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This paper deals with the problem of adaptive estimation in the continuous time 

Kalrnan filtration scheme. The necessary and sufficient conditions of the convergence 

of the parameter estimators are discussed. For systems which are characterized by 

constant but unknown parameters. the conditions of convergence can be checked 

before the  observation start. The method of proof is based on the relations between 

singularity property of some probability measures and convergence of the Bayesian 

estimation algorithm. 



CONTINUOUS ADAPTIVE FIL7TRlNG 

k Yashin 

1. INTRODUCTION 

In many cases, the coordinates of partially observed plants subjected to random 

noise can now be successfully estimated (filtered) [1,2,3,4.5], by using good a @ o r i  

data on the  s tructure and numerical values of t h e  parameters.  

In real life, however, some characteristics of the plants may prove impossible to  

determine before the experiment or observations begin. This leads to certain difficul- 

ties in  solving I!le filtering problem. Uncertainty in the  coefficients of t he  equation 

that describe the plant subjected to random disturbances, may lead to substantial 

performance dekerioration of coordinate estimating algorithms adjusted to certain 

fixed values of the  parameters [I]. 

Fortunately, the values of unknown parameters  can be updated reasonably often 

with the  arrival of observed data. However, simultaneous estimation of both the  

parameters and plant coordinates may prove to  be the  nonlinear problem. Lack of 



appropriate computer methods for the solution of nonlinear problems brings to life a 

host of heuristic estimation algorithms, which work in many actual situations but 

need more thorough analytical investigation [2.3.4]. 

The temptation to apply the available coordinate estimation algorithms (which 

are only effective if the  parameter values are known) to the solution of these non- 

linear problems leads to  adaptive filtering, whereby the filter equations use current 

parameter estimates which are  obtained from processing of observations. The equa- 

tions or algorithms which lead to parameter estimates are referred to as adaptation, 

or adjustment, algorithms [5,6,7,8]. 

While in the case of available parameters the coordinate estimation algorithm is a 

kind of Kalman filter, with unknown parameters this arrangement is referred to as 

adaptive Kalman filtering [9, lo]. 

The choice of the  algorithm for the parameter estimation is somewhat arbitrary 

[I].], but one common property is frequently very important in all of these algorithms: 

the resultant parameter estimates should, in some sense, tend to their t rue values as 

the number of observations grows. Such estimates are referred to as  consistent. The 

plant with unknown parameters is identifiable if the parameters' estimates are con- 

sistent. 

It would be natural to  investigate the property of parameter estimate consistency 

through studying only the  properties and characteristics of the  initial plant dynamics 

equations, the  properties of noises, and the specifics of the filtering algorithms and 

adaptation procedure. Such an attempt for systems described by discrete time equa- 

tions has been reported in [12.13,14]. 

The conditions sufficient for consistency of parameters' estimates, that  take on 

values from a certain finite set, follow, in those papers, from the singularity of proba- 



bilistic measures associated with various values of the parameter. 

This paper provides the necessary and sufficient conditions for consistency of 

these parameter estimates in adaptive Kalman filtering for the case of the denumer- 

able set of the parameter values. 

This proof relies on a close link between consistency and absolute continuity and 

singularity of a certain family of probabilistic measures. In the cases to  be discussed, 

singularity entails consistency of estimates; the conditions for consistency may be 

the conditions for the family of measures t o  be singular. Recent research concerning 

absolute continuity and singularity of probabilistic measures associated with random 

processes [15] has made formulating the necessary and sufficient conditions for 

these properties possible. Representing some processes as solutions of stochastic dif- 

fererential equations permits formulating the  singularity conditions in terms of the  

characteristics of these equations. In adaptive Kalman filtering, the characteristics of 

the  initial equations can be expressed as filter parameters. In this way, the  condition 

for consistency of estimates can be tested in each specific case before the observa- 

tions are made. A study of consistency has been performed for Bayesian estimates in 

discrete time adaptive Kalman filtering in [16, 171. 

2. ETATEXJZNT OF THE PROBLEM 

The problem of parameter estimation in continuous time adaptive Kalman filter- 

ing can be investigated in the  framework of the following formal description. 

On probabilistic space (R,H,P) a random variable ~ ( w )  is specified which takes 

on values from a certain denumerable set jg,j, i E N with apriori probabilities 



Let fl be a-algebra in Q  tha t  is generated by the values of the parameter  @ . 

On the same space the random process (6,c) = 61,c1, t  > 0 is specified. Denote as 

H:.( and HIC the a-algebras 

t ha t  a re  generated by values of t he  processes (zP,[) and c up to time t ,  t  r 0 ,  respec- 

tively. Let ~ t e ~ v (  = H P  V H:-(, t 2 0 a re  u-algebras generated by the union of a-algebras 

H P  and H ~ C  while H P ~  = V H), t r 0 a re  u-algebras generated by the union of a-  

algebras H@ and HI( . t  2 0 . Let Xdn( = V H:-(. HPnd.( = V HPQ+( = H .  HPB( = vtHP-( . 
t 1 

Denote by I#,  I@6.( and HP*( the respective nondecreasing right-continuous families of 

u-algebras. 

Assume tha t  on probability space ( Q , H , P )  the process (19.6) can  be represented a s  

a system of stochastic differential equations: 

where ( 1 9 ~ ) ~ ~  is a sequence of k-dimensional vectors; ( [ t ) t , o  is a sequence of 1- 

dimensional vectors and W l a t ,  W Z a t  a re  independent k  , and k2-dimensional Wiener 

processes. respectively, independent of t he  initial values of zPo,t0 and the  random value 

of 8. The matr ix a ( @ , t )  is (k k ) ,  A ( B , t )  is (1 k )  and the  matrices b , ( ~ , t ) ,  b z ( @ , t ) .  and 

B(t ) a re  ( k  k , ) ,  ( k  k 2 ) ,  and ( 1  k z ) ,  respectively, and a re  t he  bounded functions of t ime 

for any value of @ . The process 19 describes the  t ime variation of t he  unobservable 

coordinate of a certain dynamic plant, while the process 6 models the measurement  of 

t he  coordinate 19 with random noise. 



Introduce on ( ~ , H P . ~ ' C )  a denumerable family of probabilistic measures P, icN: 

Assume that  matrix B ( t  ) ~ * ( t )  is nonsingular for any t  1 0. Let Pt . P and pt denote 

the restrictions of the measure P to the u-algebras f f ! e d . C ,  f f C  and f f f ,  respectively, 

while P;, and R, restriction of the measures Pi to ffB.'.C, f f C  and f f f .  Denote by z.j 
the Radon-Nicodim derivative of the measure with respect to the measure when 

i t  exists. 

Definition. HC-adapted p r o c e s s  B t ,  t 1 0 is cons ide red  t o  be a s t r o n g l y  cons i s t en t  

e s t i m a t e  of the  p a r a m e t e r  B i f  

In this paper we will study the consistency conditions of the estimates Bt , t r 0 where 

B t  = E(B I f f f ) .  

3. RESULT 

Assume that the initial conditions go and to are such that  

where E, denotes mathematical expectation with respect to the measure P. From the 

fact that the coefficients of the equations (1) are bounded and from the condition (2) 

i t  follows that  with any t < = and i EN 

Assume also that the joint distribution of the random variables do and to is Gaussian 

with respect to each measure P',  EN. Hereafter b i t )  b 2 ( i , t ) .  

b , ( i . t  ), b 2 ( i , t ) ,  a ( i , t  ) and A ( i . t  ) will replace b , ( B i , t ) ,  b z ( P i , t ) ,  a ( B i . t ) ,  A ( B , , ~ ) ,  respec- 



tively, for convenience of the notation. 

The main result  of this paper is the following theorem. 

Theorem 1 .  The strong consistency property o f  the estimate pl, t  2 0 takes 

place if and onlyfor any i . j  E N 

where 

and e in j  ( t  ) me the solutions o f  the following linear differential equatkns: 

and initial conditions 

where 



K ( t )  = ( b 2 ( i , t ) B e ( t )  + y,(t )A(i.t)*)(B(t )Be(t))-I 

and yi ( t  ) s a t i s f y  the fo  l lowing  equa t ions  

Corollary. A s s u m e  t h a t  t he  coe f f i c i en t s  of the stochast ic  equa t ions  (1)  do n o t  

depend o n  t i m e  t ,  a n d  a s ta t i onary  so lu t ion  of equa t ion  (7) ez i s t s .  Then  for  t h e  es t i -  

m a t e  En t o  be cons i s t en t  it is s u f f i c i e n t  t h a t  for  a n y  i , j  E N ,  i = j 

w h e r e  ai,, is a s ta t i onary  so lu t ion  of e q u a t i o n  (1 0). 

The Corollary follows from equalities (4) and (5), and from the stationarity 

assumption. 

Remark. h t h e  case  of a f i n i t e  n u m b e r  o f  possible v a l u e s  of the p a r a m e t e r  B a n d  

c o n s t a n t  c o e f f i c i e n t s  in e q u a t i o n  ( I ) ,  cond i t i on  (4) c a n  be ve r i f i ed  before t h e  obserua- 

tiom are  m a d e .  

4. PROOF OF THEOREX 1 

The proof will be preceded by several auxiliary lemmas. 

kmma 1. Ihe p roces s  ( 1 9 . f )  o n  probabzlistic spaces  ( o M , H ~ . ~ , P )  c a n  be 

r epresen ted  in t h e  f o r n :  

dzPt = a ( i , t ) d t d f  + b l ( i , t ) d W l , t  + b z ( i , t ) d W ~ . ~ ,  $0 (1  3) 



where W , , ,  , W z , ,  are independent Wiener processes independent of do,#o. 

Proof. E r s t  note t h a t  for any i  E N measures P' are  absolutely continuous with 

. 
respect t o  measure P and  consequenty P,' << Pi for any t 2 0. Denote &' = - . Let us  

d Pt 

consider the  transformation of the local characteristics of the  process $,[ with abso- 

lutely continuous transformation of the  probabilistic measure P into the  measure 

P, i E N on (Q,HB~*-F). From the  definition of the measures  P:, i E N, t r 0 it follows 

tha t  for any t r 0 

&* = l(8 = P i )  

Pi 

and consequently, 121, iEN, t r 0 a re  independent on time. In compliance with the ana- 

log of t he  Girsanov theorem on transformation of the local characteristics of the 

processes with absolutely continuous transformation of the  probabilistic measures,  

the  local characteristics of t he  process d , [ ,  in the case of a t ime independent Radon- 

Nicodim derivative, remain unchanged and consequently t h e  process $,[ may be 

represented by equation (1). Note now tha t  following the definitions of t he  measures 

PL, i E N, t he  next equalities hold P -a.s. 

while the processes W l , , , W Z . ,  retain their  properties with respect to t he  measures 

P, i E N. Thus on ( Q , H B . ~ . ~ )  t he  process ( 3 , ~ )  can be represented by stochastic dif- 

ferential equation (13). 

Consider now the transformation of t he  local characteristics of t h e  process d , [  

with the  restriction of o-algebra H B . ~ . ~  t o  H d . 6 .  Since the  coefficients a ( i . t ) d t ,  

A ( i , t ) d t ,  are Hb.4-adapted t h e  innovation process ( d , ( )  which results from restricting 



the o-algebras H $ . ~ . ~ ~  to H P . ~  , t 2 0 can be represented on (R,P.C,P),  i E N in form 

( 1 3 )  . 

I t  is a well known fact  t ha t  with the above assumptions the problem of estimation 

of the coordinates of the process 19 from observations of the  paths of t he  process # on 

each space ( R , P J , P )  can be solved in conditional Gaussian terms.  Denoting by 

the  mean square optimal estimate of filtering for the process 29 and by 

7, ( t  ) = m; ((*, - m m ;  - mf 1 l H f )  

the  conditional variance of the  estimate i E N, t r 0 we have, for these variables, 

the well known equations [ l a ] :  

Denote 

mg= E(d; I Hg.C), y f ( t )  = E((dt - ma)(*; - m!)* I HBJ)  

The following assertion is true. 

]Lemma 2. m e  process # c a n  be represented on  ( R , H ~ ~ . ( , P )  in the f o r m  

d t ,  = A ( @ , t ) m $ d t  + B(t )dWt ,  t o .  

and W; is I?*€-adapted Wiener process, 



The proof of this lemma can be done using the same arguments as in [ l a ] .  

Lemma 3. On probabilisistic spaces ( R , H ~ . [ , P ) ,  i E N  the process [ c a n  be 

represen ted  as 

Proof. Using the absolute continuity of the measure P:, i EN, t  r 0 in relation to 

d P f ,  t r 0, i E N, we the measure Pt, 1 0  and time independent of the derivatives - 
d  Pt 

have, in compliance with the analog of the Girsanov theorem on transformation of 

local process characteristics with absolutely continuous transformation' of probabilis- 

tic measures, that  the characteristics of process t, which is represented by equation 

( 1 6 ) ,  do not change with the replacement of measure P  by measure P ,  i E N. The fol- 

lowing equalities hold P -a.s. 

whence follows presentation ( 1 7 ) .  

The properties of process t are found to ensure equivalence between the proba- 

bilistic measures Fk and Fi, i # j .  Let us formulate and prove this assertion. 

Lemma 4. Measures Fi a n d  Fi are equivalent  on measurable  space ( R , H ~  ). 

Proof. The boundedness of the coefficients A ( i , t ) ,  a ( i , t ) ,  b ( i , t ) ,  B ( t )  and non- 

singularity of the matrix B ( t ) B D ( t )  provide for any t < m the inequality 

where 



which is true P and p-a.s .  In accordance with the Liptzer-Shiryaev result [ l a ]  

(chapter 7) it yields the equivalence of pti and P) on ( o M , P J ) .  I t  follows then that  the 

restrictions of these measures to ( R,H( ) are  equivalent, that  is Fti - F/ . 

Lemma 5. 7he processes (mf ) tM,  i E N are Guussian on  the pro babiListic spaces 

(R, f i ,?) ,  k E N ; k is not necessarily equal to i .  

Proof. I t  is easy to see that  the processes (mf)tM, i E N are Gaussian on proba- 

bilistic spaces ( R , H ~ , P ) ,  i E N. Let us prove that the processes (m(i.t);,,  i E N  are 

Gaussian on probabilistic spaces ( R , H ( , ~ ) ,  k # i ,  k E N. Because the simultaneous ini- 

tial distribution of the variables on any of the probabilistic spaces 

(R,P.(,P), i E N is Gaussian, the  random variables mi = Ej(gO 1 ~ 8 )  are linear func- 

tions of with any j E N and, consequently, simultaneous distributions of the vari- 

ables m & , g O ,  are also Gaussian on probabilistic spaces ( n , P . C . P )  where k E N, k # j .  

Substituting into equation (14) for the  values of mi.[t from equation ( 1 )  we have 

+ ( b 2 0  , t ) ~ ' ( t )  + y j ( t ) A  ' ( j  ,t ) ( B ( t ) B * ( t  ))-'B(t)dW,.t 

The fact t.hat the  joint distribution of (ma,290,[o) is Gaussian and the formula for 4, 

and mi, j E N, t r 0 are linear, makes processes (mi)tao. j E N and ([, Gaussian on 

probabilistic spaces ( Q , H ( , ~ ) ,  k E N ,  k # j which was required. Consequently, the 

variables ( ~ ( i , t ) - ~  - ~ O , t ) m i ) ,  j E N are Gaussian for any of the measures p. k E N. 

Lemma 6. Singularity conditions for measures F(i and F/ m a y  be wr i t t en  as fol- 

l o w  



Proof. Using the main result  of paper [15] one can say that  measures and 

are singular if and only if 

with F,-probability 1. Taking into account that processes rn/ are Gaussian on any pro- 

babilistic spaces (R,H~.? ), k E N and result [18], one can see tha t  this condition is 

equivalent to condition (18). Condition (19) is not very convenient for checking in a 

general case. For calculation of the mathematical expectation in (19) perform certain 

additional constructions. 

Let @i.j(t) denote a block matrix 

and qj, a block matrix 

Using the well-known property of matrix multiplication [19] one can write 

Direct verification shows that  the matrix 



can be represented in te rms  of matrices Gi. , ( t )  and q m j ( t )  as follows : 

Consequently 

Let us  find now the recurrence equation for the matrix G i j ( t ) .  Take up  a block matrix 

f i j ( t )  which has the form 

Using recurrence equation (14) for mj and mi and equation ( 1 )  for 19; we have for 

block elements  of t h e  matrix GiJ  ( t  ) = ~j F, J ( t  ) 



Introducing the matrices 

the formula for a i i ( t )  can be rearranged into a matrix form 

Consequently, the conditions for singularity of the measures and P', i # j ,  i , j  E N 

are equivalent to (4) of the theorem. 
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