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FOREWORD

This Collaborative Paper is one of a series embodying the
outcome of a workshop and conference on Economic Structural
Change: Analytical Issues, held at IIASA in July and August
1983. The conference and workshop formed part of the con-
tinuing IIASA program on Patterns of Economic Structural Change
and Industrial Adjustment.

Structural change was interpreted very broadly: the topics
covered included the nature and causes of changes in different
sectors of the world economy, the relationship between inter-
national markets and national economies, and issues of organi-
zation and incentives in large economic systems.

There is a general consensus that important economic
structural changes are occurring in the world economy. There
are, however, several alternative approaches to measuring these
changes, to modeling the process, and to devising appropriate
responses in terms of policy measures and institutional re-
design. Other interesting questions concern the role of the
international economic system in transmitting such changes, and
the merits of alternative modes of economic organization in
responding to structural change. All of these issues were
addressed by participants in the workshop and conference, and
will be the focus of the continuation of the research program's
work.

Geoffrey Heal
Anatoli Smyshlyaev
Ern® Zalai
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VON NEUMANN-MORGENSTERN UTILITIES
AND CARDINAL PREFERENCES*

Graciela Chichilnisky#**

Abstract

We study the aggregation of preferences when intensities are taken into
account: the aggregation of cardinal preferences and also of von Neumann-
Morgenstern utilities for cases of choice under uncertainty. We show that
with a finite number of choices, there exist no continuous anonymous aggre-
gation rules that respect unanimity for such preferences or utilities. With
infinitely many (discrete sets of) choices, such rules do exist and they are
constructed here. However, their existence is not robust: each is a limit
of rules that do not respect unanimity. Both results are for economies with
a finite number of individuals.

The results are obtained by studying the global topological structure
of spaces of cardinal preferences and of von Neumann—-Morgenstern utilities.
With a finite number of choices, these spaces are proven to be noncontract-
ible. With infinitely many choices, on the other hand, they are proven to
be contractible.
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1. Introduction

The aggregation of preferences studied in social choice theory typically
describes an individual preference as a ranking among choices, i.e., in ordinal
terms. In most of the literature following Arrow's and Black's pieces [}] [5],
intensities of preferences are not recorded; in particular, it is not possible to
express whether a choice x is preferred to another y more than to a third, z.
Since most of the results in the aggregation of ordinal preferences are negative,
it seems natural to inquire whether more positive results can be obtained when
this property is relaxed and intensities of preferences are recorded.

A significant step in allowing the consideration of preference intensities

is introduced with cardinal preferences. These preferences express precisely

the notion that a choice x is preferred to another y more than to a third z.
In the case of choice under uncertainty, these preferences can be shown to have

the same mathematical structure as von Neumann-Morgenstern utilities, the

numerical representations of preferences over lotteries: These utilities are
denoted NM utilities, and are frequently used in the operations research
literature in the field of decision theory since the concept was developed by
von Neumann and Morgenstern (19); NM utilities are also widely used as a

representation of individual behavior in game theoretic models, see Fishburn (13).

The main difference in the definitions of ordinal and cardinal preferences
is the invariance they require from a numerical representation. Cardinal
preferences require much weaker invariance than ordinal preferences: the

representation of cardinal preference by a numerical function is invariant

under (and only under) positive linear transformations. For ordinal preferences,

. . . . . . 1
instead, the representation must be invariant under any positive transformation.



The weaker the invariance, the closer are preferences to numerical
utilities, and numerical utilities have no problem of aggregation. Therefore
one may expect that the task of aggregating is made easier with cardinal rather
than ordinal preferences. However, this is not the case. It was shown in
Chichilnisky [ 4] and in Chichilnisky and Heal [ 8] that the crucial element in
our ability to aggregate preferences is the global topological structure of the
space of preferences considered. In order to admit appropriate aggregation
rules, these spaces must be contractible, i.e. topologically trivial. However,
the topological structure of spaces of preferences may be complex even when
less invariance is required. For instance, NM utilities with finite lotteries

are shown here to define a non-contractible space, i.e. a space with a non-

trivial topological structure (see Section 2).
By investigating the global topology of spaces of cardinal preferences

and of NM utilities, we prove here that with finitely many choices, there

. . . . .. 2
exists no continuous anonymous social aggregation rule that respects unanimity.
Aggregation is impossible for cardinal preferences and for NM utilities.

With infinitely many choices we show instead that such aggregation rules

do exist. However, their existence is not robust in the sense that they are
the limit of rules defined on subsets of finitely many choices, which do not
respect unanimity. The same results apply to von Neumann-Morgenstern utilities
defined over infinitely many lotteries. A finite number of individuals is
considered throughout the paper.

The rest of the paper is organized as follows: Section 2 gives notation
and definitions; Section 3 discusses previous literature; and Section &

gives the results.

2. Notation and Definitions

In the case of finite choices the choice space X is a finite set of

points in Euclidean space

X = {xi}, i=1, ..., n, n> 3,



A preference with intensity or cardinal preference p is identified

. L . n
with a positive vector in R,

n+
perR, p= (p,e-P )

Py denotes the utility value attached to the choice X, . The total indiffer-

ence preference is thus the vector with all coordinates equal. Our space of

preferences contains this total indifference preference as well.

The following step is to normalize utility vectors in order to obtain
a unique representation of each cardinal preference by a vector in Euclidean
space. This normalization is a standard one; see, e.g., Kalai and Schmeidler
(15} ; its economic content is discussed in the following section. For-
mally, if p = (pl,...,pn) is a utility vector in Rn, p is normalized by sub-
tracting from its coordinates the vector with all components identical to

the minimum utility value

p > (pl - @,...,p - @)

where m = min {pi},
i

and then dividing the outcome by its maximum component M if M # 0, i.e.,

where M = méx {pi - m}. The total indifference preference is identified
therefore with the vector (0, ..., 0). The fact that all normalized prefer-
ences have the same minimum and maximum utility values can be considered a
weak form of interpersonal comparison.3

It follows therefore that with finitely many choices the space of cardinal

preferences is P = Q\J {0}, where Q is the subspace of non-zero cardinal pref-

erences,



+
Q = {per™":
i

[ ne'ol

p. <n-1,p. =0 and p, =1 for some k,j €{1, ..., n}},
1 17 J k

and {0} denotes the total indifference preference. In order to define con-
tinuity of the social choice rule, P is given the natural topology it inher-
its from Rn. The space P has two connected components, Q and {0}.4

We shall now define the space of cardinal preferences Pco for the case of
infinitely many choices.

Assume now that the choice space X is N, the set of integers. A :
preference p is assumed to be a non-negative sequence of numbers, i.e., a
non-negative real valued.function on N. Since we are concerned with
bounded sequences, without loss of generality, we may assume that

gp(mun) < =.

for some finite measure p or N given by a density function u(n).

The space of preferences P~ is therefore strictly contained in the space
of all bounded sequences, and this is in turn a subset (the positive cone) of a
weighted Ql space.S Note that we could have embedded P into % , the space of
all bounded sequences with the sup norm, Ix “co = sup |xn|. However, the space
Qw is a dense subspace of Ql with the (finite) w;;;ﬁi.ﬁin). Therefore, if one
defines an aggregation map ¢ for Ql’ one has automatically defined an aggregation
map for Qm, given by the restriction of ¢ on Qw considered as a subspace of Ql'
The topology induced by Ql is different than the sup norm on Qm, but since our

aim is to prove an existence theorem, for some adequate topology, this procedure

Sad - .
seems adequate. In any case, P 1s a strict subset of Qm as well as of Ql’



and is significantly smaller than either 2 or Ql' Therefore, neither £ nor
Ql coincide with P~ and thus the choice of topology is best made on the basis
of mathematical adequacy. Theorem 2 shows that Ql is an adequate space; the
spacesgl, or more generally Qp (with 1§ p<€ =) have been used previously in the

economic literature; see e.g. Chichilnisky [ 6].

As in the case of finitely many choices, we normalize the vector p in
order to obtain a unique representation of cardinal preferences. An equivalence
. . . 1 2, . 1 2
relation ™~ is defined by p™™ p~ if and only if p- =a + B8p~,
+ . . .
a e Ql’ Be R . Apreference is an equivalence class of positive vectors p
under the relation n. A space which is in a one to one correspondence with the
space of preferences is obtained by considering all vectors with coordinates
smaller than 1, with at least one coordinate zero, and with the first non-
zero coordinate (if it exists) equal to 1. Therefore with many choices the
. . © © ") + .
space of cardinal preferences is P = Q 'Y{0}, where Q = {f ¢ le for all 1,
fi § 1; fj = 0 and fj + 1 =1 for some j}l. P inherits the topology of Ql
and is a closed subset of a Banach space. As P, P consists of exactly two

connected components.



Assume now there are k agents, k > 2. With finite choices a profile

1 L k ,
of cardinal preferences is a vector {p~, ..., pk}eP , the cartesian product

of P with itself k-times repectively. With infinite choices a profile

k
is a vector {pl, cee, pk} e (@)X,

A rule ¢ is said to respect unanimity when ¢(p, ..., p) = p; i.e.,

if all voters have identical preferences over all choices, so does the social
preference.
A rule ¢ is anonymous when the outcome is independent of the order of

the voters, i.e.,

1 k 1 1
$(p, vees ) =0, oo, )
where
n: {l, a0y k}‘*{ﬂl, eeey nk}
is any permutation of the set {l, ..., k}.

Continuity of a rule is defined with respect to the usual product topologies

nk
of the spaces of preferences as subsets of R

k .
or (Zl) in the finite and
infinite choice case, respectively.

We now discuss certain basic topological concepts used in the following.

A topological space X is contractible if there exists a continuous

map £ : X x [0, 1] - X such that f(x, 0) = x ¥x in X, and f(x, 1) = for

Xy
some xogX. Intuitively, X is contractible if it can be deformed continuously

through itself, into one of its points, x Clearly euclidean space and any

0"
convex set are contractible. 1In particular, the space of continuous real

valued utility functions is a contractible space. Topologically speaking,



these are all trivial spaces, since they are topologically equivalent to (i.e.,
continuously deformable into) peints. A hollow sphere in R" is not contrac-
tible. As we shall prove below, neither the non trival connected component

the space of cardinal preferences Q,nor that of von Neumann-Morgenstern utilities,
are contractible. This proves to be important for the aggregation results of
this paper.

3. Relationship with Previous Work

Before proving the results, it may be useful to discuss the relation-
ship of the spaces of preferences studied here with earlier concepts of car-
dinal preferences used in the literature, and also earlier results in this area.

The space of non zero cardinal preferences Q corresponds to the space
of cardinal utilities as studied for instance by Kalai and Schmeidler [15]:
1 2 . . :
two vectors p and p define the same cardinal preference when there exist

a positive number B and a positive vector o such that
1 2
p =a + 3p .

It is easy to check that our normalization of the previous section
identifies each vector in Q with an equivalence class of vectors under the

equivalence relation
1 . 2
p ~ a+ bp, for all a > 0, b > 0.

Consider now the case of choice under uncertainty. In this case the
space of von Neumann-Morgenstern utilities, i.e., numerical representation
of preferences over lotteries, corresponds precisely to our formal defini-

tion of the spaces of cardinal preferences. For further discussion see, e.g.,

[15] and [19].



The specification of P given here is also related to one of the forms
of relaxation of the usual ordinality and comparability assumptions discussed
in d'Aspremont and Gevers. Their condition CN of cardinality and

non-comparability requires that if uy and u2 are two utilities, then they

define the same preference whenever
N = + .
uy (x,3) o Bj(u2 (x,3))

where j = 1,...,% is the index for the voter, x denotes a choice, and
where {aj} and {Bj} are positive real numbers. In our framework CN means that for
each voter the vector pl represents the same preference as another p2 when
there exists a vector o and a positive number B such that pl = o + sz. This 1is
precisely the cardinality condition discussed above:
Let pl and p2 satisfy pl =0 + sz. Then they yield the same element
in P, since for any p = (pl,...,pn), and any j = 1,...,n
a+Bpj-min(a+Bpi)
i

Max [a + B(pi) - min (@ + SPQ]
i 2

[pj - min(pi)]
[Max (p, - min(pg)]

1 2
Conversely, if two utility vectors p and p in RY yield the same element in

the space of i-preferences P,

1 . 1 2 , 2
p~ - min (pi) p - min (pi)
i _ i
then l ] l = 2 ] 2
Max (p; - min (py)) Max (p, - min (PQ))
} i i i
1 Q' i 2
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which implies that

pl - o+ Sp2
. 2 1 , 1
(min (p;)) Max (p; - min (pl))
, 1 i i i ]
for o = min (pi) 5 5 s
i Max (p, - min (p}))
. 1 . J
1 J
Max (p% - min (p%)
it 1
and R = 3 3
Max (p:.L - Min (p}))
i j ]

Therefore social choice rules that are invariant under the normalization of
P correspond precisely to those satisfying comdition CN.

Several authors that studied the problems involved in aggregating
cardinal preferences, e.g., Sen [l6] and Kalai and Schmeidler [15]. It has
been shown [15] that Arrow-like paradoxes may exist even with cardinal pre-
ferences, provided Arrow-like conditions are required of the aggregation pro-
cedure: these are the somewhat controversial independence of irrelevant
alternatives, Pareto and non dictatorship. Such conditions may be too strong.
Also, while making the problem amenable to a combinatorial analysis, such conditions
tend to leave out its intrinsic geometry. Here, instead, other conditions
of the aggregation rule are studied: continuity, anonymity and respect of
unanimity. These conditions admit a ready geometrical interpretation, and

furthermore help to exhibit the topological nature of the problem at hand.
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The following result establishes the impossibility of aggregation with
finitely many choices. The space of preferences is therefore P = Q Y {0},

as defined above.

Theorem 1

There exists no continuous aggregation rule for cardinal preferences

k . . ' A
¢ : P -+ P which respects unanimity and is anonymous. This includes cases

where individual and social preferences may be indifferent among all choices.

Proof:

An aggregation rule for cardinal preferences is a map ¢ : Pk + P,
Now, as discussed in section 2, the space P has exactly two connected com-
ponents, Q and {0} (figure 1 below illustrates the case of three choices).
Therefore the product space Pk has exactly 2k connected components.

The map ¢ is therefore a continuous function from a topological space

, k . .
with 2~ components into another with 2 components. It follows from continu-

ity of ¢ that each of the connected components of Pk must be mapped by ¢ into
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(0,1,0
(1,1,0)
(0,1,1 N\ N\E
< \ \ \\
l..s *..
- s‘a 3 (1’0’0) (2,0,0)
. x1..
(0,0,1) k
(1,0,0)
(0’0,2)
X
3
‘Figure 1

The space of preferences P with three choices is indicated as the union
of the point {0} with the set drawn with a heavy line. The non zero
connected component of P, Q,(indicated with the heavy line) is cn a one
to cne_bicontinucus correspondence with the boundary 3S of the simplex
S in R”, and is therefore not contractible in R3.
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one connected component of P. Consider in particular Qk, which is the con-
nected component of Pk consisting of all non zero cardinal preferences. Then
either ¢(Qk) C Q, or else ¢(Qk) C {0}. However, by the condition of respect
of unanimity ¢(p,...,p) = p for all p in Q, implying that ¢(Qk) gt {0}, i.e.,
Q% C q.

Therefore, the axioms of continuity and that of respect of unanimity
taken together rule out the possibility that a profile with all preferences
different from the zero vector may be mapped into the zero outcome vector. There-
fore, a continuous rule for cardinal preferences which respects unanimity
will only assign the total indifference to a set of voters if at least one
of them is totally indifferent among all choices.

¢ induces therefore a continuous map ¢ : Qk + Q, which is also continuous,
anonymous and respects unanimity. Since Q and Qk are both connected spaces, we
can  now use the resulfs in {7]. These results establish that the existence of
such a map ¢ depends on certain topological invariants of the space Q. The next
step of the proof consists therefore of investigating the topology of the space
of non zero cardinal preferences, for any finite number of choices n > 3.

Consider the subspace R?_l of Rn+, consisting of all vectors p with the

j-th coordinate Py = 0. The set Tj - R?-l defined by

n-1 _
Tj—{peR. .Zpi—l}

is an n-2 dimensional simplex. Now, the set Qj = Q(\ R§—l is in a one-to-

one correspondence with Tj’ by the map m defined by

, since p # {0} for all p in Q. Since the map m is

ne1 s
o

i=1
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continuous, and so is its inverse, it follows that the space Q is homeo-
morphic to the simplex T,.
]
Now, for any j, % € {1,...,n} the intersection Qj[] Qg = Tj[\ Tl'
n
Since Q =\ Q, and Qj(\ Q, = Tjﬂ T, for all j and 2, it follows that
j=1
n

n n
\H/ Q. is homeomorphic to \_} T.. Therefore Q is homeomorphic to K\/ T..

n
Now, Tj is, in turn, homeomorphic to the boundary of an n-dimensional
j=1

simplex in Rp, i.e., an n=-2 dimensional sphere. It follows that Q is homeo-
morphic to an n-2 dimensional sphere and, therefore, in particular, Q is not
contractible. We can now apply the results of [7], which establish that for any
(para) finite CW complex X, the contractibility of X is a necessary condition
for the existence of a continuous anonymous rule ¢ : Xk + X, which respects
unanimity, for all k > 2. Since Q is a finite CW complex and is not con-
tractible, this completes the proof.

Since as discussed above the space of NM utilities can be identified
with P if there are finitely many choices in each state, we have therefore obtained

from theorem 1:

Coreollary 1

The space of von-Neumann Morgenstern utilities with finitely many lotteries

1s not contractible.

and
Corolla;z 2

With finitely many lotteries there exist no continuous anonymous aggregation

rule for von Neumann-Morgenstern utilities which respects unanimity. This

includes cases where individual and social utilities may be indifferent

amgng all lotteries.

Remark : Even though our framework and conditions on the aggregation rule
are rather different from those of Kalai and Schmeidler, our impossibility

result is consistent with theirs in cases of finitely many choices.
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However, this is not the case for infiniteiy many choices. Instead,
we obtain in the next section a possibility of aggregation result for his latter case.
This contrastsvwith the result of Kalai and Schmeidler because their impossi-
bility result is valid also with infinitely many choices. This is because
they require the axiom of independence of irrelevant alternatives, which effec-
tively reduces the problem of aggregation with infinitely many choices to one
of aggregation with finitely many choices. The difference between the two
results arises from the fact that different sets of axioms are required: we
do not require independence of irrelevant alternatives, but require continuity
instead, and we do not require the Pareto condition, but rather a (weaker)
condition of respect of unanimity. The results given below also show that the
aggregation with infinitely many choices is not robust as a limiting process
of aggregation on certain finite subsets of choices.

We now turn to the case of infinitely many choices. Our space of
cardinal preferences is therefore Pw. As before , there are a finite number

of individuals , k > 2.

Theorem 2

With infinitely many choices, there exists a continuous aggregation

x© G2
rule ¢ : (P ) -+ P for cardinal preferences respecting unanimity and anonym-

ity given by a continuous deformation of a Bergsonian rule i.e., a convex

addition rule However, any such rule is a limit of rules defined on arbi-

trarily large finite sets of choices and which do not respect unanimity;

in particular they are not Pareto.

Proof:

As in theorem 1, we may consider a continuous aggregation rule
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[oe]
assigning to each profile of k(non-trivial) preferences in P , an element

q (J {0}, and

o« o]
of P , where P

% +
{9621

L
]

< i = =
p; <1 for all i, pj 0 and pj+l 1 for some

it

2]
As in the finite dimensional case one can show that Q is in a one~to-

one bicontinuous correspondence with the boundary of a disk in 21, i.e., with

an infinite dimensional sphere in Ql.
Now, by corollary 5.1, p. 109 of Bessaga and Pelczynski {2] and

Kuiper [14] the space dw is homeomorphic to Ql, and in particular, is con-

tractible. This is in contrast to the finite dimensional case, where spheres

are not contractible and indeed not homeomorphic to euclidean space. Let H

e

be the homeomorphism, H : Q -+ £ Since convex addition C in Rl exists

1

and it satisfies anonymity, continuity and respect of unanimity, the compo-

-1
sition map ¢ = Ho Con defined by

k
is a continuous function ¢ : (Qm) +> Qm satisfying anonymity and respect of

unanimity. Since we can repeat this procedure for each connected component

o k , .
of (P ) , this proves existence. C(Clearly the map ¢ is a deformation of the

convex addition rule C, i.e., a deformation of a Bergsonian rule.

Consider now the space of truncated sequences T CQ,

T = {{p} : ¥, with p, = 0 for ¥ > M }.

This space is dense in Ll with a (finite) measure. Consider the pointwise

convergence topology of the space F of continuous functions F = f : (¢

> Ql}.
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The sequence of restriction maps {¢d}, defined by the restrictions of ¢ to

finite dimensional linear subspaces L, whose dimensions define an unbounded

d
sequence of integers {d}, converges to ¢. Note that when restricted to any

finite subspace of choices (i.e., when restricted to vectors of finite length)
the map ¢d remains anonymous. It follows by theorem 1 that ¢d cannot respect

unanimity on such subspace; in particular, it is not Pareto. Since the

sequence of maps {¢,} converges to the map ¢, this completes the proof.
d

From theorem 2 we obtain immediately the analogue to corollaries 1 and 2
for von Neumann-Morgenstern utilities:

Corollarx 3

With infinitely many lotteries, the space of von Neumann-Morgenstern

(e -]
utilities P 1is contractible.

and
Corollagz 4
With infinitely many lotteries there exists a contjinuous anonvmous

aggregation rule for von Neumann-Morgenstern utility functions which respects

unanimity. However, this rule is not robust since it is the limit of non-Pareto

rules on arbitrarily large sets of lotteries.
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FOOTNOTES

lThe problem of aggregation of ordinal preferences is significantly
different from that of aggregating utility functions (e.g., the classical
Bergsonian social welfare function) because the aggregation of ordinal pref-
erences must be independent of the choice of their utility representation.
For instance, if u is a utility function and F is a strictly increasing numer-
ical - function, the ordinal preference associated with the utility u must be
the same as that associated with the function F o u. Therefore, a rule for
aggregating utilities will only induce a rule for aggregating ordinal prefer-
ences if it is invariant under any such increasing transformation of utilities.
This is indeed a rather strong condition, and several possible relaxations
have been studied, for instance, by Sen [16] [17], Hammond [13], Kalai and
Schmeidler [15] and more recently by d'Aspremont and Gevers [10]. Sen [17]
concentrates on the relaxation of the assumption of no interper-
sonal comparisons. d'Aspremont and Gevers discuss and characterize a wide
combination of assumptions that relax both the interpersonal comparison and
the ordinality assumptions. Our framework here is most closely related to
axiom (CN) of d'Aspremont and Gevers, which assumes that individual utility
functions are cardinal and non comparable, and to the cardinality assumptions
of Sen [16] and of Kalai and Schmeidler.

2 Respect of unanimity is strictly weaker than the Pareto condition.
It requires that if all individuals agree unanimously over all choices, so
does the aggregate. This condition does not imply that if ome choice x is
preferred to another y by all individuals, then the aggregate prefers x to y.

3 This normalization has in particular the effect that the sum total

of intensities over choices is uniformly bounded over agents; this was a sug—
gestion of L. Gevers.

4 A connected component of a topological space Y is a maximum connected
subspace of Y. A space X is connected if it cannot be decomposed as a union
X =% U Xy, whereX, # ¢, Xp # ¢, and X and X, are both open and closed sets.
This extends the notion that any point in X can be joined to another in X by
a path contained in X.
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S(Zl,u) is the Banach space of infinite sequences of real numbers
{xptn= such that
ntn=1,2, ...

. = z u(n) < ™,
see [11].

Note that this condition is binding only when all voters have identi-
cal preferences. It is therefore a strictly weaker condition than Pareto,
since a rule ¢ satisfies the Pareto condition if whenever a choice x € X is
preferred to another y € X for all preferences pl,...,pk, then ¢(pl,...,pk)
also prefers x to y.

7 . . \ . .
In addition to viclating our axioms, rules that assign zero outcomes

to non zero vectors are clearly undesirable for other reasons: It is easy to

check that if ¢ is a continuous map from (Rn)3 into R? that maps a profile of

three voters with non zero vectors into the trivial (zero) social preference,

it will necessarily map the equivalent of some Condorcet triple into the

trivial outcome (0,...,0). The 'Condorcet triple' we are referring to is

obtained by choosing three points (xyz) in RD}, so that the three vectors giv-

ing the voters' preferences rank these choices in the orders (xyz) (zxy) and

(yzx) respectively. Such aggregation would give a trivial (total indifference)
solution to the Condorcet triple, which is clearly not an acceptable solution.

8The pointwise convergence topology Tt on F is defined by the convergence
rule

. T R
(gly » £ 1f £2(p) > £_(p) ¥ p in L,

see [11].
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