .  



Table  1. a and B v a l u e s  used i n  o p t i m i z a t i o n s .  

Case No. S tock  1 Stock  2 

a B a B 

1 1.8 1 .O 1.8 1 .O 

2 1.0 1.0 2.2 1.0 

3 1 . O  1 .O 2.2 0.4 

4 1.0 0.4 2.2 1 .O 

5 1.8 0.4 1.8 1 .O 
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