NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

LARGE SCALE LINEAR PROGRAMMING TECHNIQUES
IN STOCHASTIC PROGRAMMING

Roger J-B. Wets

November 1984
WP-84-380

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

CONTENTS

INTRODUCTION

R B R A

CONCLUSION
REFERENCES

RECOURSE MODELS AS LARGE SCALE LINEAR PROGRAMS
METHODS THAT EXPLOIT THE DUAL STRUCTURE
METHODS THAT ARE PRIMAL ORIENTED

SIFTING, BUNCHING AND BASES UPDATES

- ili -

11
17
30
42
43

LARGE SCALE LINEAR PROGRAMMING TECHNIQUES
IN STOCHASTIC PROGRAMMING

Roger J-B. Wets

INTRODUCTION

We study the use of large scale linear programming techniques for
solving (linear) recourse problems}{ whose random elements have
discrete distributions (with finite support) more precisely for problems

of the type:

(0.1) findz € R:’ such that Az = b
and z = cz +Q(z) is minimized

where

(0.2) 2(z) =Y },p, @z) = E1Q(x.t{w))}

t The potential use of large scale programming techniques for solving stochastic programs
with chance-constraints appeers to be less promising and has not yet been investigated.
The approximation scheme for chance-constraints proposed by Salinetti, 1883, would, if im-
plemented require & detailed analysis of the structural properties of the resulting (large-
scale) linear programs. Much of the anelysis laid out in this Section would also be appliceble
to that case but it appears that further properties — namely the connections between the
upper and lower bounding problems — should be exploited.

-2 -

and for each 1 =1,...,L, the recourse cost @(x.¢') is obtained by solving the

recourse problem:

(0.3) Q(z.8') =inf {gly | Wy =h! - Pz, y e R}?)
where

€= (ghrh 1) = (ghi gt shh b itttk)
ie.

(‘ € RN with N = Mg+ mp+mpn,

p; = Prob [¢(w) = ¢]

The sizes of the matrices are consistent with z € "%, y € R™%, b € R™
and for all I, h; € Rmz: for a more detailed description of the recourse
model consult Part I of this Volume. Because ¥ is nonstochastic we
refer to this problem as & model with fized recourse. The ensuing
development is aimed at dealing with problems that exhibit no further
structural properties. Problems with simple recourse for example, i.e.
when W = (/,—/), are best dealt with in a nonlinear programming frame-

work, cf. Chapter 4.

Before we embark on the description of solution strategies for the
problem at hand, it is useful to review some of the ways in which a prob-
_lem of this type might arise in practice. First, the problem is indeed a
linear recourse model whose random elements follow a known discrete
distribution function. In that case either g or h or 7 is random, usually
not all three matrices at once, but the number of independent random
variables is liable to be relatively large and even if each one takes on
only a moderate number of possible values, the total number I of possi-

ble vectors 5‘ could be truly huge , for example a problem with 10

-3-

independent random variables each taking on 10 possible values leads us
to consider 10 billion (=L) 10-dimensional vectors ¢. Certainly not the

type of data we want, or can, keep in fast access mernory.

Second, the original problem is again a stochastic optimization
problem of the recourse type but (0.1) is the result of an approximation
scheme, either a discretization of an absolutely continuous probability
measure or a coarser discretization of a problem whose "finite” number
of possible realizations is too large to contemplate; for more about
approximation schemes consult Chapter 2. In this case L, the number of
possible values taken on by £(:), could be relatively small, say a few hun-
dreds, in particular if (0.1) is part of a sequential approximation scheme,
details can be found in Chapter 2, see also Birge and Wets, 1984, for

example.

Third, the original problem is a stochastic optimization problem but
we have only very limited statistical information about the distribution
of the random elements, and fl......fL represents all the statistical data
available. Problem (0.1) will be solved using the empirical distribution,
the idea being of submitting its solution to statistical analysis such as
suggested by the work of Dupatova and Wets, 1984. In this case L is usu-

ally quite small, we are thinking in terms of L less than 20 or 30.

Fourth, problem (0.1) resulted from an attempt at modeling uncer-
tainty, with no accompanying statistical basis that allows for accurate
descriptions of the phenomena by stochastic variables. As indicated in
Chapter 1, this mostly comes from situations when there is data uncer-
tainty about some parameters {(of a deterministic problem) or we want
to analyse decision making or policy setting and the future is modeled in

terms of scenarios (projections with tolerances for errors). In this case

-4 -

the number L of possible variants of a key scenario that we want to con-
sider is liable to be quite small, say 5 to 20, and the f' can often be

expressed as a sum:
?

El = {‘0 + 17”(1+....+17Kl(k
where for k = 1,....K, the ¢ € RV are fixed vectors and (n1(eeeempg(0)) are

scalar random variables with possible values 7,;,...np forl =1,....L. We
think of K as being 2 or 3. The typical case being when we have a base
projection: ¢2 + ¢!, but we want to consider the possibility that certain
factors may vary by as much as 25% {(plus or minus). In such a case the
model assigns to the (only) random variable 7,(-) some discrete distribu-

tion on the interval [.75,1.25].

With this as background te our study it is natural to search solution
procedures for recourse problems with discrete distributions when there
is either only a moderate number of vectors ¢ to consider (scenarios,
limited statistical information, approximation) or there is a relatively
large number of possible vectors fl that result from combinations of the
values taken on by independent random variables. The techniques dis-
cussed further on, apply to both classes of problemns, but the tendency is
to think of software development that would be appropriate for problems
with relatively small L, say from 5 to 1,000. Not just because this class‘
of problems appears more manageable but also because when [/ is actu-
ally very large, althoug'h finite, the overall solution strategy woﬁld still

rely on the solution of approximate problems with relatively small L.

-5-

1. RECOURSE MODELS AS LARGE SCALE LINEAR PROGRAMS

Substituting in (0.1) the expressions for Q and @, we see that we

can obtain the solution by solving the linear program:

(1.1) findz € R}* andforl = 1,...,L, y* € K% such that
Azx =% ,
Tz +wyl=ht, 1=1,.,L

andz =cz + EIL___]plqul is minimized.

To each recourse decision to be chosen if {(-) takes on the value
¢ = (gt nt,) corresponds the vector of variables y!. This is a linear

program with

m,+myl constraints,

and

n,+ ny L variables.

The possibility of solving this problem using standard linear program-
ming software depends very much on L, but even if it were possible to do
so, in order to avoid making the solving of (1.1) prohibitively expensive —
in terms of time and required computer memory -- it is necessary to
exploit the properties of this highly structured large scale linear pro-
gram. The structure of the tableau of detached coefficients takes on the

form:

c p1q1 92q2 e o o quL

A =1b
T1 w = hl
T2 w = | #

®
. []
L]

® [
. hd *
Tt w = ht

1.2 FIGURE: Structure of discrete stochastic program.

¥e have here a so-called dual block angular structure with the important
additional feature that all the matrices, except for A, along the block
diagonal are the same. It is this feature that will lead us to the algo-
rithms that are analysed in Section 3 and which up to now have provided
us with the best computational results. It is also this feature which led
Dantzig and Madansky, 1961, to suggest a solution procedure for (1.1) by

way of the dual. Indeed, the following problem is a dual of (1.1):

-7 -

(1.3) findo € R™, andforl =1,....L, * € R™®such that

oA + kgt <c,

and w = ob + le;lplrrlhl is maximized.

Problem (1.3) is not quite the usual (formal) dual of (1.1) To obtain the

classical linear program dual, set

U _ [
=pm

r
and substitute in (1.3). This problem has block angular structure, the
block diagonal consisting again of identical matrices ¥. The tableau with

detached coefficients takes on the form:

b p1h1 pzhzb * o o pLhL
A’ Py Ty P, T, * o o T | < | €
w < |d
W < |q?

L J
L]
*

L J
[] L J
w < qL

1.4 FIGURE. Structure of dual problem.

-B-

’

Transposition is denoted by ’, e.g. W is the transposed matrix of W.
Observe that we have now fewer (unconstrained) variables but a larger
number of constraints, assuming that ny=m, , as is usual when the
recourse problem (0.3) is given its canonical linear programming formu-

lation. In Section 2 we review briefly the methods that rely on the struc-

ture of this dual problem for solving recourse models.

At least when the technology matrix 7T is nonstochastic, i.e. when
T'=T, a substitution of variables, mentioned in Wets, 1966, leads to a
linear programming structure that has received a lot of attention in the
literature devoted to large scale dynamical systems. Using the con-

straints of (1.1), it follows that for all L =1,...,L -1,

Te = h! — Wy
and substituting in the (I + 1)-th system, we obtain

_Wyl + Wyl+l =hl+1 —nt
Problem (1.1) is thus equivalent to

(1.5) find z € B,' and for I=1,....L, y* € R,® such that
Az =b
Tz + Wy! = k!
—Pyt=t + oyt =kt —R17Y 1=2 L
and z = cz + 3. j,p,¢'y! is minimized.
Vith k% = 0 and for I =1,....L,
’;l - hl __hl—l ,

the tableau of detached coefficients exhibits a staircase structure:

L
c p1q1 pzq2 e o o P a

A =1°b
o1

T w = |h
-W w = | ¥

e ° .

. .

)

.) .
—-W w = RL

1.5 FIGURE. Equivalent staircase structure.

We bring this to the fore in order to stress at the same time the close
relationship and the basic difference between the problem at hand and
those encountered in the context of dynamical systems, i.e. discrete
version of continuous linear programs or linear control problems.
Superficially, the problems are structurally similar, and indeed the
matrix of a linear dynamical system may very well have precisely the
structure of the matrix that appears in {(1.5). Hence, one may conclude
that the results and the computational work for staircase dynamical sys-

tems, cf. in particular Perold and Dantzig, 1979, Fourer, 1984, and

-10 -

Saunders, 1983, is in some way transferable to the stochastic program-
ming case. Clearly some of the ideas and artifices that have proved their
usefulness in the setting of linear (discrete time) dynamical systems
should be explored, adapted and tried in the stochastic programming
context. But one should at all tirmes remain aware of the fact that
dynamical systems have coefficients (data) that are 1-parameter depen-
dent (time) whereas we can view the coefficients of stochastic problems
as being multi-parameter dependent. In some sense, the gap between
(1.4) and staircase structured linear programs that arise from dynamical
systems is the same as that between ordinary differential equalions and
partial differential eguations. We are not dealing here with a
phenomenon that goes forward (in time) but one which can spread all
over RN (which is only partially ordered)! Thus, it is not so surprising
that from a computational viewpoint almost no effort has been made to
exploit the structure (1.5) to solve stochastic programs with recourse.

However, the potential is there and should not remain unexplored.

-11 -

2. METHODS THAT EXPLOIT THE DUAL STRUCTURE

Dantzig and Madansky, 1961, pointed out that the dual problem (1.3)
with matrix structure (1.4) is ripe for the application of the decomposi-
tion principle. It was also the properties of (1.4) that led Strazicky, 1980,
to suggest and implement a basis factorization scheme, further analysed
and modified by Kall, 1979, Wets, 1983, and Birge in Chapter 12. We give a
brief description of both methods and study the connections between
these two procedures. We begin with the second one, giving a modified
compact version of the original proposal.

We assume that W is of full row rank, if not the recourse problem
(0.3) defining @ would be infeasible for some of the values of At and T!
unless all belong to the appropriate subspace of E¥ in which case a row
transformation would allow us to delete the redundant constraints. We
also assume that 4 is of full row rank, (possibly 0 when there are no con-
straints of that type). Thus with the columns of A’ and W’ linearly

independent (recall that the variables o and 7 are unrestricted), and
after introducing the slack variables (s®e¢ R,' and s! ¢ R}% for

1=1,....L), we see that each basic feasible solution will include at least n,
variables of each subsystem
(21) wtw+sti=gtst=0 1=1..L1L ,
the (unrestricted) m, variables nt and a choice of at least (ng—mp)
slack variables (s}.j:l,....nz). Thus the portion of the basic columns
that appear in the [-th subsystem can be subdivided into two parts

(B, 2] = [(F.41).0]
where (WIH) is an (n, x n,) invertible matrix and the extra columns, if

any, are relegated to j,. Thus, schematically and up to a rearrange-

-12-
ment of columns, a feasible basis B has the structure:

C'. D’]
B, N'|"

-~
.

and in a detached coefficient form:

¢ N B

B3 172

2.2 FIGURE. Basis structure of dual.

The matrix D" corresponding to the columns of (A'.!'nl) that belong

to this basis and for I = 1,...,L. (§ is the n; X m, matrix:

¢ =[p 7.0

-13-

(recall that T, is of dimension n; X m,). Each Bl after possible rear-

rangement of row and columns, is of the following type:

,,-
I
!
-
=
-

2.3 FIGURE. Structure of 5.

where W('l) is @ mp X m invertible submatrix of W, and W('d) are the
remaining rows of ¥ that correspond to the rows of the identity that
have been included in B’ (through 1{1 }. The simplex multipliers associ-

ated with this basis E’ of dimension n; + ny L, are denoted by

yl]

and are given by the relations

L e Al 1)
Bly= |p Ml = |e)

where [7'.,8'] is the appropriate rearrangement of the subvector of

coefficients of the objective of (1.4) that corresponds to the columns of

B, with B’ being the subvector of [b°,0] whose components correspond to

-14 -
the columns of D'. This (dual feasible) basis is optimal if Lhe vectors
(z.yt 1l =1,..L)

defined through (2.4) are primal feasible, i.e. satisfy the constraints of

(1.1). To obtain z and y we see that (2.4) yields
y = B (y-Cx)
z = (D-NB™I1C)"Y(B-NB~1y) .
Substituting for z this becomes, forl =1,....L,
(25) y, =B -Gz)
where 7 is the subvector of [p,h!,0] that corresponds to the columns in
Bll . We have used the fact that B is a block diagonal with invertible

matrices (Bl'. l =1,.,L) on the diagonal. Going one step further and
using the properties of N and C, we get the system for z:

(2.6) (D-Limh2B Gz = B-L o1 h2B7

The systemn (2.8) involves n; equations in n, variables and the L systems
(2.5) are of order n, Thus instead of calculating the inverse of B -- a
square matrix of order ('n.1 + ny L) -- all that is needed is the inverse of L

matrices of order n, and a square matrix of order n,.

Similarly to calculate the values to assign to the basic variables
associated to this basis, the same inverses is all that is really required,
as can easily be verified. In order to implement this method one would
need to work out the updating procedures to show that the simplex
method can be performed in this compact form, i.e. that the updating
procedures involve only the restricted inverses. But there are other
features of which one should take advantage before one proceeds with

implementation.

- 15 -

Recall that

'W(n W(cz)}

7 B =|, g
where B is an invertible matrix of size m; x m,. Then

Wl -wi Wi,]
(2.8) BI-1=IO(13:] @ (z)J

Thus it really suffices to know the inverse of W(l)' and rather than
keeping and updating the ny X n, — matrix B"], all the information that
is really needed can be handled by updating an m, X m,— matrix, relying
on sparse updates whenever possible. This should result in substantial
savings. The algorithm could even be more eflicient by taking advantage
of the repetition of similar (sub)bases W(l)' We shall not pursue this any
further at this time because all of these computational shortcuts are
best handled in the framework of methods based on the decomposition

principle that we describe next.

The decomposition principle, as used to solve the linear program
(1.3), generates the master problem from the equations

oA + Y irt(p ™) <c,
by generating extreme points or directions of recession (directions of
unboundedness) from the polyhedral regions determined by the L sub-
problems,

mtw<g!
In order to simplify the comparison with the factorization method
described earlier, let us assume that

{mimW<0}=1{0; ,
i.e. there are no directions of recession other than 0, which means that

for all I, the polyhedra {n*tW <g'] are bounded; feasibility of (1.3)

- 16 -

implying that they are nonempty. For k=1,...,v, let
nk = (i, ik, nlk)

the extreme point generated by the k-th iteration of the decomposition

method, i.e.
(2.9) n%* € argmin(p, vt (h! =T z*)|nt W < qt)
where z¥ = (zJ'-‘. j=1,..,n,) are the multipliers associated to the first n,

linear inequalities of the master problem :
(2.10) findo € R™\ A, € R,. k = 1,...,v such that
oA + Tl (Dlepn® T < c

k=M =1
andw = ob + D YA, (E{;,pm”‘hl) is maximized.

The basis associated to the master problem is ('n,1 xnl). whereas the
basis for each subproblem is exactly of order n,. In the process of solv-
ing the subproblems the iterations of the simplex method bring us from
one basis of type (2.7) to another one of this type (all transposed, natur-
ally) with inverses given by (2.8). Here again, the implementation should
take advantage of this structural property, and updates should be in
terms of the m, X m, submatrices W(l)‘ But we should also take advan-
tage of the fact that all these subproblems are identical except for the
right-hand sides énd/or the cost coeflicients, and this, in turn, would

lead us to the use of bunching and sifting procedures of Section 4.

It is remarkable and important to observe that the basis factoriza-
tion method with the modifications alluded to earlier and the decomposi-
tion method applied to the dual, as proposed by Dantzig and Madansky,
1961, require the same computational efiort; J. Birge gives a detailed

analysis in Chapter 12, independently B. Strazicky arrived at similar

-17 -

results. In view of all of this it is appropriate to view the method relying
on basis faclorization as a very close parent of the decomposition
method as applied to the dual problem (1.3), but it does not give us the
organizational flexibility provided by this latter algorithm. On concep-
tual ground, as well as in terms of computational efficiency, it is the
decomposition based algorithm that should be retained for potential
software implementation. In fact, this is essentially what has occurred,
but it is a "primal” version of this decomposition algorithm, which in this
class of (essentially) equivalent methods appears best suited for solving

linear stochastic programs with recourse. It is a primal metbod -- which

means that we always have a feasible z € R:’ at our disposal -- and it
allows us to take advantage in the most straightforward manner of some

of the properties of recourse models to speed up computations.

3. METHODS THAT ARE PRIMAL ORIENTED

The great diflerence between the methods that we consider next and
those of Section 2 is that finding z that solves the stochastic program
(0.1) is now viewed as our major, if not exclusive, concern. Obtaining the
corresponding recourse decisions (yl. 1=1,...,L) or associated dual multi-
pliers (mt, I =1,....L) is of no real interest, and we only perform some of
these calculations because the search for an optimal solution z requires
knowing some of these quantities, at least in an amalgamated form. On
the other hand, in the methods of Section 2 all the variables (o,7,...,7L)
are treated as equals; to have the optimality criterion fail for some vari-
able in subsystem I (even when p; is relatively small) is handled with the
same concern as having the optimality criteria fail for some of the

(0;, i=1,...,m,) variables.

- 1B -

Another important property of these methods is their natural exten-
sion to stochastic programs with arbitrary distribution functions. In
fact, they are particularly well-suited for use in a sequential scheme for
solving stochastic programs by successive refinement of the discretiza-
tion of the probability measure, each step involving the solution of a

problem of type (0.1), cf. Chapter 2.

We stress these conceptual differences, because they may lead to
diflerent, more flexible, solution strategies; although we are very much
aware of the fact that if at each stage of the algorithm all operations are
carried out {(to optimality), it is possible to find their exact counterpart
in the algorithms described in Section 2; for the relationship between
the L-shaped algorithm described here and the decomposition method
applied to the dual, see Van Slyke and Wets, 19689; between the above and
the basis factorization method see Chapter 12; consult also Ho, 1983, for
the relationship between various schemes for piecewise linear functions
which are widely utilized for solving certain classes of stochastic pro-

gramming problems, and Chapter 4.

The L-shaped algorithm, which takes its name from the matrix lay-
out of the problem to be solved, was proposed by Van Slyke and Wets,
1969. It can be viewed as a cutting hyperplane algorithm (outer lineari-
zation) but to stay in the framework of our earlier development, it is best
to interpret it here as a partial decomposition method. We begin with a
description of a very crude version of the algorithm, only later do we ela-
borate the modifications that are wvital to make the method really
efficient. To describe the method it is useful to consider the problem in

its original form (0.1) which we repeat here for easy reference:

-19 -

(3.1) findz € R,! such that Az = b,
and z = cz + (z)is minimized

¥e assume that the problem is feasible and bounded, implementation of
the algorithm would require an appropriate coding of the initialization
step relying on the criteria for feasibility and boundedness such as found
in Wets, 1972. The method consists of three steps that can be inter-
preted as follows. In Step 1, we solve an approximate of (3.1) obtained by
replacing by an outer-linearization, this brings us to the solving of a
linear programming whose constraints are 4z = b, z = 0 and the addi-

tional constraints (3.2) and (3.3) that come from:

(i) induced feasibility cuts generated by the fact that the choice of x
must be restricted to those for which Q (z) is finite, or equivalently

for which Q(z,;l)< +e for all l = 1,...,L, or still for which there exists
y' € R such that #y' = h'=Tlz for alll = 1,....L.
(ii) linear approximations to on its domain of finiteness.

These constraints are generated systematically through Steps 2 and 3 of
the algorithm, when a proposed solution z¥ of the linear program in Step
1 fails to satisfy the induced constraints, i.e. (zV) = = (Step 2) or if the
approximating problem does not yet match the function at z¥ (Step 3).
The row-vector generated in Step 3 is actually a subgradient of at zV.
The convergence of the algorithm under the appropriate nondegeneracy
assumptions, to an optimal solution of (3.1), is based on the fact that
there are only a finite number of constraints of type (3.2) and (3.3) that
can be generated by Steps 2 and 3 since each one corresponds to some

basis of ¥ and a pair (hl,ﬂ) or to a basis of W and to one of a finite

number of weighted averages of the (g% l=1,...,L) and

- 20 -

(R T4, 1 = 1,...1).

Step 0. Setv=r=s=0.

Step 1. Set v = v + 1 and solve the linear program

findz € R,!, ¥ € R such that

Az =b
(3.2) Dz >d,, k=1,..r,
(33) Ez+49 > e, k =1,.,s, and
cx + 79 =z is minimized.

Let (z%9¥") be an optimal solution. If there are no constraints of type
(3.3), the variable ¥ is ignored in the computation of the optimal zV, the

value of §Y is then fixed at —w.

Step 2. For I = 1,...,L solve the linear programs

(34) findy € R}2 ,v* € R[® , v~ € R,® such that
Wy + b* -k~ =h! = T'zVand

i

evt + ev” = v' is minimized

(here e denotes the row vector (1,1,...,1)), until for some ! the optimal

value v* > 0. Let ¢¥ be the associated simplex multipliers and define

Dyyq=0"T
and
dy 4y = 0"kt
to generate an induced feasibility cut. Return to Step 1 adding this new

constraint of type (3.2) and set r =7 + 1. If for all {, the optimal value of

the linear program (3.4) v! = 0, go to Step 3.

-21-
Step 3. For every! = 1,...,L, solve the linear program

(3.5) findy € R,® such that

Wy = h! — Tz, and

gty = w! is minimized.
Let m!¥ be the multipliers associated with the optimal solution of prob-

lem!.Sett =¢ + 1 and define
E = Llp T

— l
e, = }:lL:]plrr“’h .

w¥ =Y ot (ht - TPzV) = e, - B2V
If 9¥ > wVY, we stop; z¥ is the optimal solution. Otherwise, we return to

Step 1 with a new constraint of type (3.3).

An efficient implementation of this algorithm, whose steps can be
identified with those of the decomposition method applied to the dual
problem (see Section 2), depends very much on the acceleration of Steps
2 and 3. This is made possible by relying on the specific properties of the
problem at hand (3.1), and it is in order to exploit these properties that
we have sepafated Steps 2 and 3 which are the counterparts of Phase |
and Phase 1] of the simplex method as applied to the recourse problem
(0.3). In practice one certainly does not start from scratch when solving
the L linear programs in Step 3; Section 4 is devoted to the analysis of
Step 3, i.e. how to take advantage of the fact that the L linear programs
that need to be solved have the same technology matrix ¥ as well as
from the fact that the ¢ = (g',h'T*) are the realizations of a random

vector. Here we concern ourselves with the improvements that could be

-22._
made to speed up Step 2, and we see that in many instances, dramatic
gains could be realized.

First and for all, Step 2 can be skipped altogether if the stochastic
program is with complete recourse, i.e. when
(3.8) posW:=f(t|t=my,y=0]=FR"2
a quite common occurrence in practice. This means naturally that no
induced feasibility constraints (3.2) need to be generated. This will also
be the case if we have a problem with relatively complete recourse i.e.
when for every z satisfying 4z = b,z =0, and for évery l=1,..,L, the
linear system

Py =h! - Tz, y =0,

is feasible. This weaker condition is much more difficult to recognize,

and to verify it would precisely require the procedure given in Step 2.

Even in the general case, it may be possible to substitute for Step 2:

for some (hY,7")

Step 2. Solve the linear program
(3.7) findy € Ry2v* € Ry v~ € R, ® such that
Wy +]U+ -~k = (hv_Tvzv)
and ev* + ev~ = v¥ is minimized.
Let ¢¥ be the associated simplex multipliers and if the optimal value of
vV > 0, define

D,

= qVTV
r+]"UT'

and

d, . = o¥RY

-23 -

to generate an induced feasibility cut of type (3.2). Return to Step 1 with

r =7+1. If the optimal value of v¥ = 0, go to Step 3.

This means that we have replaced solving [linear programs by just
solving 1 of them. In some other cases it may be necessary to solve a few
problems of type (3.7) but the effort would in no way be commensurate
with that of solving all L linear programs of Step 2. In Section 5 of Wets,
1974, one can find a detailed analysis of the cases when such a substitu-
tion is possible, as well as some procedures for the choice or construc-
tion of the quantities h¥ and T¥ that appear in the formulation of (3.7).
Here we simply suggest the reasons why this simplification is possible
and pay particular attention to the case when the matrix T is nonsto-

chastic.

Let < be the partial ordering induced by the closed convex
polyhedral cone pos ¥, see (3.8), i.e. al < a? if a?-alc posW. Then
for given z € R™ and for every l=1,...,L, the linear system
(3.8) Wy =h!'-T'z% y =0
is feasible, if there exists a¥ € RF™2such that for all i=1,....L,

(3.9) a¥<ht-Ttz",

and the linear system

(3.10) Wy =a% y =20

is feasible -- or equivalently a¥ € pos#. There always exists a¥ that
satisfies (3.8), recall L is finite. If in addition, a¥ can be chosen so that
(3.11) a¥ = RY-T"z

for v € {1,...,L}, then (3.8) is feasible for all | if and only if (3.10) is feasi-

ble with a¥ as defined by (3.11). Although in general such an a” does not

exist, in practice, at most a few extreme points of the set

- 24 -

S¥=tala =ht-Tzv, 1=1,..,1},
need to be considered in order to verify the feasibility of all the linear
systems (3.B). Computing lower bounds of S¥ with respect to < may
require more work than we bargained for, but it really suffices, cf.
Theorem 4.17 of Wets, 1974, to construct lower bounds of S¥ with respect
to any closed cone contained in pos ¥, and this could be, and usually is

taken to be, an orthant. In such a case obtaining aV is effortless.

Let us consider the case when T is nonstochastic and assume that
pos ¥ contains the positive orthant, if it contains another orthant simply
multiply some rows by ~1 making the corresponding adjustments in the
vectors (h!, [= 1,l...,L). This certainly would be the case if slack vari-

ables are part of the y-vector, for example.

Fori =1,.,m, let
a;, = ml'm hil

If & =hY for some v € {1,...,L}, which would always be the case if the
(R;(:),1 =1,...m;) are independent random variables, then it follows
from the above that for 1 =1,....L, the linear systems
Wy =h! —Tx¥, y =0
are feasible if and only if
Py =a - Tx¥ y =0.
Note that in this case the lower bound
a¥=a - TxV
is a simple function of zV.
In our description of the L-shaped algorithm the connections to
large scale linear programming may have been somewhat lost, if any-

thing it is how to deal with the "nonlinearity” of Q which has played

-25-

center stage. To regain maybe a more linear programming perspective it
may be useful to view the algorithm in the following light. Let us return
to the dual block angular structure {1.2) from which it is obvious that if
we can adjust the simplex method so that it operates separately on the
z-variables and the (y,-variables, 1=1,...,L), it will be possible to take
advantage of the block diagonal structure of the problem with respect to
the (y'-variables, 1=1,.,L). Given that some z% is known which satisfy
the constraint z = 0, Az = b, then finding the optimal solution of {1.2),
with the additional constraint z = zV leads to solving a linear program,

whose tableau of detached coefficients has the structure:

p,q’ p,a° .« o o p ot
W = h1v
w = |n®

*
L J
[]

L J
L] L J
w = |nt

3.12 FIGURE. Structure of the y-problem.

-26 -

where for 1=1,..,L, htY=hl — T'zY. Clearly, when confronted with such
a problern we want to take advantage of its separability properties and

this is precisely what is done in Steps 2 and 3 of the L-shaped algorithm.

The structure of (3.12), with the same matrix ¥ on the block diago-
nal, suggests that of a distributed system. A continuous version would

take the form:

(3.13) findy : Q » R"%such that for all w €

y(w) € argmin [g(w)y | By = K (w), ¥ € R,?]
Because of the linearity of the objective function, the trajectory
w b y(w) will be linear with respect to hY if the same basis of W
remains optimal. The main task in solving (3.13) would be to decompose
() in regions of linearity of y (‘). Once this decomposition is known the
remainder is rather straightforward. Finding this decomposition is essen-
tially the subject of Section 4, which concerns itself with the organiza-
tion of the computational work so as to bring the eflfort involved to an
acceptable level. Problem (3.13) again brings to the fore the connec-
tions between this work and that on dynamical systems (continuous
linear programming). With not too much difficulty it should be possible
to formulate a bang-bang principle for systems with distributed parame-
ters space (here R™2) that would correspond to our scheme for decom-

posing).

-27 -

To conclude our discussion of the L-shaped algorithm, let us record
a further modification suggested by L. Nazareth. When the matrix 7 is
nonstochastic, say T' = T for all I, then the linear program in Step 1 may

be reformulated as

(3.14) findz € Ry!. x € K™% © € R such that
+

Az =b

1,....7

Fex >f,. kK
Gix +9%=2g,. k=1,..,5,and

cx +49 =z is minimized

The induced feasibility constraints are generated as earlier in Step 2
with
Fry1=~0" . fryy =0"Rt
The optimality cuts {(approximation cuts) are generated in Step 3 with
G = - Diamrty .
9¢ = Lo VRt
The linear program that generates the ¢” and nt¥ as (optimal) simplex

multipliers of Phases] and Il respectively, is given by
findy € R,2 such that

Wy = h! — ¥, and

gy = w! is minimized.
Note that now the "nonlinearity"” is handled in a space of dimension m,
which is liable to be much smaller than n,, and we should reap all the

advantages that usually come from a reduction in the number of non-

linear variables.

- 28 -

All of these simplifications come from the fact that when T is non-
stochastic we can interpret the search for an optimal soiution, as the
search for an optimal x'. "the certainty equivalent”. It is easy to see
that knowing x’ would allow us to solve the original problem by simply

solving
(3.15) find z € R? such that Az = b, Tz = x°,
and 2z = cz is minimized

The sequence {x*, v = 1,...{ generated by the preceding algorithm can be
viewed as a sequence of tenders (to be "bet" against the uncertainty
represented by h). This then suggests other methods based 6n finding x’
by considering the best possible convex combination of the tenders gen-
erated so far; these algorithms based on generalized linear program-
ming, see Nazareth and Wets, 1984, and Chapter 4 of this Volume. How-
ever, this approach does not appear to be very promising for the general
class of problems considered here, not even when 7T is nonstochastic.

Indeed, the algorithm would proceed as follows:

Step 0. Find a feasible z0 € £}! such that Az% =5
Set y° = z0
Choose Xl e e){’ potential tenders, v = 0.
Step 1. Find (¢% m% ¥,) the (optimal) simplex multipliers associate with

the solution of the linear program:

minimize cz + Y.¥oo N 2 OF)

Az =b oV
E- YonxX =0 g
iz N =1 B,

z=0, =20

-29 -

Step 2. Find y**! € argmin[Q(x) + 7]
It Q0¢*Y) + =¥ x**1 = 9,, stop: optimal.
Otherwise return to Step 1 with v =v+1

The attractiveness of this approach rests on the fact that the algorithm
allows for the choice of a number of tenders (trial solutions) which would
provide an excellent initial approximate solution to the problem as a
whole just after 1 passage through Step 1, assuming of course that the
tenders xl,....)(’ are chosen by an informed problem solver. Note, how-
ever, that for each tender y € F"' we need to find the value of

20 = le;]pl Q(x.£), i.e. solve the L linear programs

findy € R,® such that Wy = k! - T'x,

and w! = q‘y is minimized.
- Of course in order to do so, we can take advantage of the techniques
described in the next section.

However, our enthusiasm for this approach must be tempered by the
sobering realization that performing Step 2 requires essentially the
same amount of work as solving the original problem (0.1). Indeed to

find y**! we need to solve the linear program:
(3.16) find x € R*, y* € RY%, L = 1,...,L, such that

T x + #y' = k!, and

mx + Dk, atyt is minimized.
The only differences with the structure of the original problem is that
there are no constraints Az = b and y must not necessarily be nonnega-
tive. There may be some advantages here, but certainly not enough to

warrant solving the stochastic program (0.1) by solving a sequence of

programs of the type (3.16), unless we were dealing with stochastic

-30 -

programs that exhibit further structural properties, such as stochastic
programs with simple recourse, see the end of Section 6 of Nazareth and
¥ets, 1984, and in particular the implementation described by Nazareth

in Chapter 13.

4. SIFTING, BUNCHING AND BASES UPDATES.

In the final analysis, Step 3 of the L-shaped algorithm boils down to
the calculation of the value of @ and of its gradient at z". What it
involves is solving a large number of similar linear programs, or if you
prefer one linear program with matrix structure, Figure 3.12. The same
type of operations would be required for the actual carrying out of Step 2
of the algorithm based on the generation of tenders. The extent to which
we are able to speed up these computations will determine the level of
"stochasticity” that we are able to bandle. This Section raises the ques-
tion of how to organize the work so as to minimize the computational
effort involved. We consider only the case of multiple right-hand sides,
resulting, as the case may be, from h and/or T random; by duality, the
analysis also applies to the case when only g is random (and h and T are
nonstochastic). When both the cost coefficients and the right-hand sides
of the recourse problem (0.3) include random variables a further
refinement of the methods suggested here would be required. We shall
not be concerned with special cases such as simple recourse W = (/, —=I),
or network-structured problems when specific computational shortcuts

are possible, e.g. Midler and Wollmer, 1969, Wallace, 1984, and Qi, 1984.

In its simplest form, the problem that we are concerned with is
finding an efficient procedure for solving L linear programs with variable

right-hand sides: For! = 1,...,L,

- 31 -

(4.1) findy € R:E such that

wy =th,

! is minimized.

qy =w

The vectors T={t!, 1=1,.,L] come from t! =h! — TtzVor t! = bl —y¥,

cf. Section 3.

For all I, (4.1) is feasible, i.e.

(4.2) tt epos W=1{t|t =Wy, y=0]

(this comes from the fact that ¥ or y¥ satisfies the induced feasibility
constraints). Moreover, by assumption we have that (4.1) is bounded,
and hence for all 1, (4.1) is solvable. We shall denote the optimal solution
by yl, and the associated simplex multipliers by n*. We have that

'n“WSq ,

and

qyl - n,ltl.

The methods that we study can be divided into sifting (discrete
parametric analysis) and bunching (basis by basis analysis) procedures.
We begin with a description of a very crude bunching procedure, which
nonetheless would be much more efficient than solving separately all L
linear programs (4.1). This technique is easily modified to also take care

of the case of multiple cost coefficients vector, cf. Wets 1983, p.587.

Let B be an my X m, invertible matrix of ¥ with yB~!W < g where ¥
is the subvector of g that corresponds to the columns of ¥ in H; recall
that ¥ is assumed to be of full row rank. Then from the optimality condi-
tions for linear programming, it follows that this basis B is optimal for

eny vector t € R such that

-32.

(4.3) B t=0
and then the optimal simplex multipliers are given by
m=yB}
This means that pos ¥ is decomposable in a number of simplicial cones

of the type pos B = {t |B~lt = 0}, such that whenever t € pos B then B is

an optimal basis for the linear program: find yER:_LE such that Wy =t and
w =gy is minimized. Moreover, on pos B, the {(optimal) simplex multi-
pliers remain constant. All of these observations can be rendered very
precise and are summarized in the Basis Decomposition Theorem,

Walkup and Wets, 1969. The figure below illustrates such a decomposition:

4.4 FIGURE: Decomposition of pos ¥.

- 33 -
Now suppose that we solve the linear program (4.1) for some !, and

B(]) is the corresponding optimal basis. Since B(’]a is readily available,

finding the bunch of vectors t! for which B(l) is the optimal basis is rela-

tively easy since all we need to do is to verify if

(4.5) BGitt =0

Let B, be the family of all such vectors, Ti(1) be the corresponding sim-

plex multipliers and the probability mass associated with B, given by
PO)= Lt e B
All vectors t! that have failed the nonnegativity test (4.5) are in

T, = T\ B,. We are now in the same situation as at the outset. Picking a

vector in 'T_]. we obtain a new basis B(z), the corresponding vector T(2)

the bunch B, and associated probability mass P(2) This process is con-

tinued until all t! € T have been bunched. The expected value of these
linear programs — the quantity that would correspond to 0 (z%) or ¥{(}*)

-- is given by:

VM) 2gt ¢ Bthtl
The expected simplex multipliers - a quantity used in the construction of

feasibility and optimality cuts — is given by :

Ekp(k.)"(k)

A number of computational shortcuts come immediately to mind as sug-
gested by the decomposition of pos W. First, note that T or even coT

(the convex hull of 7), is a subset of pos W that meets some — and usu-

ally only a few -- of the simplicial cones that are part of this decomposi-

tion. Moreover, most of the vectors in 7 will be found in adjacent cells,

thus instead of just picking any vector t! that failed the (nonnegativity)

- 34 -

test (4.5), we could choose a vector f in T, such that { belongs to a
neighboring cell, which necessarily means that B(]}f has exactly 1 nega-
tive entry; note that B('lst having 1 negative entry does not automati-
cally imply that { belongs to an adjacent cell of posB(l). Passing from
pos B(l) to a neighboring cell requires just one (dual) pivot step. It is
clear that substantial computational savings could be realized by a sys-

tematic organization of the work.

One way is to proceed as suggested in Wets, 1983: pick a vector
t € T, say t!, and solve the linear program (4.1) with I = 1. Let B(;) be

the optimal basis. Multiply each vector t in T by B(_ls The bunch B, is

the collection of all vectors £ such that
Iy} — p-14l
t(l) = B(l)t >0

For each vector t—h) € Ty = T\ B,, with necessarily at least 1 negative
element, we record the actual number of negative entries as well as m;

the magnitude of the most negative element. Now choose a vector { in

T, with a minimal number of negative entries and among them one with
m, as small as possible. Pivot, relying on the criteria provided by the

dual simplex method, to obtain the next (optimal) basis B(Z)' the associ-

ated multipliers T(2) and construct 7'2; and then continue in a similar

manner.

What all of this comes down to is that we build a partitioning of that
portion of pos W that covers T (or co T). What we need is the sublattice

structure of the cells that contain 7. In certain cases it may be possible

to work out the complete decomposition of pos W and then use it when-

-35.-

ever we enter Step 3 of the L-shaped algorithm. Each subbasis of ¥ that
generates a cell of the decomposition is recorded with labels that point
to the neighboring cells. The lattice generated by the decomposition in
Figure 4.4, would take the graph structure given in Figure 4.6. The label-

ling of the nodes could be the indices of the columns in the basis.

(7.9.5) (7.9, 10) (7.3,10)

(5.9,4) {6,2,3)

(6.9,4) (6,2,10)

(6,8,4) (6,2,15)

(6,8,15)

4.6 FIGURE: Lattice of the decomposition of pos ¥.

The pointers would correspond to the pivot step required to pass from
one basis to a neighboring one. Here this is a planar graph but that would
not necessarily be the case if m, > 3. In general, working out the com-
plete decomposition of pos ¥ may be a serious undertaking, the number
of cells could increase exponentially as a function of mj, (for n,
sufficiently large). Even for problems whose recourse matrix ¥ have a
network structure, the number of components in a complete decomposi-
tion of pos ¥ may become unmanageable even for relatively '"srnall"

problems, see Wallace, 1984.

- 136 -

Short of first working out a complete decomposition and then finding
a good path through the lattice, so as to minimize the number of opera-

tions, What could be done? What appears the most efficient approach to

date is to bunch the elements of T by a trickling down procedure that we
describe next. Unless there are some good reasons for proceeding other-
wise -- for example the inverse of a "good" subbasis of ¥ is available -- we

would start by finding the cell associated with t, where

tteT

is the mean of the vectors in T, geometrically: the centroid of 7. We

bave to solve the linear program:
findy € R:B such that wy =t ,
and gy is minimized.
This yields an optimal basis B(y) its inverse B(_ll) and associated multi-
plier 7(y). ¥e assume that B(_li is stored as an explicit dense matrix.
Now consider ¢! and sequentlally perform the multiplications
[BGiLt! = &
1f fil = 0 for all ¢, place t! in bunch 1, otherwise stop as soon as for some
index 1, fil < 0. Perform one dual simplex step, with pivot in row i. In
doing so we create a new basis B(Z) with
[B(—zg L;tt=0
(preserving dual feasibility). The branching from B(l) occurred on 1i.
Repeat the same procedure with 3(2) instead of B(l)' branching if neces-

sary (recording the branching index), otherwise assigning ¢! to bunch 2.

If branching did occur, then continue until a basis B(k) is found such

that B(';Btl > 0. This will necessarily take place since t! € T ¢ pos W by

-137-

assumption, and the pivot path is a simplex path for the dual problem
with the pivot choice determined by the first negative entry; degeneracy
could be resolved by a random selection rule or Bland's rule. This pro-
cedure creates a tree, rooted at B(l)- whose nodes correspond to the
bases (associated with the cells of the decomposition of pos W), the
branches being determined by the first negative entry encountered when

multiplying ¢t by B(;y. Figure 4.7 gives part of such a tree for the decom-
(!

position of Figure 4.4 assuming thal 7 covers pos W, and that

t € pos(W®, w8, wi0)
The number on the branches indicating branching on the i-th entry that

leads to the subsegquent basis.

(6,9,10)

(7,9,10)
(3)

(7'9' 5) (51 914)

4.7 FIGURE: Tree generated by trickling down procedure.

Note that the same cell may be discovered on different branches of the
tree. No effort would be made to recognize that this is taking place,

since too much computational effort would be involved in trying to iden-

-38 -

tify such a situation, and only marginal gains could be reaped as will be
clear from the subsequent development that concerns updates, i.e. the

information necessary to pass from one node of the tree to the next.

It is clear that a great amount of calculations are bypassed by the
trickling down procedure, by comparison to the "rough" version of the
bunching procedure described at the beginning of this Section. However,
it may appear that the storage of all inverse bases {(corresponding to the
nodes of the tree) as well as keeping track of pointers may negate all the
advantages that may be gained from this bunching technique. This, how-
-ever, can be overcome by relying on Schur-complement updates for the
bases B(k)- Updates of this type in the context of linear programming
were first suggested by Bisschop and Meeraus, 1977, 1980. Suppose B(k)

is obtained from B(o) by adding k columns - without loss of generality
assume they are Wy = [Wj’.....Wj"] -- and by pivoting out k columns.
The equation

B(k)y' =t

. m .
where y’ € K 2 can also be rewritten as

Bloy ¥ y']-
I(k) 0 J F4

where I(k) is part of an identity matrix with rows having their entry 1

¢
0

corresponding to the columns that have to leave the basis when passing
from B(o) to B(k)- This matrix of coefficients can be written as a block LU

product

I Y
0, I

By Wy
Ty O

_ [B(o). 0
Ty Cx)

where the [’s in the last matrix are my; X m, and k X k indentity

matrices. We have that

-39 -
Yy = Bo)Fe)

Cuy = ~e)Ye)
and thus

Cay = =1 B} W ey -
This matrix is k x £ and is the only information that is needed to recon-
struct all that is needed at the node associated with B(k)' in addition to
.B(a which is supposed to be available {in an LU/ form, for example). This

means that at depth 1 in the tree, only 1 x 1 updates are necessary; at

depth 2, 2 x 2 updates. Since we reasonably expect to find the largest

number of points of T in the immediate neighborhood of { we do not
expect to have to construct very long (deep) trees, and the updating

information should be of manageable size.

Bunching by the trickling down procedure appears to minimize the

amount of operations needed to assign a given{ € T to its bunch, and by
relying on Schur-complement updates the amount of ‘information
required at each node is kept very low. When k -- the number of bunches
-- gets to be too large it may be necessary to start a tree with a new root.
This approach to bunching can even be used eflectively in specially
structured problems such as worked out in Wallace, 1985, in the case of

networks.

The sifting procedure, a sort of discrete parametric analysis, has

been proposed by Gartska and Rutenberg, 1973. It is designed for han-

dling the case when the points in T are the possible realizations of m,
independent random variables, for example when T is nonstochastic and

the hi(')' i1=1,...,,m, are independent random variables. We assume that

the vectorsin T C pos W are obtained by setting for everyi = 1,...,m,,

- 40 -

t, =71y
for some [€ {1,...,k‘-§ where we have ordered the Ta l.e.,
Ti] < Tiz <...< Tl.k‘

We have thus a doubly indexed array:

(4.8) 793 < T2 Coorvvinnn, < Tk, o
72] < 722 < .l < Tzk N
Tme1 < Tmp2 LT < Tk,

We sift through this array in the following manner: let

tl = (711'721--~~-Tm2,1)-

and solve the linear program
findy € R,? such that Wy =1,
and gy is minimized.
Suppose that B(l) is the associated optimal basis, with
(B3] = [8.6%..67)
Recall that t € pos B(;y as long as [B(']%]t > 0. Hence to find out which

subset of vectors belong to pos B(l) we study systematically the range of

values of 7 that satisfy:

+ﬁl‘rao

m .
2]’ =‘]ﬁj Tj,ej
Jeel

for some fixed 56 € (le-""'rj.k,) and record those values of Ti g that

belong to that range; the corresponding t-vectors are then in pos By -

More specifically, identify first the largest index k such that

mo—1 s m
(EJ-:‘; ﬁ"rj]) +8 afmzlk >0

- 41 -

All vectors (711-721'----Tmz—l,l-'rmg.l) with { = 1,...,k are recorded as being
in pos B We then "move" Tma=1,1 to Tmg~1,2 and repeat the same

analysis on the last coordinate of ¢. If

m, -2 . —1
(T1(E55 B T5) + B Tmyr 2 + B 272 03N Ty 1Tk, = 8.
we return the (my-1)-th coordinate of t to 7, _;, &and increase the
z—1,

preceding element of { to its next higher value, otherwise it is the
(m,—1)-th coordinate which is increased (discretely) to its next higher
value, if possible; if not it is again the (m.2 — 2)-th coordinate which is
pushed to its next value. This is continued, systematically, until the
search with B(l) is exhausted. We now restart the procedure with the

"lowest ' vector

(lel,‘r‘zjz,....‘rmmjm)
which has not been included in the first bunch, i.e. with the J, as low as
possible. The procedure is repeated until all possible vectors generated
by the array have been assigned to a given bunch. Further details can be
found in Gartska and Rutenberg, 1973, who also report computational
experience which would favor this approach with respect to the coarse
bunching procedure described at the beginning of this section. However,

to rely on this procedure we must be in this specific situation, i.e. when

the vectors in T can be given the array representation (4.8) and this is
not always the case, we often deal with dependent random variables and
if (0.1) is the result of an approximation scheme then the chosen discret-

ization will usually not be of this type.

-42 -

5. CONCLUSION

At this stage of algorithmic development for (linear) stochastic pro-
grams with recourse, decomposition-type methods aided by a number of
shortcuts made possible by the structural properties of the problem,
appear as the clear cut favorites. Of course, this is mostly due to the
fact that they allow us to exploit to the fullest these structural proper-
ties, see Section 4, but there may be some other justification for using
decomposition-type methods. Experiments, cf. Beer, 1981, have shown
that with the decomposition method, a value near the optimum -- Beer
speaks of an error of no more than 3% -- is reached at an early stage of
the computation. Given on one hand the stability of the solution to sto-
chastic programs -- see Dupatova, 1984, Wang, 1984 -- and on the other
hand our limitations in the (precise) description of stochastic
phenomeha or other sources of uncertainties, as mentioned in Section 1,
a rapid convergence to an approximate solution is all that is expected
and required. If solving the discrete stochastic program (0.1) is part of a
sequential scheme for solving a stochastic program with continuous pro-
bability distribution or with a discrete distribution involving many more
points than L , then it would not be necessary to solve up to optimality
before a further refinement is introduced. Again decomposition-type
methods that exhibit rapid convergence to nearly optimal solutions

would be ideally suited in such a scheme.

- 43 -

REFERENCES

K. Beer, 1981. Solving linear programming problems by resource alloca-
tion methods, in Large-scale Linear Programming eds. G. Dantzig, M.
Dempster, and M. Kallio, IIASA Collaborative Proceedings Series, Lax-

enburg, 409-424.

J. Birge and R. Wets, 1584. Designing approximation schemes for sto-
chastic optimization problems, in particular stochastic programs

with recourse, Mathematical Programming Study

J. Bisschop and A. Meeraus, 1977. Matrix augmentation and partitioning
in the updating of the basis inverse, Mathematical Programming, 13,
241-254

J. Bisschop and A Meeraus, 1980. Matrix augmentation and structure
preservation in linearly constrained control problems, Mathematical

Programming. 18, 7-15.

- 44 -

G. Dantzig and A. Mandansky, 1961. On the solution of two-stage linear
programs under uncertainty , Proc. Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Vol.7 Univ. California Press,

Berkeley, 1961. 185-176

J. Dupadova, 1984. Stability in stochastic programming with recourse -
estimated parameters, Mathematical Programming, 28, 72-83.

J. Dupacova and R. Wets, 19B4. On the asymptotic behaviour of con-

strained estimates and optimal decision . Manuscript, 1IASA, Laxen-

burg (forthcoming).

R. Fourer, 19B4. Staircase matrices and systems, SIAM Review, 26, 1-70.

S. Gartska and D. Ruthenberg, 1973. Computation in discrete stochastic
programs with recourse, Operations Fesearch, 21, 112-122

J. Ho, 1983. Equivalent piecewise linear formulations of separable con-
vex programs, Manuscript, Univ. Tennessee, Knoxville.

P. Kall, 1979. Computational methods for solving two-stage stochastic
linear programming problems, Z Angew. Math. Phys. 30, 261-271.

J. Midler and R. Wollmer, 1969. Stochastic programming models for
scheduling airlift operations, Naval Fes. Logist. Quat. 16, 315-330

L. Nazareth and R. Wets, 1984. Algorithms for stochastic programs: the
case of nonstochastic tenders, Mathermnatical Programming Study.

A. Perold and G. Dantzig, 1979. A basis factorization method for block tri-
angular linear programs in Sparse Matriz Proceedings, 1978, eds 1.
Duff and G. Stewart, SIAM Publications, Philadelphia, 283-312.

L. Qi, 1984. Forest iteration method for stochastic transportation prob-
lem, Mathematical Programming Study.

G. Salinetti, 1983. Approximations for chance-constrained programming

problems, Stochastics.

- 45 -

M. Saunders, 1983. Private Communication.

R. Van Siyke and R. Wets, 1969. L-shaped linear programs with applica-
tions to optimal control and stochastic programming, SIAM J.

Appl. Math. 17, 63B-663

B. Strazicky, 1980. Some results concerning an algorithm for the
discrete recourse problem, in ‘Stochastic Programming ed. M. Demp-

ster, Academic Press, London. 283-274.

D. Walkup and R. Wets, 1969. Lifting projections of convex polyhedra,

Pacific J Mathem. 28, 465-475.

S. Wallace, 1984. Decomposing the requirement space of a transportation

problem into polyhedral cones, Mathemalical Programming Study.

S. Wallace, 1985. On network structured stochastic optimization problem,

Report no. B42555-8, Chr. Michelsen Institute, Bergen Norway.

J.Wang, 1984. Distribution sensitivity analysis for stochastic programs

with recourse, Mathematical Programming.

R. Wets, 1966. Programming under uncertainty: the equivalent convex

program, SIAM J. Appl. Math. 14, 89-105

R. Wets, 1972. Characterization theorems for stochastic programs,

Mathematical Programming, 2, 166-175.

R. Wets, 1974. Stochastic progrograms with fixed recourse: the
equivalent deterministic program, SIAM Review, 16, 309-33%8

R. Wets, 1983. Stochastic programming: solution techniques and approx-
imation schemes, in Mathematical Programming: The State of the
Art, 1982, eds. A. Bachem, M. Grotsched and B. Korte, Springer

Verlang, 566-603

