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FOREWORD

This Collaborative Paper is one of a series embodying the
outcome of a workshop and conference on Economic Structural
Change: Analytical Issues, held at IIASA in July and August
1983. The conference and workshop formed part of the con-
tinuing IIASA program on Patterns of Economic Structural Change
and Industrial Adjustment.

Structural change was interpreted very broadly: the topics
covered included the nature and causes of changes in different
sectors of the world economy, the relationship between inter-
national markets and national economies, and issues of organi-
zation and incentives in large economic systems.

There is a general consensus that important economic
structural changes are occurring in the world economy. There
are, however, several alternative approaches to measuring these
changes, to modeling the process, and to devising appropriate
responses in terms of policy measures and institutional re-
design. Other interesting gquestions concern the role of the
international economic system in transmitting such changes, and
the merits of alternative modes of economic organization in
responding to structural change. All of these issues were
addressed by participants in the workshop and conference, and
will be the focus of the continuation of the research program's
work.

Geoffrey Heal
Anatoli Smyshlyaev
Ernd Zalai
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SYSTEMS ANALYSIS BY PARTIAL
LEAST SQUARES (PLS)

- Herman Wold*

1« Introduction

The advent of the computer in the early 1950°s marks a new er2 in Systems Analysis.
Ths first waves Trend simulation, by the Club of Rome and other teams, was launchec

with high aspirations and exvectations. The performance left much to be desired, and

in 1981 a well-documented appraisal stated that the high expectaticns had not
materialized; Kappelé& Schwarz, 1981,
In the meanwhile two lines of systems analysis had come to the fore:
Path models with manifest (directly observed) variables, and

Path models with latent (indirectly observed) variables.

Fg-l_shows arrow schemes for two arrays of pﬁth models, to the left. models
with MVs (manifest variables), to the right models with LVs (latent variables).

The models II-V to the left are classical in Econometrics. The models I¥ - II% to the
Models TIT* - V*, mergers of Econometrics

right have their origin in Psychometrics.
and Psychometrics, were introduced in Sociology in the mid-1$60 “s-

z :
Uppsala University and University of Geneva
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(2) Path models with
manifest variables (MVs)
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Figure 1 a,b — Graphic illustrations of path models with (a) directly

I‘(

I1™

I11™

observed variables, and (b) latent variables indirectly cbserved by multiple

indicators.
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Sn.2 considers the models to the left in Fg.?l, path models with MVs,
Models with one relation (the path hae one step):
TT. Simple OLS (Ordinary Least Squares) regression;
IJTT. Multiple OLS regression. '
Models with two or more relations (the path has more than one step):
IV. Causal Chain (also called Becursive) systems;
V. Interdependent (ID) systems.

Models IV-V are well-known from macroeconomic model building. With reference to
the subsequent formulas (la){1b), Causal Chains and ID systems are defined by theéir
structural form (SF), and their reduced form (RF) gives the endogenous variables
in terms of the exogenous variables. OLS regression is consistent when applied %o
Causal Chain systems, but not in the estimation of ID systems.

Sn.3 sets forth the FP approach to ID systems (V). Sn.4 reviews the
principles of model building, with focus on ML (Maximum Likelihood) versus
1S (Least Squares) modeling. Sn.5 outlines the evolution of the pSychometric
Models I - II* in Fg.1., Sn.6 reviews the recent advent of general estimation
of Models III™ - Vi, namely K.G. Joreskog’s ML algorithm LISREL, followed by
H, Wold’s LS algorithm PLS.

Sn.7 shows the basic design of PLS modeling, Sn.8 some of its generaliza~
tions; Sn. 9 is a2 brief discourse on applied with with PLS, and Sn. 10 gives

a concluding outlook.

2. Path models with manifest variables (i1Vs).

Jan Tinbergen in his pioneering work with Causal Chain systems, 1935-39,
estimated the SF relations by OLS regression. Trygve Haavelmo in 1943 introduced
Simultaneous Bquations (1 a-b); claiming that OLS is inconsistent when applied to
thedr SF, he recommended estimaticn by ML (Maximum Likelihood) estimation. Bentzel
W#old (1946) distinguished between Recursive systems (V) and Nonrecursive systems (V),
and showed that ML and OLS give numerically the same parameter eatimates when applied
to the SF of Recursive systems IV. To improve the general rationale of LS (Least

Squares) estimation, Y. Wold (1958-63%) introduced the notion of predictor specification,

agsuming that the systematic part of the relation to be estimated is the conditional

expectation of the target variable; cf. (lc) and {2 a-b).

2.1 Pormal aspects. Causal Chains TV and ID systems V have

exogenous variables x =(x1=1, X cesy xm) and endogenous varisbles y = (yl, vty yn).

2,
The models are defined by their structural form (SF) which, when solving for the

endegenous variables, gives the recuced form (RF).

SF: y

P v+ N 8 (1la)
[I - F]_ll—x + £ (lb)
[/?)ik]; r - [Xihj s i,kx = 1, n; h = 1, m

RFs ¥

Matrix notation: ﬁ
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2.2 Comparative aspects of Models IV and V:

IV. Causal Chain (Recursive) systems V. Interdependent (ID) systems
Matrix B is triangular, Fik= 0, k > i, P is nontriangular, ﬁik £Z O for scme k > 1i.

-1
Joint feature: E(yil L SIE PYRRRRY xn) = [I - ?] IMx (1c)
" L OLS estimation of RF is consistent
- - -
E(yly, x) =By +1x (2a) Byl y, x) # By + I'x (2p)
OLS estimation of SF is consistent OLS estimation of SF is inconsistent.

For consistent estimation of the SF in ID systeums
the TSLS (Two Stage Least Squares) method was
introduced by H.Theil (1953, 1958) and R.Basmann(1957),
on the Classical ID assumption that each residual ¢ (or 7 )

is uncorrelated with all exogenous variables x.

3 The Fix-~Point approach. In the Fix-Point (FP) method for the estimation of ID
systems (H. Wold, 1965-66) the key feature is to reformulate

the SF by replacing each explanatory endogenous variable y by

its conditional expectation, denoted by y*, first adopting and
then generalizing the Classical TD assumption:
REID (REformulated ID) systems: each residual £ (or 3 ) is assumed to be
uncorrelated with all exogenous variables x ;
GEID (GEneral TD) systems: in the i:th relation of the SF (i = 1, n) the residual
£i is assumed to be uncorrelated with all variables y*, x that occur in
the i:th relation.

In symbols, REID and GEID systems read as follows,

SF: y = By* + I'x + & (3a)
RF:  y = [T-2]7'"x + ¢ (3b)
y = [T - p]'l [x (La)

= By o+ Tx (4b)

Thus the transfermation to RETD and GEID systems does not change the parameters B, r,
nor the reduced form RF; and in REID and GEID systems SF and RF have the same

residuals €.

3.1. The FP estimation algorithm is the same for REID and GEID sysiems. The FP algo-
rithm is iterative, say with steps s =1, 2, ... Let (°), (") mark the estimation
proxies obtained in steps s and 8+l , respectively, As the algorithm converges
the limiting 38", G", y" are the FF estimates of I LR

The FP algorithm has two substeps, alternating between (%) and (4):

First substep. Multiple OLS regression of y on y” and x gives B" and 4"«
[ 4

y = 38" y o+ G" x + e (5)
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Second substep. Using B" and G" from the first substep, y" 1is obtained from (4)¢

y' = B" y; + G' x (6a)
or alternatively,
y' = [1 - ]t (6b)
Starting values, 8 = l. Experience shows that different starting values, e.g.
y' = 0; y = y; y° = the first stage of TSLS (7)

in most cases lead to the same FP estimates B, G, y* .

3.2. The FP algoriék&w(ﬁ)—(é) has been improved, generalized and applied ip numerous

contributioﬁs, including the subséquent %1 - x5 see H., Wold, ed. 1980. ﬁ

%1 The SF may involve identities with specified parameters B, G; E.Lyttkens, 1953.

#2 The convergence‘of the FP algorithm may be improved by a relaxation parameter - ;
A. Agren, 1972.

#3 RFP (Recursive FP) estimation: The two substeps (5)-(6) are performed recursively,
without delay in using the flow of new information; L. Bodin, 1G7&4.

#4 To speed up the flow of recursive information in %#3 the SF is reordered so as to

minimize the number of parameters bik # 0 with k > i; L. Bodin, 1974.

\’fl

Applications to real-world models and data, as well as to simulated data, and

comparisons with TSL3, LIML and other methods for estimation of IS systems;
R. Bergstrom, 1974.

3.3 The FP msthod continues to develop, as seen from two books published this year.
R.Bergstrom & H.¥Wold, 1683, report FP analysis of a3 large Polish model, and subject

FP models 4o LS methods of model evaluation. Dr. M. Ldsch, July 1983, gives a thorough
review of FP modeling, and extends the method to the estimation of Rational
Expectations (RE) mo?els. Bergstirim concludes that FP gives predicticns that by a
quantum leap are more accurate than TSLS and other methods. Losch lauds the simplicity

and speed of FP estimation, as well as the accuracy of the ensuing predictions.

4, Model building: The ML and 1S approaches

ML (Maximum Likelihood) methods are the mainstream of contemporary statistics and
ecoromeirics. The FP and PL3 methods are LS (Lez2st 3guares) methods, 2nd therefore
I must discuss their reach and limit2tion relative to ML methods. The comparison is

of special importance in the context of models Bor large complex systems.

The ML methods of statistical inference have 2 general and well elaborated framework
for (i) ML estimation, (ii) hypothesis testing, and (iii) standard errors (SEs) for
the estirated parameters. For the L3 methods a counterpart to (i-iii) has emerzed,
namely (j) LS estimation, (jj) Stone-Geisser (S3) testing for predictive relevance,
and (jjj) SE assessment by John Tukey’s jackknife.

Although (j3-jjj) are fundamental tools of model building they are as yet larcgely
unknown. Hence the next part of my talk will be a déscourse on ML vs. LS modeling,
with emphasis on fundamental features of assumptions, parameter estimetion, model

evaluation, and assessment of SEs.
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4.1 Assumptions
ML (Maximum Likelihood) L3 (Least Squares)
(a) The observations are jointly ruled (a) L3 is distribution-free, except for
by a specified multivariate distribution; predictor specification;
(b) the distribution is subject to (b) independence of the observations
independent observations. is not required,

The LS assumptions are more general by a quantum leap. In consequence, LS is
of more broad scope than ML both in theoretical and apnlied workj; LS is more flexible in

the adaptation:to specific fematures in the applications,

4.2 Parameter estimation

The Likelihood Function is maximized. The residual variances are minimized.

In the special case of controlled experiments with nonrandom stimulus variables,
ML and LS parameter estimates are numerically the same. Otherwise, $he ML and LS

estimation methods give more or less different results. Under general

regularity conditions, ML parameter estimates have optiral accuracy, and LS predictions
have optimal accuracy. Hence there is a choice between parameter and prediction

accuracy; in general you cannot have both.
ML estimation is technically difficult, and the difficulties increase with the

size of the model. In comparison, the implementation of LS estimation is easy, and

the size of the model is rarely a problem. As a rule, L3 1s speedy on the computer.

4.3. Model evaluation

Hdypothesis testing by the Likelihood Ratio The SG test for predictive relevance

Every model is an approximation, a more or less close approxiration. Hence
the yes-or-no question of ML hypothesis testing is wrongly posed. The ML null
hypothesis is that the model is true; as is well known the Likelivood Ratio will
reject the model sooner or later as N (the number of observations) increases.

The 5G test criterion Q2 is an R2 evaluated without lose of degrees of freedom.
If Q2 < 0 the model is not predictive, whereas Q2 > O indicates the degree to which

the model is predictive.

4.4 Standard errcrs (SEs)
SE assessment by the classical formula SE assessment by Tukey’s jackknife.

The SG test gives jackknife SEs as a

by-product.

Cn the ML assumptions, and asymptot- Jackknife 3Es are realistic assess-
ically for large N, the classical 3E is ments, in virtue of the distribution-free
the smallest possible. The classical SE L3 assumptions (a)-{b,. Experience shows
is robust w.r.t. the distributional as- that classical SEs typically are under-
sumption (a), but not w.r.t. the in.- estimated, cften by 5C%, 100%, or more.

depenience assumption (b).
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4,5 The distance between substantive theory and statistical technique

in scientific modeling,
Ag illustrated in Fg.2 the FP and PLS estimation methods reduce the

distance between substantive theory and statistical technique. Causal
Chain systems are seen as the prototype model of general seepe for
eausal-predictive analysis.

For a Causd Chain model to be realistic and useful in applied work
the various relations of the SPF must be realistic. OIS regression provides
consistent parameter estimation of Causal Chaim systems, and thanks to the
simplicity of OLS this is a substantial advantage of Causal Chains. In the
passage to large complex systems, however, it becomes increasingly difficult
to design Causal Chain systems that are realistic in all detail, and so the

need arises to simplify the model design.
Complexity of

the model

/CCh

PLS LISREL

3

Distance from model
v—'-———-—.——.—.‘_—_———.——.—-——-——-:‘—

CCh to statistica
systems technique

Figure 2, ID (Interdependent) systems and PMLVs (Path liodels with Latent

Variables) seen as simplifications of CCh (Causal Chain) systems. The

distance from substantive theory to statistical technique is larger for

ML (Maximum Likelihood) than for LS (Ieast Squares) estimation.
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As illustrated in Pg.2 the simplification in the theoretical design
relative to the corresponding Causal Chain system is larger for PMLVs than
for ID systems., Fg.2 further illustrates that ML estimation is technically
difficult both for PMLVs and ID systems, that LS reduces the distance from
the theoretical model to the statistical technique, and that the reduction
is larger for PMLVs than for ID systems,

In the published reports on ML estimaticn of PMLVs and ID systems the
models are small or smallish, whereas the size of the model is rarely a

problem in FP and PLS applications,

5., Modeling with latent variables (LVs) »

5.1. Turning from the left to the right in Fg.l, the historical evolution of the
gimple model 1% is illuwsinating. C.L. Spearman in 1904 launched the General Factor model
of human abilities, in symbols:

Xip = 7 ?n v i‘j =0, j=1,39; n=1, N Ba-b)

where x,, measures the j=th ability of the n-th person, with measurements given as
deviatiogs from the meansj; Ej is the loading of the j-th ability; £ is the General
Factor, and En the factor score of the n=th personj; Ej is the specific factor of
the j=-th ability. The specific factors are assumed to be uncorrelated, giving

rij = r(éi’ Ej) = 0, i % js i, j=1,4J (9)

Since Ei and fn are unknown, a standardization of scales for unambiguity (SSU) is

needed; SSU can be achieved by giving the General Factor unit variance:
2
Elg - &(§)]° - 1 )

On condition (9 ) the tetrachoric correlations of the General Facter model

Are zero:
r‘ip I‘:.Lq
- = 03 i, j, pp g = 1, J (11)
r, r,
1P J4
which for a long time was the standard test for the validity of the General
Factor model (8).

5.2. Tt was not until the 1920°s that the General Factor model was generalized,
pernaps partly because there was no general estimation method that honoure? the
noncorrelation ( 9) of the specific factors. The Multiple-factor model of L.L.Thurstone
1935, 1947, say with 3 factors, reads:
= . - . i=1, J; =1, N 12)
xjn ﬂjl Eln + Lj2 an + I‘J5 E)n + 8.]1'1 ’ 3 PR B ¢ ’ (12)

where the general and specific factors are uncorrelated,

r(Ep’ fq) = r(Ep: £1) = r(ei’ i,]) = O: P» 9 = 1, 5? i, J =1, J (].5)

The matrix [rii] is called the correlation structure of the daia xip . =xtending
the 3SU standardization (10), and writing ‘Aj = var( Ej), the Multiple~factor model of

the siructure is:



-9-

Py s DT M)ty = DU +8 5 345 5, 5=1,7 @ a-o)
In words, the loadingé model the correlation structure, except that the specific
factor variances must be added in the diagonal.

In lack of estimation methods in keeping with the noncorrelaticn (9) of the
specific factors, the factor models (8 ) and (12) were often approximated by the

corresponding Principal Components models, say in the caze (12):

X, = . K + P ¢ + P ¢ + e,
in Pi1 *1n Pi2 *on p]5 n in a5 )
using the algebraic method of eizenvalues and eigenvectors tc estiimate the loadings
p. and component scores X .

J4 gn

6. Path models with LVs

To guote C. Fornell (1982), a second generation cf multivariate analysis emerged

in the mid-1980"s. An iterative procedure introduced by Y. Wold (1S¢66) for estimation
of Primcipal Compcnents models gives loadings and component scores that are numerically

equivalent to those given by the algebraic method in terms of eigenvalues and eigen-
vectors. K.G. J3reskog in 1967 was the first to give a general estimaticn procedure
for General and Multiple-factor models with uncorrelated specific factors.

In these innovaticns there is a twofold parting of the ways: difference in purpose,
and difference in estimation technique.

Purpose: The General and Multiple-~factor mcdels estinate the correlation structure.

The Prircipal Components model (15), also known as Single Value Decomposition, models
the data X in terms of the estimated loadings and component sccres.
Method: Joreskog uses ML estiration to model the covariance structure. The alge-

- I3 . v L4 s s
braic estimation of Principal Components is an L3 methcd, and so is Wold "s iterative

algorithm.

The propertiies of the ensuing estimates are in line with the general thecry of
¥L and LS estimation. Jdreskog’s algorithm zives ccnsistent estimates for the
parameters, i.e. for the lcidings and the specific factor variances, whereas no
esiizates are cbtained for the factor scores. %Wold“s Principal Comnonents model zives
L3 predictions (15) for the data xjn ; Predictions with minimum variance for the

P

a

edi

ediction errors ejn ;, Whereas the estimates of the lo=dings snd the compornent scores
in general are consistent only in a qualified sense (see Sn. 6.1).

B.l. & key feature of the LS estimates of the ccrponent scores is that they are

welchtied assresates of the dataj; thus for the first component:

—

X = £ ) .(p.,y x, &)

1n lLJ pl wJ (16)

where fl is a scalzr rat gives Xl urit varience, ‘n 2c-criercs wiih (10;. Under
wild supplementary conditions the estimates of ccmtonent scores and loadings are

u
consistent at larze; that is, if J (the numoer cf observabhles) is allowed to incresase
11 in tre lizii tend to the theoretical value Eln’ and similzarly fer ihe

di;:gs

Fi1
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6.2 Jireskog in 1973 extended his ML estimztion of Factor models to general path wmodels
with LVs, an extension from Model 1% in Fg. 1 to Models IT¥ — V¥, In 1566 T had given
an iterative LS eatimaticn of Canonical Ccerrelaiicns, Models I1¥ in Fgel. Hhen seeing
Joreskog s ML estimation of Models IIT¥-V* this gave me the clue tc extend my LS
sstimation of Models T*-II% to Models TTT*-IV¥. T shall now give a brief exposition of
this device, called Partial Least Squares. Spelled ocut for Model IV¥, the exposition
covers Models T¥_TTI* and TT-IV as special czses.

T« The bzsic design of PLS modeling.

#1 The arrow scheme constitutes the theoretical-conceptual design of the model. The

investigator is free to design the arrcw scheme in accorfance with the purpose of the
zedel, his prior knowledge and intuition, and the available data. The arrow scheme

specifies the LVas, the_"inner" relatisns between the LVs, for each LV a number of ‘MVs,
¢alled indicators, for its indirect observation. The inner relations are the core of

the model.

Three introductory examples with encogenous LVs ¥} and exogenous LVs g s

Mcdel TI*. Structure § and Response n indirectly observed by indicators Xps ¥
Model TIT™. Students” achievements ? influenced by Parents” home 51 and

School conditionms 22-

Mcdel IV¥, Adelman’s model, 1975: Economic levels €. and Social cenditiuns 52

1
influence Political condition nl .« Econcmic growth 7‘3 is influenced bynfl, 52 and 71.

#2 Formal definition of the model

Endogenous LVs and MVs, observed over T cases:
. ¥ . i=1, ¢ee, n 3 n=1,4H'3 t=1,T 17 a-p
’)lt jlht ’ P) ) ;s Sy ’ az )

Zxogenous LVs and MVs:

1, T (18 a-b)

g“}t x"lkt i= 1, «oo, mj k=1, H; t

The ranges of the subscripts will often be tacitly understood. Note that t,T in ![})“Ug)

correspend to n, N in (8 ).

The cross products of the raw data (175)-(18 o) constitute the product data.

#3 Inner relations. Linear relations subiect to predictor specification:
7o = 8oy + ME + vy (15)
E<"]al‘7t’ft) - BA. +f'§'t (15a)

e, ra - . < .
Twe LVs are called adjcint if they are directly connected by an arrow in the arrow scheme.

%4 OQuter relations. Line=ar relati-ns subject tc predictor specification:

_ -
Yine = Trge * Tan Piy * Eigng (20)
“skt T Tosce * Mg 5t * Eoant (21)

(s = ?
SR L9 Timo + By, V54 (202)
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#5 Prediction by the mcdel. The irmer relations (16 ) predict endogenous LVs in terms

of endogenous and exogencus LVs. The outer rslations {20) predict endogencus indicators

in terms of their LV.

Substitutive prediction: Endogenous LVs and MVs predicted in terms of endogenous

and/or exogenous LVs. 1) In the inner relation for an LV in (19) one explanatory
endogenous LV is substituted in terms of its inner relation. 2) In the outer relation
(10} for an endogenous indicator the LV is substituted in terms of its immer relation.

Repeated substitution: Repeated use of 1) -2) to substitute one or more
endogenous LVs in terms of their inner relations.

7.1 The model in estimated form.

Latent variables:
= = H = t = ¥ W,.. X, (2 a_‘b>
Yy = est(fy,) Ll Ying?s Kjy = €9 (Ejt) L Xt
The weights will be determined in the PLS algorithm. They are auxiliary parameters
trat do not belong to the formal model.

Inner relations:

v = 3
e B Yt + G Xt + ut

Cuter relations:

Vint = Plane * Pran Tit * Clintd Kokt ™ P2iko T P2ik Nit * S2ikt

T.2 PFLS estimation of the model.

The algorithm wilil be set forth with raw data input. Without loss of generality

(23 a-b)

we take the raw data to be measured as deviations from their means, which gives

;ih=§1.k=o i=1, n; 1'=l,m;h=l,H.l';k=l,Hi'( (24)
#1 First stage. The first stage estimates weights v that are proportional to w:
- ‘ = b2 ; ; = X, 25 a-b)
Ly = Bl vy P Znlvian Timed 5 Xyp T Do Fie (@5 a-b)
where fli is a scalar that gives Yi unit vériance, and similarly for xit . The

weizhts are determined by weight relations. Unifying the notation for the LVs by

C::( ?, E), the weight relations for any LV, say ;a , involve a sign weighted sum,

¢ » of estimates of those LVs that are adjoint to ;é, say C;, :
SwS = LT (+ (26a)
waat Za [(-)aal zat]

denoted SwSa

with

(i)aa’ = signux r(Za, Za,) (26b)
For each Zg the investigator has the option to choose tetween two types of

weight relations, called Modes A and B, which take the form of simple and multiple

OLS regressions of =z on SwS8
ah a
Mode A. Fcr each h the simple CLS regressicn of z,, ©F SwSa:
- {
z = v _ S%S + d a)
aht ah ~ - at aht @7e)

Mode B. The multiple OL3 regresesion of SwSa on z,°*

Sw:at = zh(vah zaht) + dat (27 b)
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As a2 rule of thumb, Mode A should be selected for thes endogenous LVs, Mode B
for the exogenous LVs. However, Mode A should be selected for exogenous LVs Ki

with many indicators, say Hq > T/10.

' The PLS algorithm alternates between (25) and (27), and proceeds in steps

s =1, 2, ... with substeps for the varicus LVs. 7Tn 2nalogy to RFP estimation

each substep uses LV proxies obtained in earlier substeps.

The starting values in step s8=1 are largely arbitrary, say Vah = 1l for all a, h .

Passage to the limit. The iterative procedure continues until each estimated wa

t
converges according to a conventional stopping rule, say:

s+1 8 s -5 )
(wat - wat)ﬁwat £ 10 ' : @a)

for all a and t .

#2 Second siage of the PLS algorithm. Using the LVs estimated in Stage 1, the

noniterative second stage estimates the inner and outer relations by OL5 regressions.
The estimated relations take the form (19) =  (21), with zero location parameters
because of the zero means (24).

Dropping (24), it is immediate matter to estimate the location parameters, as always
in LS estimation. Thus for the LVs and the outer relations:

Za = Zh(wah Eah); zahO = zah - pah za (29)

Prediction and Substitutive prediction. The theoretical predictions 6,%5 carry over

the estimated model. Furthermore, substituting the estimated LVs by the weighted
aggregates (25 a-b), the model gives predictions of endogenous LVs and MVs in terms of MVs

#3 Model evaluation. The SC test for predictive relevance and the jackknife

nssessament of standard errors are of general scope in L3S modeling, and are part of
the basic PLS designj cf. 4.3 - 4.4.

The power of classical model evaluation rests on the azgregation over the case
values (t = 1, T). PLS modeling involves a twofold aggregation, over the case
values and for each LV over its indicators, and the aggregation (25) ver the indi-

cators adds to the power of the model estimation. PFor example, in a real-world

model with T = 10 and two exogenous LVs with in all 27 indicators, the SG test gave

Q% - .44, indicating that the model is predictive; H. Wold (1978, 198C, 1983a).

#4 Product data inﬁht. Tt is immediate matter to carry over the PLS algorithm (24)-(29)

from raw data input to product data input. The ensuing procedure is more speedy on
the computer, and the resulting parameter estimates are numerically the same, except
for rounding errors. The difference is that for each LV the product data only gzive

aggregate values over t, such as means and variances of the LV estimates, whereas

rav data input is needed to obtain estimates of the case values Zat (t =1, T) for
each LV.

#5 Computer programs of the PLS algorithm (manual and tapes) are availatle at nominal

cost, and cover both raw data input and product data input; Lchmdller, 1081.
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8., FPLS modeling: Extensions of the basic design.

Thanks to the generality of being distribution-free, PLS modeling allows an array
of extensions. Tn the extensions %1- x5 the requisite changes in the basic PLS
algorithm are direct matter. Tn x6 -%7 the generalizations are more advanced.

#1 The indicators of any LV can be replaced or supplemented by some functicnal

transform, such as

2 (30)
log xjk s xjk s xjh xjk s ses
#2 In the inner reletions one or more LVs may be replaced by MVs.

#3 Categorical variables and contingency tables. Primarily designed for scalar

variables, the PLS algorithm carries over to categorical indicators and thereby to
contingency tables. A contingency table with just one caterorical variable in each

margin is the covariance matrix of the two variables.

#*4 Higher dimensions of the LVs. The basic PLS design estimates the first dimension
of each LV. Higher dimensions of an LV can be estimated consecutively, using as data

input the residuals of the outer relations.
Special cases: Principal components and Canonical correlations of higher

"orders", in PLS called "dimensions.”

Speaking broazdly, if PLS estimation gives markedly different weights for
an LV when using Mode A and Mode B, this is an indication that this LV has more

than one dimension.

#5 Hierarchic structure of the LVs as modeled by PLS is analogous to the hierarchiec

structure in psychometric factor analysis pioneered by L.L.Thurstone (1939, 1947).

#5 Models with feedbacks or interdependencies in the inner relations; Model V¥ in Fg.l.

The estimation combines the FP algorithm with the second stage of the PLS algorithm.

#7 DNonlinearities in the inner relations. A rather straightforward case:
2
Ty = Bo * Br¥e * P2+ v (31)

A scophisticated case at the research frontier of PLS: The three LVs of the

model Elt’ IZt’ ?t form the first level of a hierarchic structure where at the
second lavel trey satisfy a third-degree eation:
3
DS+ Ky v 8y = O (32)
In this model Vt may involve discontinuities in the sense of Thom’s catastrophe theory.
9. Applications of PLS modeling.
Initiated some ten years ago, PLS is now firmly consolidated, and is rapidly

gaining momentum. The reported aprlications range from reproducible data in natural
science and medicine to the nonreproducible data of socioeconomic, behavioural and
political sciences. The central and yet broad realm of PLS is reserch contexts that
simultaneously are data-rich and theory-primitive. &ver larger models are being
reported, and it is safe to say that PLS has its forte in the analysis of laryge
complex systems.

#1 Cne of the largest PLS models analyzes an educativnal system; R. Noonan & H. Wold,

L. . 25 s
1983, 101 MVs are grouped 28 indicators of 59 LVs; there are 32 inner relati-ns,
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including 14 hierarchic structures; 1,300,000 cells (1.3 megabyte) are required in the
memory space; the PLS estimation converges in 4 iterations, using a total of 44.6 geconds

computer time.

#2 TIn substantive research, PLS has inspired investigators to construct large models.
For example, the educational model in*l is a synthesis of six recent models that deal
with specific aspects of educational systems.

#% The broad scope and flexibility of the FLS approach is reflected in the
diversity of PLS applications. The data can be ecalar, crdinal, or categorical; the
imner relations can be linear or nonlinear; the purpose can be prediction, classifica-

tion, or causal analysis.

#4 The SIMCA program for classification, 8, ¥old (1978) is based on disjoint
Principal Compments models estimated by PLS, where the appropriate number of

dimensions is assessed by the Stone-Geisser test for predictive relevance.

8.1 Opinions among investigators using PLS. To summarize from discussions with

the investieators, the following advantages of PLS have been emphasized.
#)] The broad scope and flexibility of the PLS approach in theory and practice.
The conceptual-thecretical definition of a PLS model is given by its arrow scheme,
which suffices as a basis for the formal specification of the model and for the
PLS algorithm.
#2 "Tnstant estimation." PLS is a rapid affair, even if the model is large; cf. 8,%1,
#3 Parsimony. In a PLS model with J LVs there are TJ case values of the LVs,
Z%(Hj) loadings, say n, inner parameters, and J + Z}(Hj) location parameters.

To estimate these unknowns PLS is parsimonous in using weights wjh as auxiliary
tools, namely in all Zj(Hj) veightise

#4  PL3 has reduced the distance between statictical theory and substantive analysis.
A PLS model devlops by a dialogue between the investigator and the computer. Tentative
improvements of the model -~ such as the introduction of a new LV, an indicator, or

an inner relation, or the omission of such an element - are tested for predictive

relevance by the SG test. The various pilot studies are a speedy and low cost matter.

Ge Cutlook. Breaking away from the ML mainstream, and placing emphasis on appliasd
work, fLS has from the outset attracted active interest from substantive researchsrs.
FLS modeling combined with the 5G and jackknife methods now constitutes a
distribution-free approach of general scope for quantitative systems analysis.

In this broad perspective PLS modeling is a% an early stage of evolution.
There is an abtundance cf potential applications, including many fieds where systems
analysis is still at the qualitative stage. In the passage from qualitative to
guantitative analysis, of course, the scarcity or lack of adequate data is the main
protlem. Hence for a long time to come the progression of PL3 to new fields of
quantitative systemws analysis will very much be 2 matter of data work, substantive

theory and data work.
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