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DYNAMICAL MODELS IN QUANTITATIVE GENETICS

Reinhard Bdrger
Institut flir Mathematik, A-1090 Wien, Strudlhofgasse 4, Austria

1. INTRODUCTION

The proposition of the theory of punctuated equilibria by Eldredge &
Gould (1972) and others initiated a rather controversial debate on macro-
evolutionary phenomena and on the way how to explain them. One of the major
points in this debate is the guestion whether the observed phylogenetic
patterns are caused by natural selection and hence are due to adaptation or
whether they are mainly due to physiological, developmental, architectural
and other constraints acting on the phenotype. If the latter holds true then
evolution cannot be viewed as a primarily adaptive process. Numerous contri-
butions have been given to this subject. Let us only mention articles by
Charlesworth, Lande & Slatkin (1982), Gould & Lewontin (1979), Maynard
Smith (1983), Mayr (1983) and Riedl (1977).

To be able to investigate problems of macroevolution on a more quanti-
tative and mathematical basis, it is necessary to have models that describe
the evolutionary dynamics of phenotypic characters under the action of the
various evolutionary and genetical mechanisms. Such a dynamical model has
been proposed by Lande (1976, 1979, 1982). It is based on gquantitative ge-
netic theory and incorporates the selective forces acting on the phenotype
and the pattern of variation and covariation of characters within the popu-
lation. Lande's models have received a good deal of attention and have been
used not only by himself (loc. cit, 1980, 1984) but by several authors to
treat various topics from evolutionary theory analytically (e.g. Felsenstein
1979, Kirkpatrick 1982, sSlatkin 1984, Wagner 1984 a,b). Other dynamical
models for the evolution of quantitative characters have been introduced by
Karlin (1979), Gimelfarb (1982) and others (see also Turelli 1984).

In a recent paper (Birger, 1984) I used Lande's model to investigate
the influence of genetic and phenotypic variance-covariance patterns for the
evolution of functionally coupled gquantitative characters.

In order to investigate the evolutionof functionally coupled characters,
I chose a fitness landscape that looked like a ridge. However, there is not
only a single ridge in this landscape, there is in fact a saddle with the
ridge and two hills adjacent to it. Evolution of a complex of functionally
coupled characters then corresponds to movinguphill along the ridge. In
order to make the analysis managable I assumed a particularly shaped ridge,
which (following Rechenberg,1973) has been called a corridor. The result of
a nonlinear analysis of the underlying dynamical system was that an unfa-
vourable phenotypic and/or genotypic variance-covariance structure may pre-
vent a population from moving uphill along the ridge, even if it starts at
or very close to it.



Hence there exist population genetic constraints (in the intrinsic
sense) restricting the directions of possible evolutionary change, although
from the physiological point of view evolution into these directions is
possible and even favourable. Moreover, it has been shown that in the corri-
dor (or along the ridge) there exsits an optimal variance-covariance structure
resulting in an optimal evolutionary rate. This adds to results of Rechen-
berg (1973) and Wagner (1984 a,b). It is the purpose of the present paper to
investigate whether results similar to that derived in Birger (1984) and
described above can also be obtained by using a different class of corridor
models.

2. THE MODEL

Let an infinite population with overlapping generations be given that
is either monoecious or dicecious with the same pattern of selection on both
seXes and no sexual dimorphism. To each individual we assign a vector

=(21,...,2n)t where Z;, 1=£1<n, is the value of the i-the character on
some scale of measurement and t denotes transposition. The joint distribu-
tion of phenotypic characters is assumed to be multivariate normal, with
mean z= (z,,...,z ) and covariance matrix P. This can often be arranged by
some 51mple scale transformations (Lande 1979, Falconer 1960). Moreover, P
is split into additive genetic and environmental components G and E. Assu-
ming that the vectors of additive genetic effects x and of environmental
effects e are also multivariate normal and mutually independent and supposing
that §_=§, we can write z = x+e, B=§+§ and 2_=>__E_ The density function is
given by

-n/2 1/2

- - 1 -1 - -
vy(z,z,P) = (2m) (det P) exp (-5 < (z-2),2-2>)
o n
where <X'E? = I v,wi denotes the usual inner product for vectors v,w in R.
i=1
Denoting Malthusian fitness of individuals with phenotype z by m(z), the
mean fitness of the population is

m(z,P) =/ m(z)y(z,z,P)dz (1)

where [ ... dz denotes integration over Rn.'The evolutionary dynamics of the
vector z is given by the following system of differential eguations:

= G+ (grad-m) (z,P) (2)
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N
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where gradz ,...,———)t (Lande 1982). A discrete analogon has been
- 9z an

derived by Lande (1976, 13979).

Lande (1982) has already shown that mean fitness mis always increasing,
i.e. é%m =m>0 and m = O if and only if grad m = O. This implies that a
population is always moving uphill in the fitness landscape (but not into
the direction of steepest ascent, unless G is the identity matrix) and



therefore Lande's model provides an adaptive topography for phenotypes si-
milar to Wright's (1932, 1969) adaptive topography for genotypes.

For investigating the evolution of functionally coupled phenotypic
traits we have to specify our fitness landscape and assume that the fitness
m(z) of an individual with phenotype z is of the form

1
m(z) = sz, [exp(—§ <§E,g>)—b]. (3)
t . . .
Here u = (22,...,zn) is a n-1 dimensional vector
(hence zt = (z,,u )), A denotes a positive definite matrix of dimension n-1

and s>0 and 0<b< 1 are constants. Thus we have directional selection along
the z,-axis and stabilizing selection perpendicular to it for positive values
of 2z In our adaptive landscape we have a saddle at the origin z=0 and a
ridge (with edge u=0 and increasing fitness for increasing values of zl>0)
and two hills (with increasing fitness in directions where z, + -= and

<Au,u> =) adjacent two it. These two hills are separated by a valley with
bottom u=0 and z, <0O. For the two-dimensional case the isoclines of the
fitness surface are shown in Fig. 1 for different values of b. To assume

that directional selection acts along the z -axis is no restriction, since
by applying a linear transformation T to the state space, the directi-

on of the ridge can be chosen arbltrarlly Instead of G and P one has to

take the matrices TGTt and TE>Tt. According to Rechenberg (1973) we shall
call this a corridor model as the phenotyplc states that have positive
fitness (given z, 20) lie within a "corridor" given by the formula

<Au,uw> 2 -21n b. Rechenberg (1973) and Wagner (1984 a,b) used a somewhat
related fitness landscape to investigate the existence of optimal variances
and maximal evolutionary rates within the corridor. Wagner was the first who
combined Rechenberg's theory with Lande's phenotypic model. In Bdrger (1984)
I investigated the evolutiocnary dynamics of a complex of functionally coupled
characters using the fitness functions

m(z) = sz, (a -<Au,w>) (4)
—_— 1 o) —_—— -

It is the purpose of the present note to investigate, how the results
obtained there depend on the kind of fitness describing stabilizing selection
along the ridge.

In order to deal with equation (2) we have to compute the population's
mean fitness m. To manage this we use the formula

n/2 -1/2

J exp(-% <§Y,Y>+-<y,g?)dz = (2m) (det B) .exp(% <B “w,w>

(where v,w in R" and B is nXn matrix) and obtain, through integration by
parts,

m(z,P) = sedet (I+ 5131)'1/2 [z,-p,, (p, 1+<\_IE,;_>>)—1<Yg,1:1>] .
1

1 - - 1 - -2 - (1a)
rexp(-3<Vu,w>+ 5(p; +<Vp,p>) ~ <Vp,w>) -sbz

1°
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Here P = y P = (p12,. ..,pln) (the vector of covariances of

2 P,

character 1 and characters i, i=22), 31 is the covariance matrix of
characters 2,...,n. Furthermore,

t
q q
_ 11 =1 _ -1 -1 _ 1 t _ _ -
Q= =P 21 - E} p pep and V = 9.1 21 (21+§_)
q Q1 11

1 -1 =11
9 =g+ hh

In the special case where character 1 is uncorrelated to the other cha=
racters, i.e. p=0, we obtain:

- - -1 - - - -
m(z,P) = s.det(£+z_u:1) /2.zl.exp(-% <\_h_1,\;1>) -sbz1 (1b)
with V = (B, s hh
P11 Py
If we consider only two characters, we obtain (with P= , and A= a)
- b b -
12 22
_ - -3/2,- - -2 -
m(z,P) = sa (zla—zzaplz) .exp(-azz/Za) —sbz1 (1c)

where o= 1+ap22 (and V=a/a). For the two dimensional case the isoclines of

the population's fitness landscape are shown in Fig. 1.

A,

m=0

Figure la
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Caption to Fig. 1: (la) and (lb) show the contourlines of the individual
fitness landscape according to formula (3) with b=0.4 in (la) and b=0.9
in (1b). s and a are chosen such that in both cases the width of the indi-
vidual's corridor is BI = 2v2 and the ascent is AI = 2. Hence the main diffe-
rence between these two parameter coices is the different selective disad-
vantage of individuals far away from the ridge.




Figure 1d

Figure le

Caption to Fig. 1 (continued): (1lc) and (1d) show the contourlines of the
populaticn's fitness landscape corresponding to Fig.(lb) (see formula (1lc)).
In (lc) the phenotypic variances and covariances are p11=p22=1 and p12=0,
in (1d) they are pi11=p22=1 and p42=0.75. (le) shows the contours of the
population’'s fitness landscape correspoending to (la) with pqq1=p2z2=1 and
p12=0.75. The dashed lines in (lc) - (le) indicate the boundary of the indi-
vidual's corridor, the bold lines that of the population's corridor.




3. ANALYSIS AND RESULTS.

For simplicity in the sequel we will only consider the two-dimensional
case, although most of the results may be derived for n-dimensions. But see
Birger (1985) for a more general treatment. From (lc) we obtain

3¥L = sa—l/z exp(—a2§/2a)-sb
321
- (5)
9m -3/2 - = =2 -2
— =-sa a(p12+-zlzz-zza plz/a)exp(—a22/2a).
9z
2
Thus (2) reads
2, =94, Bm/az1 + 945 3m/322
- - _ - _ (2a)
z, = 94, Bm/az1 * 9,5 3m/322

with aa/aEi given above.

As the additive genetic covariance matrix G is assumed to be positive
definite (and_hence non-singular), the equilibrium points of system (2) must
satisfy grad m=0. Together with (5) we obtain the following two equilibrium
points:

/2))/z2, 7. = -(-2a 1n(bal/?)/a) /2

(1+21n(ba1 5

(F 1) 2, = -pyy

(F 2) 21 L% )

1
|
N
N
1
|
N

It can be shown easily that both equilibrium points have one positive and
one negative eigenvalue and hence are saddle points. -

As the adaptive landscape for the population, as given by m, may
considerably deviate from the adaptive landscape for individuals, as given
by m, it is necessary to discern between an individual's corridor, defined
as the region {(zl,zz): z. 20 and z2< (21n b)/a}, and a population's corri-

1 2
dor, defined as {(E ,22): E 20 and 22< (—2a/a)ln bal/Z} T

1 1 2=
this is exactly the subregion of the right half plane where individual
fitness is positive and in the second case this is the subregion of the right
half plane where population fitness is positve, presupposed that the cha-
racters are uncorrelated. We denote by AI=s(l1-b), AP = s(a~1/2-p),

BI=2(-2(1ln b)/a)l/2 and BP=2((-2a/a)ln bal/z)l/2 resp. the ascent (along the
axis) of the individual's and population's corridor and the width of the
individual's and population's corridors. Note that AP is - up to the factor
g the evolutionary rate along the corridor axis if the characters are
uncorrelated.

n the first case



The first fact that should be noted is that a necessary and sufficient
condition for the existence of a population's corridor (i.e. AP and BP are

strictly positive) 1is that ba1/2< 1, or equivalently p22< (1-b2)/a.b2. Hence,
a population can only move uphill along the ridge in our landscape if there
is not too much variation in the character that is under stabilizing selecti-
on (i.e. Z.>0 close to the axis z_=0). The same phenomenon, namely the
existence &f an upper bound of adaptivley reascnable phenotypic variance for
the evolution of functionally coupled characters has already been observed in
Blirger (1984) for the fitness function defined in (4).

However, in the present case where stabilizing selection is assumed to
be Gaussian a new phenomenon arises. If b<exp(-a ln a1/2/ap ) <1, which
means that if the selective disadvantage of individuals being for away from
the corridor is weak, then the population's corridor becomes wider than the
individual's corridor. Furthermore, if p22< (1—b2e)/ab2e (e denotes Euler's

1/2 -1/2 . .
constant), or equivalently ba / <e / , then for p, ., >0 the fixed point
(F 1) lies in the left half plane and (F 2) in the right half plane, contra-
ry to a guadratically deviating fitness function such as (4) or to the case

of ba1/2>e—1/2. See also Fig. 1.
Now lets turn to the dynamics of system (2a). Throughout we shall

1/2

assume bao <1, i.e. there exists a population's corridor. If the two cha-
racters are genetically and phenotypically uncorrelated, so that g12=0 and

p12=0 then
a -2 .- = -3/2 I -2
— = = - - <
at 22 2z2z2 2sa a g,,2,2, exp ( a22/2a) <0
1/2

if z. 20. As ba <1 we have

1

z =g s(m-l/2

-2
- - >
1 11 exp ( a22/2a) b) 20

for E2SBP2/4. Hence the population's corridor is positively invariant and
each population starting within the corridor will converge to the axis and
evolve along it. This result can be proved for much more general fitness
functions, i.e. for functions of the form

m(z) = mo(zl)m1 (u)

with 3m°/3z >0, m' () = £(<Au,u>) and df/dx<0 (Birger 1985).

Next let us drop the assumption p,,=0 and assume p,.,~> 0O (if p, <O
symmetrical results are obtained). Thus the characters are still genetically
uncorrelated but exhibit a positive phenotypic correlation. This gives also
raise to a change in the adaptive landscape (see Fig. 1 and equ. (lc¢)) and
therefore the dynamical behaviocur of the population will change, although
the fitness landscape for individuals remains the same. In particular, in
order to be able to move uphill in the corridor it is not sufficient for a
population to start within the population's corridor, since there exists a
subregion from which no evolution in this direction is possible (see Fig. 2).
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Figures (2a) and (2b) show the trajectories of a population in the fitness
landscape with contours as in Fig. (1d), i.e. p44=p22=1, p12=0.75. The
vast majority of individuals in the population has positive fitness, as the
width of the individual's corridor is 2v2. In (2a) the genetic covariance
matrix is given by g11=9g22=0.25 and g42=0, in (2b) we have gq4 =g22=0.25
and g42=0.20. The dashed area is the subregion of the corridor from which
no evolution along the ridge can occur.
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Figures (2¢) and (2d4) show the trajectories of a population with parameters
P11 =p22= 1.5, p12=1.125, g14=g22=0.375 and g42=0 (resp. g12=0.30) in
(2¢) (resp. (2d)). Thus relative to Fig. (2a) and (2b) the covariance matri-
ces have been multiplied by a factor 1.5. Still about one half of the indi-
viduals has positive fitness. The subregiocn from which no evolution along
the ridge can occur has been considerably increased by this change in the
covariance matrices.
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Figure (2e) shows the trajectories of a population in the fitness landscape
with contours as in Fig. (le) with covariance matrices as in Fig. (2a). As
in this case individuals which are far away from the corridor have only a
slight selective disadvantage, nc constraints for evolving along the ridge
occur.

However, if the population is already sufficiently far uphill the ridge it
will evolve along it. We can show analytically that convergence occurs if the
population starts within the region :

- - - -2 2 2
. > < =
{(21,22). z, 2 Izll and z <z, BP /4}

. = R A 2
First we already know that z, 20 if 22$BP /4. Morecver, we have

N
]
[2®]
N
N
|

3/2

-2sa

- - - -2 -2
a g2222(p12+zlz2—22a plz/a) .exp(-az2/2a)

which is negativ if and only if
- =2 - =2

+ - Z0.

z1 5 p12 22(1 zza/a) 0

From this it follows immediately that the subregion of the corridor where

;.1 2 Ile is positively invariant. Moreover, the above relation holds if
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fp, . z.1
72> 12 2 |z§(a/a)-1|.

2 _
Izll

As we assume |Z_| £BPf the right hand side tends to zero if 21 tends to
infinity. Thus we have shown

4 Z2coirs BP2/4222

.
at 22 22C(2y),

with lim C(z,) >0, z, »=. Together with z, >0 for lEZIS BP2 this proves our
assertion. An analogous result has been proved for fitness given by equ. (4)
(Birger 1984). To obtain an analytical estimate for the subregion of the
corridor where no convergence along the ridge can occur seems to be rather
difficult. The only thing that is obvious is, that such a region exists
since dEt_ E§>O for 21<Z1 with 22=Zz and for 21<Zi with 22=Zé. Phase
portraits are given in Fig. 2.

of particular importance for the size of the region from which no evo-
lution along the corridor axis is possible, is the ratio of a (describing
the strength of stabilizing selection) and Py and p... If the individual's
fitness landscape is held constant, and p and p,, are multiplied by some
factor larger than 1, the population's corridor béComes narrower and the _
fixed point (F 1) shifts into direction of increasing z, (and decreasing lz,l).
Moreover, the rate of evolution Etalong the ridge decreases significantly
(see Fig. 2).

I1f part of the phenotypic covariance p is due to genetic covariance,
i.e. g,..#%0, it appears that it becomes more difficult to evolve along the
ridge {see Fig. 2). However we have no analytical estimates.

Finally we shall investigate a phenomenon that has been discovered by
Rechenberg (1973). Rechenberg assumed a fitness function of the form

V4

17 |zi|S(L i22

m(z) =
O, otherwise

and proved the existence of an optimal amount of variance (the covariance
was assumed to be zero and all variances to be equal) in the sense that
this variance leads to a maximal evolutionary rate. Rechenberg's model,
however, is based on optimization theory and not on population genetics.
Wagner (1984 a,b) investigated this model in the framework of quantitative
genetics on the basis of Lande's equations. He found that also in this
context optimal variances and maximal evolutionary rates exist, but only if
at least four characters are involved. For the fitness function (4) the same
holds already for two characters. Subsequently we shall investigate this
problem for the fitness function given by (3).

Instead of P and G we will consider hP and hG (where multiplication
by h is componentwise) and look whether there exists an hy such that 2, is
maximal. For simplicity let us assume 95 = 0, i=2,...,n. Denoting

v, = (hp, +a H7,

v = Ex(é,hg) and p(h) = det (I + h&gl) we obtain:

Dﬁ I

1
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3 . 3 Sm 3 3°m
— z, = — (hg ) =g + hg =
1 11 11 - 11 -
oh 3h 1 321 9h? 1
N -1/2 1 - - h p'(h) h = =
= g,,s (h) exp ( 2<y_hg,1_.1_>)( 3 o +§<y_hg1 Kh_,y_>) gllsb.
If we write
n-1
n-1 -1 k
p(h) = det(I+hAP ) = h det(h 'I+AP,) = I ah
- ——1 - -1 k=0 k

we see that a, is the (n-1-k)th coefficient of the characteristic polynomial
of APl' As AP, is positive definite, a, >0, k20, and in particular ao= 1.

-1
It follows that p(h) and p(h) 1/2 are monotonically increasing for h20.
Moreover, h-};((:)) increases monotonically (h20). To show this consider
d ,.p'(h) -2 2
h.—(h=———) = h h)h(hp'(h))' - (hp'(h =
dh(p(h)) p() “(p(h)h(hp'(h)) (hp'(h)) ™)
n-1 n-1 . n-1
= p(h)"2( 1 akhk . 3fandi-(z«k akhk)2) =
k= j=0 J k=0
n-1
-2 k+7 .
= p(h) I h Jaka.J(J-k) =
k,j=0 J
5 n-1 1 B
= p(h) Z h I a a,_ j(23-1) > 0.
1=0  j=1 ]

This shows that for _1-i=9

R 21/2 , _hp'(h) _ 1/2
TSI p(h) (1 5 5(h) bp (h) ).

has a unique zero ho if n>2 and b>0 and z, has a unique maximum. This is
qualitatively the same result as that for a fitness functionp of the form (4).
If b=0 then such a h only exists if n24, as 0<B - p-h) <n=1 apg

h p'(h) n-1 o 2 p() 2

= . This is the same as Wagner's (1984 a,b) result. It seems

lim 5. p(h) 2

hoe
to be probable that a negative fitness outside the corridor, considered by
Wagner, leads to the existence of an optimal evolutionary rate for n22. By
a continuity argument it can be inferred that maximal evolutionary rates
alsc exist near the corridor axis.

4, CONCLUSIONS.

The present analysis shows that the pattern of variation and covaria-
tion in a population plays an important role for the evolution of functio-
nally coupled characters in an adaptive landscape with multiple peaks.
There are three main findings which are in best accordance with the results
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derived in Bidrger (1984).

(i) There exists an upper bound for the adaptively reasonable amount of
phenotypic variance of characters which are under stabilizing selection. If
this bound is exceeded no evolution along the ridge is possible, although
physiologically it is favourable. This bound depends on the shape and width
of the corridor and on the fact that we have multiple peaks.

(ii) An 'unfavourable' covariance pattern yields constraints on the
possible directions of evolutionary change. We proved that if the corridor
axis is collinear with one of the axis of the state space then each popula-
tion with zero phenotypic and genetic covariance starting within the corridor
converges to the axis and evolves along it. Hence the population will deve-
lop the selectively favoured complex of functionally coupled characters. If
the corridor is in arbitrary position the condition of zero phenotypic (resp.
genetic) covariance has to be replaced by the condition that one eigenvector
of the matrix P (resp. G) points into direction of the corridor axis. If an
deviation of P "~ and/or G " from this ‘optimal' form occurs, there is a subre-
gion of the corridor from which no evolution along the ridge is possible.
Hence the complex of functionally coupled characters cannot evolve. For one
and the same individual's fitness landscape this subregion increases in size
if the deviation of the phenotypic and/or genetic covariances from their
optimal values increases or if the phenotypic variances of the characters
under stabilizing selection increase (see also (i)). In the latter case also
the width of the corridor decreases. On the other hand if P and G as well as
the width of the individual's corridor and the ascent along the ridge are
held constant, the size of this subregion strongly depends (in the obvious
way) on the parameter b, which measures the selectivedisadvantage of indi-
viduals being for away of the corridor.

(iii) There exists an optimal amount of overall variability resulting
in a maximal evolutionary rate. To be precise, there is a positive number
h such that a population with covariance matrix h P evolves at an higher
rate along the ridge than any population with covariance matrix hP, h# hj

To sumarize, it has been shown that for the evolution of functlonally
coupled quantitative traits in a fitness landscape with multiple peaks there
exists an optimal variance-covariance pattern of a population in a twofold
sense. Any deviation from this pattern leads both to a restriction on the
set of initial conditions enabling the population to adapt the selectively
favoured configuration of characters as well as to a decrease in the rate
adaptation. The constraints arising in this manner, namely the inability of
a population to evelve into directions which are physioclogically possilbe
and even favourable, are population genetic constraints in the intrinsic
sense as they are caused by the genetic structure of populations.
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for typing the manuscript.
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