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IARGE SCALE LlNEXR PROGRAMMING TECHNIQUES 
IN SI'OCHASTIC PROGFMMXU+JG 

Roger J-B. Wets 

INTRODUCTION 

We study the use of large scale linear programming techniques for 

solving (linear) recourse problemsf whose random elements have 

discrete distributions (with finite support) more precisely for problems 

of the  type: 

(0.1) find z E R:' such that  Az = b 

and z = cz + 2 ( z )  is minimized 

where 

(0.2) 2 ( 2 )  = ~ , L = , P ,  Q(z$) = E I Q ( X . ~ ( U ) ) ~  

f The potential use of large scale programming techniques for solving stochastic programs 
w i t h  chance-constraints appeers to be less promising and has not yet been investigated. 
The approrimation scheme for chmce-constraints proposed by Salinetti, 1983, would, if im- 
plemented require a detailed analysis of the structural properties of the resulting (large- 
scale) linear programs. Much of the melpsis laid out in this Section would also be a?pliceble 
to that case but i t  appears that fufLher properties - namely the connections between the 
upper and lower bounding problems - should be exploited. 



and for each L=l, ..., L ,  the r e c o u r s e  c o s t  Q(z,(') is obtained by solving the 

r e c o u r s e  p r o b  Lem: 

(0.3) ~ ( 2 . c ' )  = inf i q l y  I ~y = h 1  - P z ,  y E R:' { 

where 

1 1 = ( q ' . h l . T ' )  = ( q :  ,...,q n 2 ; h i  . . .  h m 2 ; t : l  , . ,  t i n l  , . ,  t m ~ n l  l )  

E R*' with N = n2 + m2 + m2.nl 

an d 

p1 = Prob [ [ ( w )  = (' ] . 

The sizes of the matrices are consistent with z E Rnl ,  y  E R ~ ' ,  b  E 

and for all I ,  hl E Rm2: for a more detziled description of the recourse 

model consult Part I of this Volume. Because W is nonstochastic we 

refer to this problem as a model with $zed r e c o u r s e .  The ensuing 

development is aimed a t  dealing with problems that exhibit no further 

structural properties. Problems with sirn.ple recourse for example, i.e. 

when W = (I,-/), are best dealt with in a nonlinear programming frame- 

work, cf. Chapter 4. 

Before we embark on the description of solution strategies for the 

problem at hand, i t  is useful to review some of the ways in which a prob- 

lem of this type might arise in practice. First, the problem is indeed a 

linear recourse model xvhose random elements follow a knomn discrete 

distribution function. In that case either q  or h or T is random, usually 

not all three matrices at once, but the number of independent random 

variables is liable to be relatively large and even if each one takes on 

only a m.oderate number of possible values, the total number L of possi- 

ble vectors [' could be truly huge , for example a problem with 10 



independent random variables each taking on 10 possible values leads us 

to consider 10 billion (=L) 10-dimensional vectors ('. Certainly not the 

type of data we want, or can, keep in East access memory. 

Second, the original problem is again a stochastic optimization 

problem of the recourse type but (0.1) is the result of an approximation 

scheme, either a discretization of an absolutely continuous probability 

measure or a coarser discretization of a problem whose "finite" number 

of possible realizations is too large to contemplate; for more about 

approximation schemes consult Chapter 2. In this case L, the  number of 

possible values taken on by ,$(.), could be relatively small, say a fenr hun- 

dreds, in particular if (0.1) is part of a sequential approximation scheme, 

details can be found in Chapter 2, see also Birge and Wets, 1984, for 

example. 

Third, the original problem is a stochastic optimization problem but 

we have only very limited statistical information about the distribution 

of the random elements, and C1,... ,CL represents all the statistical data 

available. Problem (0.1) will be solved using the empirical distribution, 

the idea being of submitting its solution to statistical analysis such as 

suggested by the work of Dupazova and Wets, 1984. In this case L is usu- 

ally quite small, we are thinking in terms of L less than 20 or 30. 

Fourth, problem (0.1) resulted from an attempt a t  modeling uncer- 

tainty, with no accompanying statistical basis that allows for accurate 

descriptions of the phenomena by stochastic variables. As indicated in 

Chapter 1, this mostly comes from situations when there is data uncer- 

tainty about some parameters (of a deterministic problem) or we want 

to analyse decision making or policy setting and the future is modeled in 

terms of scenarios (projections with tolerances for errors). In this  case 



the number L of possible variants of a key scenario that  we want to con- 

sider is liable to be quite small, say 5 to 20, and the  ,$' can often be 

expressed as a sum: 
+ 

where for k = 1 ...., K, the E R~ are fixed vectors and ( T ~ ( . )  ...., T ~ ( . ) )  a re  

scalar random variables with possible values 7711,...,77M for 1 = 1, .... L. We 

think of K as being 2 or 3. The typical case being when we have a base 

projection: fO + cl, but we want to consider the  possibility tha t  certain 

factors may vary by as much as 25% (plus or minus). In such a case the 

mo.del assigns to the (only) random variable q l ( . )  some discrete distribu- 

tion on the  interval [.75,1.25]. 

With this as background to our study it  is natural to search solution 

procedures for recourse problems with discrete distributions when there 

is either only a moderate number of vectors t1 to consider (scenarios, 

limited statistical information, approximation) or there is a relatively 

large number of possible vectors ,$' that  result from combinations of the  

values taken on by independent random variables. The techniques dis- 

cussed further on, apply to both classes of problems, but the tendency is 

to think of software development that  would be appropriate for problems 

with relatively small L ,  say frorrl 5 to 1,000. Not just because this class 

of problems appears more manageable but also because when L is actu- 

ally very large, although finite, the  overall solution strategy nrould still 

rely on the  solution of approximate problems with relatively small L. 



1. RECOURSE M O D E S  AS LARGE SCALE LTNEAR PROGRAMS 

Substituting in (0.1) the expressions for Q and Q ,  we see tha t  we 

can obtain the solution by solving the linear program: 

( 1 . 1 )  f indz  E R:' and for 1 = 1  ..... L ,  y' E R:Z such tha t  

Az = b  , 

9 z  + ~ y '  = h' , 1 = 1, ..., L  

L 1 1 .  and z = cz  + ~ l , l p l q  y is minimized. 

To each recourse decision to be chosen if ((.) takes on the  value 

(I = ( q 1 , h L , 9 )  corresponds the vector of variables y l .  This is a l inear 

program with 

m, + m 2 . L  constraints,  

an d 

n l  + n 2 . L  variables. 

The possibility of solving this problem using standard linear program- 

ming software depends very much on L ,  but  even if i t  were possible t o  do 

so, in order t o  avoid making the  solving of (1.1)  prohibitively expensive - 
in t e rms  of t ime and required computer memory -- it is  necessary to 

exploit t h e  properties of this  highly s t ructured large scale linear pro- 

gram. The s t ruc ture  of the  tableau of detached coefficients takes on the 

form: 



1.2 FIGURE: Structure of discrete stochastic program. 

We have here a so-called dual block angular s t ruc ture  with the important 

additional feature that  all the matrices, except for A ,  along the  block 

diagonal are the same. I t  is this feature that will lead us to t h e  algo- 

rithms that  are analysed in Section 3 and which up to now have provided 

us with the  best computational results. It: is also this feature which led 

Dantzig and Madansky, 1961, to suggest a solution procedure for (1.1) by 

way of the dual. Indeed, the  following problem is a dual of (1.1): 



(1.3) find u E Rm', and for 1 = I ,..., L ,  n1 E Rme such that  

U A  + C/=,p1 7r1 T I  s C ,  

1 1 
7r W s q , 1 = I ,  ..., L 

and w = ab + C/~,p~rr'h'  is maximized. 

Problem (1.3) is not quite the usual (formal) dual of (1.1) To obtain the 

classical linear program dual, set  

E' =pin I 

and substitute in (1.3). This problem has block a n g u l a r  s t 7 u c t u r e ,  the 

block diagonal consisting again of identical matrices Hi. The tableau with 

detached coefficients takes on the form: 

1.4 FIGURE. Structure of dual problem. 



Transposition is denoted by ', e.g. W' is the transposed matrix of W. 

Observe tha t  we have now fewer (unconstrained) variables but a larger 

number of constraints, assuming that nz 1 m2 , as is usual when the 

recourse problem (0.3) is given its canonical linear programming formu- 

lation. In Section 2 we review briefly the methods that rely on the struc- 

ture of this dual problem for solving recourse models. 

At least when the technology matrix T is nonstochastic, i.e. when 

P = T ,  a substitution of variables, mentioned in Wets, 1966, leads to a 

linear programming structure that has received a lot of attention in the 

literature devoted to large scale dynamical systems. Using the con- 

straints of (1.1). i t  follows that for all I =1, ..., L-1, 

lk = h1 - wyl 
and substituting in the (1 + 1)-th system, we obtain 

- W y L  + w y l + l  =h'+l  

Problem (1.1) is thus equivalent to 

(1.5) find 2 E R:' and for 1 = I  ..... L, y 1  E R:' such that 

L 1 1 -  and z = cz + x1  =lpl  y 1s minimized. 

With h0 = 0 and for I =I .  ..., L, 

= h' -hl-l  , 

the tableau of detached coefficients exhibits a staircase stmcture: 



1.5 FIGURE. Equivalent staircase structure. 

We bring this to the fore in order to stress a t  the same time the close 

relationship and the basic difference between the problem at  hand and 

those encountered in the  context of dynamical systems, i.e. discrete 

version of continuous linear programs or linear control problems. 

Superficially, the  problems are structurally similar, and indeed the 

matrix of a linear dynamical system may very well have precisely the 

structure of the matrix that  appears in (1.5). Hence, one may conclude 

that  the  results and the computational work for staircase dynamical sys- 

tems, cf. in particular Perold and Dantzig, 1979, Fourer, 1984, and 



Saunders, 1983, is in some way transferable to the stochastic program- 

ming case. Clearly some of the ideas and artifices that have proved their 

usefulness in the setting of linear (discrete time) dynamical systems 

should be explored, adapted and tried in the stochastic programming 

context. But one should a t  all times remain aware of the fact that 

dynarnical systems have coefficients (data) that are I-parameter depen- 

dent (time) whereas we can view the coefficients of stochastic problems 

as being multi-parameter dependent. In some sense, the g a p  b e t w e e n  

(1 -4)  and s t a i r case  s t r u c t u r e d  l inear  p r o g r a m s  that  arise  from dynumica l  

s y s t e m s  is the s a m e  a s  that b e t w e e n  o r d i n a r y  d i f lerent ia l  e q u a t i o n s  and  

part ial  d i f f e r e n t i d  e q u a t i o n s .  We are  not dealing here with a 

phenomenon that  goes forward (in time) but one which can spread all 

over R~ (which is only partially ordered)! Thus, i t  is not so surprising 

that from a computational viewpoint almost no effort has been made to 

exploit the structure (1.5) t o  solve stochastic programs with recourse. 

However, the potential is there and should not remain unexplored. 



2. METHODS THAT EXPLOIT THE DUAL SI'RUCTlJRE 

Dantzig and Madansky, 1961, pointed out tha t  the dual problem (1.3) 

with matrix s t ruc ture  (1.4) is ripe for the  application of the decomposi- 

tion principle. I t  was also the  properties of (1.4) tha t  led Strazicky, 1980, 

to suggest and  implement a basis factorization scheme, further analysed 

and  modified by Kall, 1979, Vets, 1983, and Birge in Chapter 12. We give a 

brief description of both methods and study the  connections between 

these two procedures. We begin with t h e  second one, giving a modified 

compact version of the original proposal. 

We assume tha t  W is of full row rank, if not the recourse problem 

(0.3) defining Q would be infeasible for some of the  values of hi and T' 

unless all belong to  the  appropriate subspace of Rhr in which case a row 

transformation would allow us  to delete the  redundant constraints. We 

also assume t h a t  A is  of full row rank, (possibly 0 when there are  no con- 

s t raints  of t h a t  type). Thus with the  columns of A '  and W' linearly 

independent (recall tha t  the variables o and rr a r e  unrestricted),  and 

after introducing the slack variables ( so  E R:' and s1 € RY2 for 

1 =1, ..., L),  we see tha t  each basic feasible solution will include a t  least n2 

variables of each subsystem 

(2.1) n ' ~  + ~ ' l = ~ ' , s l  20, I = 1 ,..., L , 

the (unrestricted) m 2  variables d and a choice of a t  least ( n 2 m 2 )  

slack variables (s j .  j=l ..... n2). Thus the portion of tbe basic columns 

tha t  appear in the  I-th subsystem can be subdivided into two parts 

[B~'.I~'~ ] = [( w'.Il', ).I,'~] 

where ( W ' . I ~ ' ~ )  is  an (n2  x n 2 )  invertible matr ix and the  extra  columns, if 

any, a r e  relegated to  IL2. Thus, schematically and up to  a rearrange- 



rnent of columns, a feasible basis 8 has the  structure: 

and in a detached coefficient form: 

2.2 FIGURE. Basis structure of dual. 

The matrix D' corresponding to the columns of ( A ' . I ' , ~ )  tha t  belong 

to this basis and for 1 = 1. ..., L, C '  is the n l  X m2 matrix: 

c,' = b, T;,o] 



- 1 3 -  

(recall tha t  T P l  is of dimension nl x m2). Each q', after possible rear- 

rangement  of row and columns, is of the  following type: 

= IW'. I,, ] 

2.3 FIGURE. Structure of B;. 

where W b )  is a rn2 X m2 invertible submatrix of w'. and FVicl) a re  the 

remaining rows of W' t ha t  correspond to  the  rows of the  identity that  

have been included in B" (through & ). The simplex multipliers associ- 

a ted  with this  basis B, of dimension nl + n2.L, a re  denoted by 

and a re  given by the  relations 

where [y*,p'] is the appropriate rearrangement  of the  subvector of 

coefficients of the objective of (1.4) tha t  corresponds to the columns of 

B', with e' being the subvector of [ b S , 0 ]  whose components correspond to 



the columns of D'. This (dual feasible) basis is optimal if the vectors 

( z t y l ,  1 = 1 ,..., L) 

defined through (2.4) are primal feasible, i.e. satisfy the  constraints of 

(1.1). To obtain z and y we see tha t  (2.4) yields 

Substituting for z this becomes, for 1 = 1, ..., L, 

where yL is t he  subvector of [plhL ,o] t ha t  correspond, to the columns in 

BL' . We have used the fact tha t  B is a block &agonal with invertible 

mat r ices  (B~', 1 = l , . . . ,L) on the diagonal. Going one s tep  fur ther  and 

using the  properties of h1 and C, we get  the  system for z :  

(2.6) ( D - ~ ~ = I ~ ~ B L - ' c I ) ~  =~-C/=~II~BL-'YL 

The system (2.6) involves nl  equations in nl  variables and the L systems 

(2.5) a r e  of order nz. Thus instead of calculating the  inverse of -- a 

square mat r ix  of order ( n l  + n2.L) -- all t h a t  is needed is the inverse of L 

matr ices  of order nz and a square matr ix of order n l .  

Similarly t o  calculate the values t o  assign t o  the  basic variables 

associated t o  this basis, the  same inverses i s  all t ha t  is really required, 

a s  can  easily be verified. In order t o  implement this  method one nrould 

need  to  work out  the updating procedures to  show tha t  the simplex 

method can  be performed in this compact form, i.e. tha t  the  updating 

procedures involve only t h e  restricted inverses. But there a r e  other 

features  of which one should take advantage before one proceeds with 

implementation. 



Recall tha t  

where BL is an invertible matrix of size m2 x m2. Then 

Thus it really suffices to h o w  the  inverse of W ( L ) ,  and ra ther  than  

keeping and updating the n2 x n2 - matrix B ~ - I ,  all the  information tha t  

is really needed can be handled by updating an  m 2  x m2- matrix,  relying 

on sparse updates whenever possible. This should result  in substantial  

savings. The algorithm could even be more efficient by taking advantage 

of the repetition of similar (sub)bases W ( l ) .  We shall not pursue this  any 

fur ther  a t  this t ime because all of these computational shortcuts  a r e  

best handled in the framework of methods based on the  decomposition 

principle tha t  we describe next. 

The decomposition principle, a s  used to  solve the  l inear program 

(1.3), generates the  mas ter  problem from the equations 

by generating extreme points or  directions of recession (directions of 

unboundedness) from the polyhedral regions determined by the  L sub- 

problems, 

1 n wcq' . 

In order to simplify the  comparison with the factorization method 

described earlier, let  us assume tha t  

[srlsrwc 01 = lo] , 

i.e. there  a re  no directions of recession other than 0, which means tha t  

for all I ,  the polyhedra [d W s q ' ]  a r e  bounded; feasibility of (1.3) 



implying that  they are nonempty. For k =1, .... v, let 

l k  lk) 
7)k = (771k ,..., rl ,..., q 

the extreme point generated by the k-th iteration of the decomposition 

method, i.e. 

where zk = (2:. j =l. .... n l )  are the multipliers associated to the first n l  

linear inequalities of the master problem : 

(2.10) find u E R ~ ' ,  hk E R+, k = 1 ,..., v such that 

UA + x[=lh, ( ~ ~ = l ~ i 7 ) U C  7''. ) c 

Ckv=lhk = 1 

and w = a b  + C,Klhk ( C ~ l p l f l l k h t )  is maximized. 

The basis associated to the master problem is (nl x nl) ,  whereas the 

basis for each subproblem is exactly of order n2. In the process of solv- 

ing the subproblems the iterations of the simplex method bring us from 

one basis of type (2.7) to another one of this type (all transposed, natur- 

ally) with inverses given by (2.8). Here again, the implementation should 

take advantage of this structural property, and updates should be in 

terms of the  mz x m2 submatrices W ( L ) .  But w e  should also take advan- 

tage of the fact that all these subproblems are identical except for the 

right-hand sides and/or the cost coefficients, and this, in turn,  would 

lead us to the use of bunching and sifting procedures of Section 4. 

I t  is remarkable and important to observe that the basis factoriza- 

tion method with the modi f icaf ions  alluded to earlier and the decomposi- 

tion method applied to the dual, as proposed by Dantzig and Madansky, 

1961, require the same computational effort; J. Birge gives a detailed 

analysis in Chapter 12, independently B. Strazicky arrived a t  similar 



results. In viewr of all of this i t  is appropriate to  view the method relying 

on basis factorization as a very close parent of the decomposition 

method as  applied to the dual problem (1.3), but  i t  does not give us the 

organizational flexibility provided by this la t ter  algorithm. On concep- 

tual ground, as well as in terms of computational efficiency, i t  is the 

decomposition based algorithm tha t  should be retained for potential 

software implementation. In fact, this is essentially what has occurred, 

but i t  is  a "primal" version of this decomposition algorithm, which in this 

class of (essentially) equivalent methods appears best suited for solving 

linear stochastic programs with recourse. I t  is a primal method -- which 

means  tha t  we always have a feasible z E R ~ I  a t  our disposal -- and i t  

allows us to take advantage in the most straightforward manner of some 

of the  properties of recourse models to speed up computations. 

3. METHODS THAT ARE PRIMAL ORIENTED 

The great  difference between the methods tha t  we consider next and 

those of Section 2 is t ha t  finding z tha t  solves the  stochastic program 

(0.1) is now viewed as  our major, if not exclusive, concern. Obtaining the  

corresponding recourse decisions (yl, I=1,  .... L) or associated dual multi- 

pliers (n t ,  I =1 ,..., L) is of no real interest,  and we only perform some of 

these calculations because the search for an optimal solution z requires 

knowing some of these quantities, a t  least in an amalgamated form. On 

the  other  hand, in t h e  methods of Section 2 all the variables (o ,lr',...,nL) 

a re  t rea ted  as  equals; to  have the optimality criterion fail for some vari- 

able in subsysteni 1 (even when pl is relatively small) is handled with the  

same concern as having the  optimality criteria fail for some of the  

(u,, i = 1 ,..., m variables. 



Another important property of these methods is their natural exten- 

sion to stochastic programs with arbitrary distribution functions. In 

fact, they are  particularly well-suited for use in a sequential scheme for 

solving stochastic programs by successive refinement of the discretiza- 

tion of the  probability measure, each s tep  involving the solution of a 

problem of type (0. I), cf. Chapter 2. 

We stress  these conceptual differences, because they may lead to 

different, more flexible, solution strategies; although we are very much 

aware of the fact t ha t  if a t  each stage of the algorithm all operations are 

carried out ( to optimality), i t  is possible to find their exact counterpart 

in the algorithms described in Section 2; for the relationship between 

the L-shaped algorithm described here and the decomposition method 

applied to  the  dual, see Van Slyke and Wets, 1969; between the above and 

the basis factorization method see Chapter 12; consult also Ho, 1983, for 

the relationship between various schemes for piecewise linear functions 

which a re  widely utilized for solving certain classes of stochastic pro- 

gramming problems, and Chapter 4. 

The Lshaped algorithm, which takes i ts  name from the  matrix lay- 

out of the  problem to  be solved, was proposed by Van Slyke and Wets, 

1969. I t  can be viewed a s  a cutting hyperplane algorithm (outer lineari- 

zation) but  to  stay in the  framework of our  earlier development, it is best 

t o  interpret it here as  a partial decomposition method. We begin with a 

description of a very crude version of the algorithm, only later do we ela- 

borate the  modificatioris that  are vital to make the  method really 

efficient. To describe the method it is useful to consider the  problem in 

its original form (0.1) which we repeat here for easy reference: 



(3.1) f i n d z  E RY1 such tha t  Az = b ,  

and z = c z  + ( z )  is minimized 

We assume t h a t  the  problem is feasible and bounded, implementation of 

the  algorithm would require an appropriate coding of the  initialization 

s tep  relying on t h e  cr i ter ia  for feasibility and boundedness such a s  found 

in Wets, 1972. The method consists of three steps t ha t  can be inter- 

preted as follows. In Step 1, we solve an approximate of (3.1) obtained by 

replacing by a n  outer-linearization, this brings us to the  solving of a 

linear programming whose constraints are  Az = b , z s 0 and t h e  addi- 

tional constraints  (3.2) and (3.3) tha t  come from: 

(i) induced feasibility cuts  generated by the  fact tha t  the choice of z 

mus t  be restricted t o  those for which 2 ( z )  is finite, or equivalently 

for which Q(z.,$ )< +m for all 1 = 1, ..., L, or still for which there  exists 

y1 E R? such t h a t  Pyl = h l - p z  for all 1 = 1, .... L. 

(ii) linear approximations to on its domain of finiteness. 

These constraints  a r e  generated systematically through Steps 2 and  3 of 

the  algorithm, when a proposed solution zv  of the l inear program in Step 

1 fails to  satisfy the  induced constraints, i.e. (zV)  = m (Step 2) or if the 

approximating problem does not  ye t  match the  function a t  zv  (Step 3). 

The row-vector generated in Step 3 is actually a subgradient of a t  zv . 
The convergence of the  algorithm under the appropriate nondegeneracy 

assumptions, to a n  optimal solution of (3.1), is based on the  fact  t ha t  

there a re  only a finite number  of constraints of type (3.2) and  (3.3) t ha t  

can be generated by Steps 2 and 3 since each one corresponds to  some 

basis of W and a pair ( h l , p )  or to a basis of W and t o  one of a finite 

number of weighted averages of the  ( l = l  L )  and 



Step 0. Set v = r = s = 0 .  

Sfep 1 .  Set v = v t 1 and solve the  linear program 

find z E R:'. I9 E R such tha t  

Az = b  

(3 .2 )  Dkz 2 d k ,  k = 1 ,  ..., r ,  

( 3 . 3 )  E k z + 1 9  l e k ,  k = 1, ..., s ,  and 

cz +29 = Z  is  minimized. 

Let (zV,flV) be an optimal solution. If t he re  a re  no constraints of type 

(3 .3 ) ,  the variable 6 is ignored in the computation of the  optimal zV, t he  

value of gV is then fixed a t  -=. 

Step 2 .  For 1 = 1, ..., L solve the  linear programs 

( 3 . 4 )  find y E R : ~  , v +  E R Y 2  , v -  E R y e  such tha t  

ev' + e v -  = vi  is minimized 

(here e denotes t h e  row vector ( 1 , l  , . . . , I ) ) ,  until for some 1 t he  optimal 

value v 1  > 0. Let uV be the  associated simplex multipliers and  define 

d,+] = uVhl 

t o  generate an  induced feasibility cut.  Return to Step 1 adding this  new 

constraint of type ( 3 . 2 )  and se t  r = r + 1 .  If for all 1, the  optimal value of 

the linear program (3 .4 )  v i  = 0 ,  go to S e p  3. 



S e p  3.  For every I = 1, ..., L, solve the linear program 

(3.5) find y E such that 

q L  y = w L  is minimized. 

Let rrLV be the multipliers associated with the optimal solution of prob- 

lem I .  Set t = t + 1 and define 

wV = CLIPLrrLv(hl - ?zV)  = e, - E t z V  . 

If gV;r  wV, we stop; zV is the optimal solution. Otherwise, we return to 

Step 1 with a new constraint of type (3 .3 ) .  

An efficient implementation of this algorithm, whose steps can be 

identified with those of the decomposition method applied to  the dual 

problem (see Section 2), depends very much on the  acceleration of Steps 

2 and 3.  This is made possible by relying on the  specific properties of the 

problem at  hand (3.1), and it is in order to exploit these properties that 

we have separated Steps 2 and 3 which are the  counterparts of Phase I 

and Phase I1 of the simplex method as applied t o  the recourse problem 

(0.3). In practice one certainly does not s tart  from scratch when solving 

the L linear programs in Step 3; Section 4 is devoted to the analysis of 

Step 3,  i.e. how to take advantage of the fact that  the L linear programs 

that need to be solved have the same technology matrix W as well as 

from the fact tha t  the tL = ( q L , h l P )  are the realizations of a random 

vector. Here we concern ourselves with the improvements that could be 



made to speed up  Step 2,  and we see tha t  in many instances,  dramatic 

gains could be realized. 

First and  for all, Step 2  can be skipped altogether if the  stochastic 

program is with complete recourse, i.e. when 

a quite common occurrence in practice. This means naturally t h a t  no 

induced feasibility constraints ( 3 . 2 )  need to  be generated. This will also 

be the  case if we have a problem with relatively complete recourse i.e. 

when for every z satisfying Az = b ,  z r 0 ,  and for every 1 = 1, ..., L ,  the  

linear system 

Fg = h l  - ? z , y > O ,  

is feasible. This weaker condition is much more difficult to  recognize, 

and to  verify i t  would precisely require the  procedure given in Step 2. 

Even in the  general case, i t  may be possible t o  subst i tute  for Step 2: 

for some (hY,P) 

Step 2. Solve the  linear program 

( 3 . 7 )  find y E R:'.W+ E R:',v- E R y e  such that  

and ev+  + e v -  = vY is minimized. 

Let a" be t h e  associated simplex multipliers and if t he  optimal value of 

v V  > 0 ,  define 

Dz+] = uYTY , 

and 



t o  generate an induced feasibility cu t  of type (3.2). Return to S e p  1 wlth 

r = r+1. If the optimal value of v V  = 0, go to  Step 3. 

This means t h a t  we have replaced solving L linear programs by just 

solving 1 of them. In some other  cases i t  may be necessary to  solve a few 

problems of type (3.7) but the  effort wrould in no  way be commensura te  

with tha t  of solving all L linear programs of Step 2. In Section 5 of Wets, 

1974, one can find a detailed analysis of t he  cases when such a substitu- 

tion is possible, as well as  some procedures for the choice or construc- 

tion of the quantities h" and TV tha t  appear in the formulation of (3.7). 

Here we simply suggest t he  reasons why this  simplification is possible 

and pay particular attention t o  the  case when the  matr ix T is  nonsto- 

chastic. 

Let < be the partial ordering induced by the  closed convex 

polyhedral cone pos W, see (3.6), i.e. a 1  < a 2  if a2 - a 1  E pos W .  Then 

for given z E R=' and for every L=1, ..., L ,  t he  linear system 

(3.8) Wg = h i - e x " ,  y 2 0 

is feasible, if there exists a v  E R~~ such  t h a t  for all 1=1, ,... L ,  

(3.9) av < hL-?xu, 

and the  linear system 

(3.10) Wy = a', y 2 0 

is  feasible -- or equivalently a" E pos W .  There always exists av t h a t  

satisfies (3.9), recall L is  finite. If in addition, a" can be chosen so t h a t  

(3.11) a" = A"-Px 

for v E 11, ..., L j ,  then  (3.8) is  feasible for all 1 if and only if (3.10) i s  feasi- 

ble with a" as defined by (3.11). Although in general such an a" does not 

eldst, in practice, a t  most a fewr extreme points of the se t  



need  to  be considered in order to verify the feasibility of all the l inear 

systems (3.8). Computing lower bounds of Sv with respect to  < may 

require more  work than we bargained for, but it really suffices, cf. 

Theorem 4.17 of Wets, 1974, to construct  lower bounds of SV with respect 

t o  any closed cone contained in pos W ,  and this could be, and usually is 

taken to be, an orthant.  In such a case obtaining a" is effortless. 

Let u s  consider the case when T is nonstochastic and assume t h a t  

pos W contains the positive orthant,  if it contains another or thant  simply 

multiply some rows by -1 making the  corresponding adjustments in t he  

vectors ( h L ,  1 = 1,1 ..., L ) .  This certainly would be the case i f  slack vari- 

ables a re  par t  of t h e  y-vector, for example. 

For i = 1, ..., mZ, let  

q = min ht 
1 

If n  = hv for some v +E [l ,..., L j ,  which would always be the case if the  

(h(.) ,  i = l , . . . , m 2 )  are  independent random variables, then i t  follows 

from the above t h a t  for 1 =I ,  .... L ,  the linear systems 

F Y y = h L - B Y ,  y 1 0  

a r e  feasible if and only i f  

m = a - l ' ! c v ,  y 1 0 .  

Note t h a t  in this case the lower bound 

n u = , - l ' ! c v  

is  a simple function of zv.  

In our  description of the  L-shaped algorithm the connections to  

large scale linear programming may have been somewhat lost, if any- 

thing it i s  how to deal with the  "nonlinearity" of Q which has played 



center  stage. To regain maybe a more linear programming perspective i t  

may be useful to view the algorithm in the following light. Let us return 

to the dual block angular structure (1.2) from which it is obvious that  if 

we can adjust the simplex method so tha t  i t  operates separately on the 

z-variables and the  (yl-variables, l=1, ..., L),  i t  will be possible to take 

advantage of the block diagonal structure of the  problem with respect to 

the (yi-variables, l=1 ,..., L) .  Given that  some z v  is known which satisfy 

the constraint z r 0,  Az = b ,  then finding t h e  optimal solution of (1.2), 

with the additional constraint z = z v  leads t o  solving a linear program, 

whose tableau of detached coefficients has the structure: 

E l  
3.12 FIGURE. Structure of the  y-problem. 



where for 1 = I ,  .... L, h L Y  = h L  - T( 2". Clearly, when confronted with such  

a problem we want t o  take advantage of i ts  separability properties and 

this  is precisely what is done in Steps 2 and 3 of the  L-shaped algorithm. 

The s t ruc ture  of (3.12), with the  same matrix W on the block diago- 

nal, suggests t h a t  of a distributed system. A continuous version would 

take the  form: 

(3.13) find y : R -, RnZ such tha t  for all w E R 

y ( w )  € a r g m i n [ g ( w ) y ) ~ y  = h Y ( w ) ,  y € R y e ]  . 

Because of t he  linearity of t he  objective function, the  t rajectory 

w I-+ y ( w )  wilI be linear with respect to h Y  if t he  same basis of W 

remains optimal. The main task in solving (3.13) would be t o  decompose 

R in regions of linearity of y(.). Once this decomposition i s  known the  

remainder is ra ther  straightforward. Finding this decomposition is essen- 

tially the  subject of Section 4, which concerns itself with t he  organiza- 

tion of t he  computational work so as  t o  bring t h e  effort involved t o  an  

acceptable level. Problem (3.13) again brings t o  the fore t he  connec- 

tions between this work and tha t  on dynamicaI systems (continuous 

linear programming). With no t  too much difficulty i t  should be possible 

t o  formulate a bang-bang principle for systems with disti-ibuted parame- 

t e r s  space (here  R~') tha t  would correspond to  our scheme for decom- 

posing R. 



To conclude our discussion of the  L-shaped algorithm, let us  record 

a fur ther  modification suggested by L. Nazareth. When the matr ix T is 

nonstochastic, say = T for all I ,  then the linear program in Step 1 may 

be reformulated as 

(3.14) f i n d z  E R:', x E Rm2. d E R such tha t  

Az = b  

l-2 - X  = 0 

Fkx 2 f k = 1, ..., T 

Gkx + d  s g k ,  k = 1 ,..., s ,  and 

c z  + d  = z  is minimized 

The induced feasibility constraints are  generated as  earlier in Step 2 

with 

Fr+l = - ov , f r + l  = ovhl 

The optimality cuts  (approximation cuts) are  generated in Step 3 with 

The linear program tha t  generates  the ov and lrl" as (optimal) simplex 

multipliers of Phases I and I1 respectively, is given by 

find y E Rye such tha t  

@4 =h' - f ,  and 

qy = w 1  is minimized. 

Note t h a t  now the  "nonlinearity" is handled in a space of dimension rn2 

which is liable to  be much smaller than n l ,  and we should reap  all t h e  

advantages tha t  usually come from a reduction in the number  of non- 

l inear variables. 



All of these simplifications come from the fact tha t  when T is non- 

stochastic we can interpret the search for an optimal solution, as t he  

search for an optimal x * ,  "the certainty equivalent". I t  is easy t o  see 

tha t  knowing X'  would allow us t o  solve t he  original problem by simply 

solving 

(3.15) find z E RT such tha t  Az = b , 712 = X*, 

and  z = cz  is minimized . 

The sequence i f ,  v = I....{ generated by the  p recedng  algorithm can  be 

viewed a s  a sequence of tenders  ( to  be "bet" against t he  uncertainty 

represented by A ) .  This then suggests o ther  methods based on finding X *  

by considering the  best possible convex combination of t he  tenders  gen- 

erated so far; these algorithms based on generalized linear program- 

ming, see Nazareth and Wets, 1984, and Chapter 4 of this Volume. HOW- 

ever, this  approach does not appear t o  be very promising for t h e  general  

class of problems considered here,  not even when T is nonstochastic. 

Indeed, t h e  algorithm nrould proceed as  follows: 

Step 0. f i n d  a feasible zO E R:' such t h a t  AzO = b 

Set f' = z0 

Choose 2 , . . . , f ,  potential tenders ,  v 2 0. 

Step 1. Find (uv, rV, I J ~ )  the  (optimal) simplex multipliers associate with 

the  solution of the  l inear program: 

minimize c z  + x r = o  Al Q u)  
Az = b  :uv 

h - x[=oAl = O  :nV 

CLo A1 = 1 :29 

z r o , ~ ~  2 0  




































