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PREFACE

The Adaptation and Optimization project at IIASA is largely
concerned with the development of algorithmic procedures for stoch-
astic programming problems. In this paper, Professor Georg Pflug
of the University of Giessen considers existing methods of con-
trolling the step size in algorithms based on stochastic gquasi-
gradient techniques, and presents a new, adaptive step-size rule

that leads to more rapid convergence of the associated algorithm.
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ABSTRACT

For algorithms of the Robbins-Monro type, the best choice
(from the asymptotic point of view) for the step-size constants
a, is known to be a/n. From the practical point of view, however,
adaptive step-size rules seem more likely to produce quick con-
vergence. In this paper a new adaptive rule for controlling the

step size is presented and its behavior is studied.
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ON THE DETERMINATION OF THE STEP SIZE
IN STOCHASTIC QUASIGRADIENT METHODS

Georg Ch. Pflug

1. INTRODUCTION AND HISTORY OF THE PROBLEM

We consider the problem of unconstrained minimization of a

function:

by a stochastic quasigradient method. This implies the use of a
steepest-~descent (gradient) algorithm for which only statistical
estimates of the gradients but not their exact values are avail-
able. In particular it is assumed that at each point x and for
every € >0 we can observe a vector-valued random variable Yx

’

such that its expectation E(Yx €) satisfies

’

(E(Yxle) -Vh(x)| <e
Sometimes there is even an unbiased estimate Y, of the gradient, i.e.,

E(YX) = Vh(x) .

The unknown minimum point Xg = argmin h is estimated by a recursive
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sequence {Xn} of the form
X =x - ay , (1)

where Yn is a sequence of stochastic guasigradients, i.e., the
conditional expectation of Yn given the history of the approxi-

mation process satisfies

lim |E(Y_[Xq,...,X ) =Vh(X )| =0 .
n—+0
The values a, are the step-size constants and X4 is an arbitrary

starting value.

Univariate recursions of the form (1) were considered for
the first time in a pioneering paper by H. Robbins and S. Monro
in 1951, These authors examine the problem of recursively esti-
mating the root of an unknown regression function R(*). In the
minimization case this amounts to assuming that one can obtain
an unbiased estimate of h'(+). 1If, however, only an unbiased
estimate of h(¢}) [not of h'(+)] is available, then h'{(¢) has to
be approximated by numerical differentiation. The corresponding

procedure was developed by J. Kiefer and J. Wolfowitz in 1952.

These two methods were generalized to the multidimensional
case by Blum (1954). Sacks (1958) proved the asymptotic normality
of the properly normalized process Xn in the Robbins-Monro (RM)
case. The Kiefer-Wolfowitz (KW) situation is a bit more compli-
cated, since in this case two speeds of approximation influence
the asymptotic behavior: the deterministic speed of the approx-
imation of Vh(+) by finite differences and the stochastic conver-
gence rate derived from the Central Limit Theorem. It was shown
by Fabian (1967) that the rate of convergence can be increased
considerably by using higher-order numerical approximations of
the gradient. Fabian (1968) also gave a very general result con-
cerning the asymptotic normality of recursive schemes, including

the RM and KW processes.

The asymptotic distribution depends on (i) the local proper-
ties of h(+) at the minimum point Xg = argmin h(+) (or, more pre-
cisely, on the Hessian Vzh(e), if this exists); (ii) the covariance
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way in which Vh(+) is approximated numerically. It is, however,

structure of YX; (iii) the step-size constants a_; and (iv) the

independent of the starting value Xi. In particular, there is -
from the asymptotic point of view -- a best choice for the con-

stants a.s namely

This choice maximizes the convergence rate. Moreover, in the
univariate case there is even an optimal choice of the constant a,
namely a = 1/h"(x0), which minimizes the asymptotic variance.
However, if only asymptotic convergence is required then the
conditions

a_>0; Ja=w; Jai<o (2)

are sufficient.

The asymptotic approach is really rather unsatisfactory for
practical applications. Due to the fact that the asymptotic
distribution of Xn is independent of the starting value X1, the
asymptotically optimal choice of the a, is very bad for finite
samples, especially if |X1-x0| is large. This is illustrated

by the following example.

1.1. Example. Let h(x) = |x--x0 . We consider, for simplic-

ity, only the deterministic gradient algorithm

- - a -
Xne1 = Xp n sIn (X, -x,)

Let N be the first index for which |X_ -x,| < e. Then N depends

exponentially on Ix1-x0 ! Thus we pay for a bad choice of starting
value by incurring an exponentially increasing number of necessary
steps. This disadvantage disappears if we consider only the

asymptotic distribution.

In practice it is preferable to choose the step length a,
such that it depends on the (unknown) distance |xn-x0|. If

!Xn-x0| is very large the procedure should make large corrections;



the step length should be decreased only when ]Xn-x0| becomes
smaller. On the other hand, it is clear that an adaptive choice
of the a, entails greater mathematical difficulty since in such

a case the a, can no longer be treated as constants, but become
random variables a, = an(x1,...,xn). We should emphasize the
fact that methods based on the adaptive choice of step length a,
are quite different from random search techniques. In the adapt-
ive choice approach a, is a function of the (random) history of
the process, whereas in random search methods the a, 6 are random
variables which are independent of the past, but whose distribu-

tional parameters may depend on past events.

A first step toward the use of adaptively chosen step lengths
in the RM case can be found in a paper by H. Kesten (1958). He
proposed to take any deterministic sequence oy satisfying (2)

and set

et I

a .1 = % (say) if sgn Yn_1 = sgn Yn
an =

Ot 1 otherwise .

Kesten shows that the convergence properties hold in this case,
but he was unable to give a mathematical argument to justify his

procedure.

A further contribution was made by V. Fabian (1960), who
proposes a random linear search after the stochastic gradient
has been evaluated. He takes additional random observations of
h(Xn-+janYn), say V ; J>1, and chooses a, = j'an where j is
2 Vn,p 2 see 2V 5. With
this choice it is also possible to derive the a.s. convergence

n,j
the largest integer such that Vn

properties.

A different method of controlling the step size was proposed
by Yu. Ermoliev et al. (1981). They assume that an unbiased
estimate Zn of the objective function value h(Xn) is available
and define (for k € N)
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Then a., is chosen according to the rule

a,/2 if |E -E

| <8
n-=s n -

a, otherwise ,
where k, s and § are appropriately chosen constants. This step-
size rule is quite plausible since a, is decreased as soon as
it is evident that the mean improvement in the wvalue of the
objective function is too small. However, it is also unsatis-

factory, for the following reasons:

(i) The procedure cannot distinguish between two different
situations: random fluctuations around the minimum point Xgr
and small gradients combined with large variances far away from
X In the second case the procedure will, with high probability,

continue to reduce the step size.
(ii) Divergence caused by overshooting will not be detected.

(iii) An additional estimate of the value of the objective

function must be provided.

A new method for controlling the step size is proposed in
Section 4 of this paper. However, we shall begin by considering

some instructive examples.

2. EXAMPLES

A graphical representation is often quite useful in describing
univariate problems. Assume that YX is an unbiased estimate of
the derivative h' (x) of the objective function h(x). Let oz(x) =
Var(Yx). The following diagram shows a possible behavior of E(Yx)=

h' (x) (full line) and the functions h'(x) + o(x) (dashed lines).



2.1 Example (Univariate quadratic problem). Let the univariate

objective function take the form
_ o 2
hi(x) = 5 (x xo)

and suppose that the stochastic gradients Yn have expectations
aXn and variances 02. The situation can be described diagram-

matically as follows:

To obtain a better understanding of the influence of the choice

of step=-size constants a ., we shall for the moment take them to

be constant, a, Z a. Then, introducing the error variables Zn

Yn - h'(Xn), procedure (1) takes the form

Xn+1 = Xn - aa(Xn-xo) + aZn



or, equivalently, with c = agq,

n-1 bl i-1
(X =xy) = (X, -x4) (1-¢) +al] (1-o)" 'z 5 .
i=1
Xn is the superposition of a nonrandom drift
x, + (1-0)""1(x, - x,)
0 1 0
41
x7T
X
o
t t t — n

and the zero-mean stochastic process

nl i-1

a z (1 =c) Zn—i .

The above can be approximated by the stationary process

_ i-1
U. = a (1 -c) Zn-i "

i

B
le—18

1

U, is an AR(1) process, since it is a stationary solution of the

stochastic difference equation

Un+1 = Un(1-c) + aZn

with moments

I
o

E(U,)

Var(U ) = _ga_2

2c - cC



Cov (U_,U__.)

(1 =-c) .

Corr (U_,U_ _.)

Taking a trajectory from this process:

4
Un

NI

we obtain a typical picture of the process Xn by superposition.

| m,\ M
v v

Analogously, the gradient process

Y = a(Xn-xO) + Zn

no i-1
+c ] (T-c)” "2 _, + 2,
i=1

n-1
a(1-c) (X1 —XO)
can be approximated by the superposition of a deterministic
component

y 21

a(1 -c Xy - xO)
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and the zero-mean stationary process

i-1

\ = C
i

fo
Hr~ 8

Vn is an ARMA(1,1) process since

Vel (1 —c)Vn = (2c--1)Zn + 21 .

The moments are

E(Vn) =0
O2
Var(Vn) =
1-(c/2)

2 s-1 s g°cC

Cov(V_,V ) = oc7c(1 -¢) + (1 =c¢) for s>1
n’ 'n-s -

2-c

Note that if 02 = 0 then Xn-+x0 and Yn-+0 for any c such that

0<c<1. Hence there is no need for a reduction of the step

. . .. . . . 1
size in the deterministic situation unless a > i If, however,

02 > 0, then

02a2
lim Var (Xn-xo) = >
n-—+o 2c -c
lim Var (Yn) = 02 + 2 €
n--o 2 =C

and the process X will oscillate around the solution X unless

we reduce the step size. The asymptotic variance decreases as

a -0, but on the other hand a small value of a results in slow
convergence of the deterministic part. What we can learn from
this example is that the step size should be reduced if it is
evident that the deterministic drift has fallen to zero and the
fluctuation of X 18 due only to the random element (the stationary

process Un).
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2.2 Example (Multidimensional quadratic problem). Let the

objective function be of the form

where A is a positive definite matrix. Without loss of generality,
X is assumed to be zero. The error variables z, are independent
and identically distributed with expectation 0 and covariance
matrix C. Again we let the a, remain constant and equal to a.

The process (1) takes the form

Xn+1 = (I--aA)Xn - aZn

or, equivalently,

_ _ n=1
Xn = (I - aA) X1

Once again, Xn can be approximated by the sum of a deterministic

drift and the following vector-valued AR(1) process:

[s0]
a z (I - al) Z .
io1 n-i

This process is well-defined if a is smaller than the inverse of

the largest eigenvalue of A. The gradient process

can be rewritten as

ngt i-1
+aA ) (I-ad)~ 'z . + 2 .
i=1

_ n-1
Yn = A(I - ad) X1

The stochastic part of this process can be approximated by the
stationary vector-valued ARMA(1,1) process

1(1-aA)l' Zo_s t 3 (3)

Vn = aA

ft~18

i

which fulfills the difference equation
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Vn+1 - (I-—aA)Vn = (2aA-—I)Zn + Zn+1
Clearly (3) determines the covariance structure of the process.
Instead of considering the autocovariance matrices E(anﬁ-s) we
calculate the following two numbers:

E(||Vn||2) = tr (C(a’a? ) (1-an)?t + 1))
i=0

2i-1

E(v!,,v) = tr(c(a’a® | (I-aa) + an)) |,

n+1 =

where tr (B) denotes the trace of matrix B. Use of the formula

Bt = (x-m7" ,

which is valid for positive definite matrices B with all eigen-

values less than unity, leads to the simplifications

1

2, _ a. -
EUWJ )—tr(Cu-fA) ) (4)

-1

E(V' = tr (CaA(2I - (2I -aaA) )) . (5)

n+1vn)

As in the univariate case, the approximation process X, converges
(for fixed a) only if C = 0, i.e., if the procedure is a deter-

ministic one.

2.3 Example (Nonsmooth univariate case). In this example we

consider the objective function h(x) = a x-xol and assume that
the error variables Zn are again independent and identically
distributed with expectation zero and variance 02. Furthermore,
we assume that the distribution of the Z, is symmetrical around
zero and possesses finite moments of any order. Since h'(x) =

0 sgn b<—x0) if x # X the problem may be represented graphically
as follows:
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e o o e e ame XO

Without loss of generality, we can assume that Xg = 0. The

stochastic approximation process (1) is then given by

Xn+1 = X - aa sgn (Xn) + az . (6)
To which limiting distribution does this recursion converge, if
any? Or, equivalently, what are the stationary distributions of
the Markovian process (6)? Let G be the c.d.f. of the variables

Z.,- A stationary distribution F must clearly fulfill

F=F *G |, (7)
where
F(u-c) u < -c
F(u) = {F(u+c) - F(0) + F(u=-c) -c <u<c
F(u+c) u>c
and ¢ = aa.

This convolution equation is best handled by considering the
Fourier transforms. Let X be distributed according to F and let

_ itXx
bpe) = B 1 o))

_ E(eltx

<
N
(-f-
|

Tix<0})
Then (7) can be rewritten as

(0™ 4y (e’ o at) = v ) + oy, 00 (8)
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where ¢(+) is the characteristic function of the Zn' We assume
that ¢(+) does not vanish anywhere, i.e., Zn is non-lattice. Any

solution of (7) must be symmetric, i.e., such that

The functional equation (8) can then be written as

log ¥, (t) - log ¥;(-t) = log (¢ (at) -e'°F)

—ict _ -1 (9)

- log (e ¢ (at)) .

Since, from the moment conditions on Zn’

£252 + o(t?)

Il
—
|

¢ (t)

taking the derivative of equation (9) at the point 0 leads to

' -—
4 w1(0) = I% (a202-+c2) .
a02-+c2
Hence E (X 1fx>0}) = ————— and therefore
N be
c2-+a202
E(|X]) = ——— (10)
2¢

On taking higher derivatives we see that E(|X|k) is uniquely
determined for odd k. (For even k the kth derivative vanishes
on both sides.) Let 28, = E(|x|***"); x> 0. Thus

J 2K+ aF (x) = B, .
0

Or, by introducing the distribution function
X
I udF (u)

B,



=10

we obtain

X - Jxk dH (V%) . (11)
0

We see that H(*) and consequently F(¢) is uniquely determined
by the sequence {Bk} 1f the corresponding moment problem (11)

has a unique solution.

However, the author was unable to solve (10) explicitly
even for a normal error distribution. It also seems to be difficult
to determine the even moments, especially the variance of the

symmetric solution.

Nevertheless, we can still take the first absolute moment
as a measure of dispersion. From (10) it can be seen that in
this case Xn does not converge to zero unless a + 0 even when
02 = 0. This is the important difference between examples 2.1
and 2.3. The asymptotic dispersion (10) can be viewed as a super-
position of a "deterministic part" <¢/2 and a stochastic part

a202/2c.

3. DETERMINISTIC STEEPEST-DESCENT METHODS

In this section we study step-size rules for deterministic

steepest-descent methods. Let h(+) be a quasiconvex, continuous
function defined on ]Rk. This means that the sets
s(x) = {y|h(y) < h(x)}

are closed, convex sets. We assume that h is continuously dif-

ferentiable for x # X with gradient Vh(x) # 0 for x # X and

that S(x,) = {xy}, i.e., x5 = argmin h(+). An algorithm of the
form

X 41 = X, - a, Vhix)) (12)
is known as a steepest-descent algorithm. In mathematical pro-

gramming the step-size constants a 6 are usually determined from
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h(xn-ath(xn)) = igf (xn-th(xn)) ' (13)
i.e., they are found by a line search. However, this type of
procedure cannot be used in stochastic gradient methods since
for these problems only a stochastic estimate of the optimal a
would be available. Such an estimate would require additional
observations as well as contradicting the basic philosophy of
stochastic approximation: Not to waste too much time trying to
get a better estimation of the next step when the current point

is still a long way from the solution.

Let us therefore concentrate on those step-size rules which
depend only on n (the number of the step) and the history
(x1,...,xn_1) of the iteration process, and which do not require

any additional evaluation of the objective function.

One important subclass of these rules is formed by sequences
a, which depend only on n. The corresponding convergence proper-

ties are given by the following theorem.

3.1 Theorem. Let the function h be defined as above and

suppose that for every € >0

(x-xO , Vhi(x) ?
inf 5
Hx-—xoﬂie | vh (x) I

| v

nqe) >0
inf (x—xo, Yh(x) ? > nz(e) > 0 .
Hx-—xoﬂze

If

a, >0 ; a +~0 ; lag = = (14)

then the iteration {xn} given by (12) converges to Xge

Proof. Without loss of generality we can assume that Xq = 0.
If Han_ie then

2 2 2
= Han 2an<xn ,Vh(xn)) + ag HVh(xn)H

| A

Ix 1% - 2 ( (1 _%n )
Xn ann, (€) —n1(€)

\
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2 . . 2 2
Thus, for large n, Hxnﬂ > ¢ implies that Hxn+1H < Han - 2a_k,
where K is a constant depending only on €. If, however, Han_ie
then, by the continuity of Vh(+), HVh(xn)H is bounded and hence

Ilx .l < 2¢ for large n. From Zan = « we can conclude that

n+1
lim sup Han_ge. Since € was arbitrary the theorem is proven,

Before trying to construct a more adaptive step-size rule

we first draw attention to the following lemma.

3.2 Lemma. Let h be convex and twice~-differentiable. The func-
tion a+ (Vh(x) , Vh(x-aVh(x))) is monotonically decreasing and
vanishes if and only if a is the solution of (13).

Proof. The assertions follow easily from simple calculus.

The situation can be illustrated by the following figure.

Since (Vh(x) , Vh(x -aVh(x)? <0 implies that a is larger than the
optimal a given by (12), we are led to the following heuristic

step-size rule:

a, if (Vh(xn),Vh(Xn+1)) >0
%het1 T (15)
an/2 if <Vh(xn),Vh(xn+1))_iO .

The decrease by a factor of 1/2 is somewhat arbitrary; any factor
g (0<g<1) could be taken.
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With this rule we can state and prove a convergence theorem.

3.3 Theorem. Let h be defined as in Theorem 3.1. In addition,
we assume that it is inf-compact (i.e., the sets S(x) are compact)

and [IVh(x)Il < KHx-xOH. The iteration

X 41 = X, — a Vhix)) '
where a is given by (15), converges to X, for every starting

value (x1,a1 >0).

Proof. We show first that, for a >0, (Vh(x),Vh(x-aVh(x))? >0
implies that h(x) > h(x-aVh(x)). By virtue of the quasiconvexity
of h

S(x) & {y|(y-x,Vh(x)) <0} .

Let z = x~-aVh(x). Suppose that h(z) > h(x), i.e., x€5(z).
Then 0 > (z-x,Vh(z)) = -a (Vh(x),Vh(z)) >0 and the theorem is

proven by contradiction.

Now consider the sequence a, - If Zan<co then X, converges.
Let the limit be y. If [I[Vh(y)ll >0 then (Vh(x),Vh(x-aVh(x))) > 0
for small a in a neighborhood of y. Thus y can be the limit only
if y = Xq. If an-+0 but Zan = » then X,  converges to Xg by
Theorem 3.1. If a, does not converge to zero, then there is an
index N€ N such that a, = a for n>N and (Vh(xn),Vh(xn+1)> > 0.
Hence h(x ) is decreasing for n > N. The sequence {xn} has a
cluster point y since h is inf-compact. Let z = v -aVh(y). Then,
by continuity, h(z) = h(y) and (Vh(z),Vh(x)? > 0. This implies

that either x = z or Vh(x) =0, but in any case x = Xge

We finish this section by looking at two examples.

3.4 Example. Let h(x) = xll. Then Vh(x) = W%W if x # 0.
Since iéLzhii%L = [[xll and (x,Vh(x)) = lxll the assumptions of
Il vh (x) Il

Theorems 3.1 and 3.3 are satisfied. The recursion (12) then takes
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the form
a
= 1 - n
Xn+1 %n Hxn") '
Or, writing Xy T VpXqr

_ _ n
Yne1 T Vn T TER,TOS9m (k)

If {an} satisfies (14) and a1 S a < 2an+1 then
Ix Il = O(an) .
If {an} is determined by (15) then

Ix Il = 0(2™™)

and we see that (15) is much better than (14) in this case.

3.5 Example. Let h(x) = %-x'Ax, where A is a positive
definite matrix. Then Vh(x) = Ax and
(x,Vh(x)?) _ x'BAx m
T T ol 22
I Vh (x) |l X'A%x M

where M and m are the largest and smallest eigenvalues of A,

respectively. Similarly,
(x,Vh(x)? = x'Ax > mll x| %

and thus the assumptions of Theorems 3.1 and 3.3 are satisfied.

Choosing the constants a, according to (14) leads to

= T —
X, HE anA)x1 .

This implies

xn+1
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Choosing, for instance, aj = a/j we obtain

-am

) .

Ix Il = o(n

For this example, rule (15) can be written as

. v 2 r3
a if x Ax - a x A" x._ > 0
n n n n“n n

an/2 otherwise .

It is evident that the constants a, can never fall below m2/2M3.

Thus, if the objective function is gquadratic then the constants
determined by rule (15) do not converge to zero and the rate of

convergence of the iteration is at least

Sy

Again, rule (15) is superior to (14).

4, A STOCHASTIC STEP-SIZE RULE

A stochastic version of rule (15) is presented in this

section. We once again consider the approximation process (1)

where

E(Yn|X1,...,Xn) = Vh(x,) .

1)
It would be possible to approximate (Vh(Xn),Vh(Xn+1)> by YnYn+1'

However, it would be incorrect to compare this quantity with zero;

we should rather look at the expectation of this value for the

stationary distribution of (1). Since this distribution depends
on h(+) we have to make some additional assumptions.
t
We assume that h(*) is qguadratic, i.e., h(x) = % X Ax, since

this is the most important case, and also that the covariance
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matrix C of the stochastic gradients Yn is independent of Xn.

1
By (5) the expectation of YnYn 1 under the stationary distribu-

+
tion is

E(VI'H_1Vn) = tr (CaA(2I- (2T -an)" 1)y .

To simplify the rule we replace aA(2I - (2I -aA)-1) =

ali 21-—% Z (an)?t by % aA, neglecting terms of higher order in A.
\ i=0
The quantity tr (aCA) can be estimated by taking a random
direction D, at X, and estimating the gradient at X, + aD,. To
be more explicit, let Y; and Yi be two independent estimates of

1 1 2

Vh(X ). Let D = (Y - Y ). Then E(D_[X;,...,X ) = 0 and
Cov (Dn) = % C. Let §n+1 = Xn + aD, and §n+1 be an estimate of
Vh(§n+1), i.e., §n+1 = A§n+1 + Zn+1‘ Then
' ' ~
E(DnYn+1) = E(Dn(A(Xn + aDn) + Zn+1))

1

= = &
= aE(DnADn) = 3 tr (AC) .

A more parsimonious use of the random variables can be achieved
by setting Y, = % (Y; + Yi), which has the advantage of reducing
the covariance matrix by a factor of 1/2. The step-size reduction

is then based on the comparison

1]

n+1Yn

-~

Y
1

) .

I o~

1 3
K _ < 5 EPpYhy

This method is summarized in algorithm 4.1. The notation Yn :=

Y(Xn) is used to indicate an independent function call of the

gradient estimate. 1In particular, Y1 s = Y(Xn); Y2 := Y(xn) does

not mean that Y1 = Y2.

4.1 Algorithm

Step 1. Choose starting values X a

K

Step 2. Set n := 0; N := 0. Go to Step 4
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Step 3. Set n := n+1
Observe Y1 = Y(X_); Y2 = Y(X_)
n n'’ n n
1 1 2
Set Yn = 5 (Yn + Yn)
1 1,2
D =3 (Yn Yy)
xn+1 = xn - aYn
Xn+1 = xn - aDn
Yo+1 27 Y(Xpiq)
'~
6n 2= DnYn+1
Step U. Perform Step 3 twice
Step 5. 1If
n-1 n
1 Z ! 3 1
— Y Y < 5 P
n-=N KN k+1 "k — 2 n-N+1 KoN k
then set a := a/2; N :=n; stop, if a < e¢; perform

Step 3 twice and return to Step 5

Otherwise perform Step 3 once and then return to Step 5

It is important to notice that if the procedure is determi-
nistic Dn = 0 and Gn = 0. Therefore algorithm 4.1 is very close
to rule (15) except that the algorithm uses the arithmetic mean

I
of the inner products Yk+1Yk'

In order to reduce this difference we could use a variant

of the algorithm which employs a sequential t-test instead of a
. . * . . .

simple comparison of mean values. This algorithm is presented

below in more formal notation, which omits iteration indices.

4.2 Algorithm

Step 1. Choose starting values X, a

Step 2. Setn :=0; k :=1; vy =20; n =1

* . .
For the theory of sequential tests see Govindarajulu (1975).
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Step 3. Set n := n+1 ; k := k+1
1 2
Observe Y := Y(X) ; Y = ¥Y(X)
Set V := Y
Y := % (Y1 + Y2)

»at
.II
>
I
&

¥ := Y(X)
- '~
§ = (E_l)g + (lg .D Y
n
k-2 1 ! .
(=5)Y + g YV if k # 1
'Y —3
Y if k =1
k=2 1 ! 2 .
PN + o (Y VT iE k # 1
n =
n if k =1
3 t 2
If Yy <56 - ¢ (n=y")
then set a := a/2; k := 0; & := &§/2;

stop if a < €; go to Step 3

3 t 2
1f Yy = 58] < ¢ (n=v")
then go to Step 3

If Y>36 + 5 (-vH

(NTTW)

then set k := 0; n := 0; go to Step 3
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The constant t represents the upper a-fractile of a standard
normal distribution and should be set to a value between 1 and 3.
It is shown below that this algorithm results in a convergent

iteration process.

!
4,3 Theorem. Let h(x) = % ¥ Ax and let the covariance matrix
of the gradient estimations Y, be constant. Then the recursive
sequence (1) with step sizes given by algorithm 4.1 or 4.2 con-

verges a.s. to zero.

Proof. We must consider two different cases. If a,>a >0
then the distribution of the Yn approaches the stationary distri-

bution. Hence, by ergodicity,

1 ] ' _1

= MY, .1 Y, > E(Y__,¥)) = tr (CaA(2I - (2I-ahd) ))
3 's
< ytr (aCA) = E (DY .4)

Hence, with probability 1, there must be an index N such that

ay has to be reduced. Hence aﬁ%'o is impossible.

1 ' .
If a, >0 then = ZYk+1Yk-+O and hence E(Yk+1Yk) = 0. This

however implies that Xn-+0.
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