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PREFACE

In this paper, the author discusses solution algorithms
for a particular form of two-stage stochastic linear programs
with recourse. The algorithms considered are based upon the
generalized linear programming method of Wolfe.

The author first gives an alternative formulation of the
original problem and uses this to examine the relation between
tenders and certainty equivalents. He then considers problems
with simple recourse, discussing algorithms for two cases: (a)
when the distribution is discrete and probabilities are known
explicitly; (b) when the probability distribution is other than
discrete or when it is only known implicitly through some
simulation model. The latter case is especially useful because
it makes possible the transition to general recourse. Some
possible solution strategies based upon generalized programming
for general recourse problems are then discussed.
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Project within the System and Decision Sciences Program.
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ALGORITHMS BASED UPON GENERALIZED
LINEAR PROGRAMMING FOR STOCHASTIC
PROGRAMS WITH RECOURSE

J.L. Nazareth

1. INTRODUCTION

We are concerned here with two-stage stochastic linear

programs (SLP) with recourse, of the form
minimize c¢x + 2(X)

subject to

Ax = b

x >0 (1.1a)
where

2(x) = E{Q(x,h(w))} (1.1b)
and

Q(x,h(w)) = inf {gy|Wy = h(w) - Tx} (1.1¢)

y>0

In the above, only the right-hand-side h(w), is a random vector
defined on a probability space whose events are denoted by w.
E denotes expectation. T denotes the fixed m, X Ny technology

matrix and W the fixed m2xn2 recourse matrix. A is an m, xXxn

1 1
matrix defining the constraints, and c¢,b,q,x,y are vectors of
appropriate dimension. We shall be concerned with problems of

the form (1.%1a-c) with complete recourse i.e. with constraints



which satisfy

pos W = {t|t = Wy, y >0} =R 2 . (1.14)

Since T is fixed, we can define the (non-stochastic) tender

X = Tx and write (1.1a-c) in the equivalent form:
minimize cx + Y ()

subject to

Ax = b
T™x - x =0 (1.2a)
x >0
where
¥(x) = E{v(x,h(w))} (1.2b)
and
p(x,h(w)) = inf Jgy|wy = h(w) - ¥ (1.2¢)

y>0

We show first that an equivalent form to (1.2a) is

minimize c¢cx + qy + Y(x)

subject to

(1.3)



The family of algorithms that we are concerned with here
were introduced in Nazareth and Wets, 1983, and are based upon
the generalized linear programming (GLP) method of Wolfe (see
Dantzig, 1963, Shapiro, 1979). They successively inner linearize
¥(x) in (1.3) and solve a sequence of master linear programming

problems of the form

K

minimize cx + gy + ) AkW(xk)
k=1
subject to
Ax = b (1.4)
.k
T + Wy - 2 Akx =0
k=1
]
A, = 1
k=1 K
x,y,)\k > 0

The tenders x1,...,xK are assumed to have been previously

generated and at the current cycle of the algorithm a new tender

\
XK+1 is introduced by solving the (Lagrangian) subproblem.

minimize V¥(yx) + nKx (1.5)
XX

where nK are the dual multipliers associated with the constraints
K
TX - ) Akxk = 0 in the optimal solution of (1.4). XK+1 the
k=1

optimal solution®* of (1.5), is an improving tender provided that

W(XK+1 K 0, where eK is the optimal dual multiplier

K
associated with the constraint ) A, = 1. When XK+1 is intro-
k=1

duced into the master problem (1.4), such a tender will lead to

) + nKx - 0

*
In practice (1.4) does not have to be pushed to optimality at

each iteration, but this is a question of strategy, which we
discuss later.




a reduction in the objective value (barring degeneracy, of

course.) Since the projection of the set of vectors (x,y,X)
satisfying Ax = b, Tx + Wy - x = 0, x,y, > 0 onto the space

of the x vectors is:mmzby (1.1d), x can be assumed unrestricted

in (1.5). However, it is often convenient to confine y to some
compact set X defined by simple bounds, for reasons of computational
efficiency and to facilitate convergence arguments. Extensions

to include lines of recession in (1.4) and relax the restriction
(1.1d) will not be considered in this paper.

When the recourse is simple i.e., when W = [I,-I], an ap-
proach based upon generalized linear programming has been sug-
gested more than one in the literature, see, for example, Williams,
1966, Parikh, 1968. However, apart from special applications,
see Ziemba, 1972, it has not been pursued in any real compu-
tational way. For problems with general recourse it has appar-
ently not been tried at all. Moreover, it is important to recognize
that the GLP approach should be combined with a suitable problem
trans formation, for example, the one involved in going from (1.1a-c)
to (1.2a-c), in order to keep the degree of nonlinearity low.

This was not fully appreciated, at least from an algorithmic point
of view.

We turn now to the organization of our paper. 1In Section 2,
we consider the alternative formulation of the equivalent deter-
ministic form (1.2a), given by (1.3) and an interpretation of the
solution of the above algorithm (1.4) and (1.5). In particular,
we wish to see how tenders and certainty equivalents stand in re-
lation to one another. Next we consider problems with simple re-
course. We discuss algorithms for two cases: a) When the distribu-
tion is discrete and probabilities are known explicitely. Then
¥(x) is much more tractable. b) When the probability distribu-
tion is other than discrete or when it is only known implicitly
through some simulation model involving the random elements w.

Case b) above is especially useful because it enables us
to make the transition to general recourse, which is the topic
of Section 4. Here ¥(x) is usually difficult to compute, since
it involves minimization calculations and an integration. Our

aim in this section is to discuss some possible solution stra-



tegies based upon generalized programming. Finally, Section 5
contains some concluding remarks.

Henceforth in this paper when, for example, the text in-
cludes equations (1.1a), (1.1b), (1.1c), (1.1d) and we refer to

(1.1), we are making reference to all four equations.

2. EQUIVALENT FORMS AND AN INTERPRETATION OF THE SOLUTION

The notion of certainty equivalent of a SLP with recourse
is well known, see Wets, 1974. Here we wish to investigate the
tie between tenders and certainty equivalents, and with this in
mind we first consider an alternative form for (1.2). This also
turns out to be useful when formulating algorithms, as we shall
see later in Section 3.

Suppose, just for the purpose of discussion, that h(w) is
replaced by some deterministic quantity, for example its expected
value h. Then to solve this simplified optimization problem, we

need only solve a single stage program of the form:
minimize c¢x + Qqy

subject to

Ax = b

™ + Wy - h =20 (2.1)
x, y >0

Indeed, to test the feasibility and boundedness of the
original SLP (1.1) we should solve problems of this form for
suitably chosen ﬂ, as shown by Wets, 1972.

Upon comparing (2.1) and (1.2), it is tempting to include
the recourse matrix W explzeitly in the first stage i.e., to
consider the implications of having the recourse activities
available to the first stage. This would often be the case in
practice as pointed out by Williams, 1966. We would then have

an equivalent deterministic problem of the form:



minimize c¢cx + gy + ¥Y(x)

subject to
Ax = b (2.2)
T™x + Wy - x =0
x, vy >0

with ¥(x) defined by (1.2b-c). We now want to show that (1.2)

and (2.2) are egquivalent forms.

Let us demonstrate this for the case when h(w) is discretely

distributed. Suppose, therefore, that the distribution of h(w) is
defined by vectors

h ,h",...,h (2.3a)

with associated probabilities
t
DS SRS where ) £, = 1,5 >0 (2.3b)
k=1

Then (1.2) can be expressed as follows:

minimize c¢x + f1qy1 + fzqy2+...+ftqyt

subject to
Ax = b
1 o1
Tx + Wy = h (2.4)
Tx + Wy2 = h2
Tx + Wyt = ht

x, y} >0



and (2.2) can be expressed as

minimize cx + gy + f1qy1 + fzqy2+...+ftqyt

subject to

Ax = b

1 1

TX + Wy + Wy = h
(2.5)

Tx + Wy + Wy2 = h2

Tx + Wy + Wyt = ht

X, Y, yJ >0

Any feasible solution of (2.4) gives a feasible solution of (2.5),
t
simply by setting y = 0. Conversely, by writing gy = z fk(qy),
k=1

and regrouping terms in (2.5) we obtain:

minimize cx + f1q(y+y1) + fzq(y+yz)+---+ftq(y+yt)

subject to
Ax = b
1 1
Tx + W(y+y') = h (2.6)
Tx + W(y+y2) = h2
Tx + W(y+yt) = ht

and thus any feasible solution of (2.5) gives a feasible solution
to (2.4), with the same objective value. The two problems must

therefore be equivalent. We are led to the following theorem,



a generalization of a result for simple recourse given in Parikh
1968.
THEOREM 2.1: The SLP problem with recourse given by (1.2)

and (2.2) are equivalent, in the following sense:
(X,X) solves (1.2) = (x,0,%) solves (2.2)
(x,y,x) solves (2.2) 2 (X,x -Wy) solves (1.2)

We assume that (1.2) is solvable (bounded and solution attained);
it will imply that (2.2) is solvable, and vice-versa.

PROOF(1):

1. Suppose x€ R

n, _ n, _ m.,
+ r YER , XE€R " satisfy
TX + Wy = X

Let

Then for all h{(-)

v(x%h()) < y(X, h()) + aqy

| A

Proof of 1.:

We have to show that

inf (gqy|Wy = h(s) - x°)
y>0
< q§ + inf (qu|Wu = h(+) - i)
- u>0
= qy + inf (qulWwu = h(*) - x° - wy)
u>0
i 5 - 0
= infy,olalury) |W(u+y) = h(+) = x°)

(1)The formal proof of this proposition for an arbitrary distri-
bution, which now follows, is due to Roger Wets.



0
= inf__-(gy|Wy = h(+) -
in Y>Y(QY’ Y () X )

n
But that is now evident since y€R 2 and thus the condition

y > ; is more constraining than y > 0 (except if § = 0).0

2. Suppose x,y,x,xo are as in 1. Then

v(x° = X - Wy < ¥(X) + ay

Proof of 2.:

Use 1. + the fact: taking expectations is order preserving.p

3. Suppose X,y,X is any feasible solution of (2.2). Then
- - - - 0
cx + qy + ¥(x) > cx +9-0+ ¥(x")

where

Proof of 3.:

Follows from 2.; add cx on each side.p

From 3, it follows that in order to find the infimum in (2.2),

it suffices to restrict oneself to feasible solutions of (2.2)
that have y = 0. But then (2.2) is exactly (1.2). Thus if (x,%)
solves (1.2), the triple (2,0,&) solves (2.2). 1If (§,§,§) solves

(2.2) and z = cx + gy + ¥(x) then 3. implies that

N
(]

cX + g-0 + ¥(X + Wy)

since the triple (§,0,§-—w§) is also a feasible solution of (2.2).
And the pair (X,X -Wy) solves (1.2) since (X,x - Wy) solves (2.2)
when y(=0) is deleted from the problem. This completes the proof
of the theorem.pp

In the light of the above proposition, we can deal hence-
forth with (2.2). Suppose we now apply the GLP algorithm outlined
in Section 1 to (2.2). This will give Master LP problems of the

form:



K
minimize cx + qy + ) AkW(Xk)

k=1
subject to
Ax = b
K x
TX + Wy - ) A =0 (2.7)
k=1 ‘
1
A, =1
k=1 K
x,y,Ak > 0

Let the optimal solution of (2.7) be x*;y*,A*, and note that
no more than (m2+1) compoments of A* are non-zero. Without loss

of generality we can assume that these are the first (m2+1) com-
*

ponents A¥,...,A , and we define
m2+1

m2+1

k

*

x* = ArX

K (2.8)

)
k=1

x* is the certainty equivalent, since x* and y* are optimal for

the LP problem

minimize c¢x + gy

subject to
Ax = b
TX + Wy - x* = 0 (2.9)
x,y >0

Indeed we can go further. Suppose that we approximate the
distribution of h(w) by the following discrete distribution, whose

values are

m,+1
1 2 2 2.
X oX reeenX (2.10a)



with associated probabilities

* * *
TR0 (2.10b)

A

where the optimal solution 2' to (2.7) can be interpreted as de-

fining a probability distribution since

=1, A, >0 .

*
k
For the distribution (2.10), an equivalent form for (1.2) is

m_+1

1 * 2 *
+ A,ay +---+Am2+1qy

. . K3 *
minimize c¢cx + A1qy

subject to

Ax = b
1 .
Tx + Wy =X (2.11)
TX + Wy2 = Xz
. . m,+1 :m +1
TX + Wy 2 = X 2
x,y:J >0

For any x > 0 satisfying Ax = b, in particular for x*, we
know that (2.11) has a feasible solution for problems with rela-

tively complete recourse. Let y*1,...,y*™2*]

be the corresponding
components of the optimal solution of (2.11). The using Jensen's
Inequality, namely EF(x,£) < F(x,Ef) we can deduce from the optimal

solutions to (2.11) and (2.9) that
m2+1
! Aay*k< qy* (2.12)
k=1

Now in (2.11), multiply the row involving ¥ by A; and sum.
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This leads to
2' *
Tx + T OArE]- x* =0 (2.13)

When
m2+1

k=1

we have (x,y) feasible for (2.9), and thus any feasible solution
of (2.11) leads to a feasible solution of (2.9). This fact com-
bined with (2.12) implies that (2.9) and (2.11) are equivalent,
and we have proved the following theorem which gives an interpre-
tation of the optimal solution of (2.7):

THEOREM 2.2: Suppose that the nonzero components in the
*

optimal solution of (2.7) are given by A*,...,Am +1 with associated
2

m,+1
tenders x1,...,x 'where, without loss of generality, we have

assumed these to be the first (m2+1) components. Then the problem
(1.2) is equivalent to the associated discretized problem, obtained

by replacing the distribution of h(w) by the distribution (2.10).

3. ALGORITHMS FOR SLP PROBLEMS WITH SIMPLE RECOURSE

3.1 Discrete Distributions
For simple recourse, the recourse problem (1.2b) takes the

form

+

YOh(a) =, inf_ 3q*y*+q‘y'|[1,-n(§-)= h(w - x}
Yy 20,y >0 .

B (3.1)

Let g = q+-+q- > 0. Assume also that h(w) has a discrete distri-

bution, say with the possible values

hi1’hiz""’hini where hil < hi,1+1 (3.2a)
with associated probabilities
f f 8 (3.2b)

i2’*"°*’"in,

i1’
i



and let
h; = E{hi(-)}

Then ¥(yx) is given by

M2
i) = 1 ¥, (xg) (3.3a)
i=1
where
‘Pi(xi) = max (silxi + eil) (3.3b)
1=0,...,n,;
o' 1
and with the convention § =0
t=1
: +
i1 =(tz1fit) 93 - 93, 0 <1 <y (3.4a)
. 1
ej; -~ 9373 T ql( Z Pitflﬁ), 0 <1c<n, (3.4b)

For a proof see Wets, 1983b. Note also that Si1 form an increasing
sequence with

-q; £8;74q; + 0<1<n, (3.5)

and €4 form a non-increasing sequence.

3.1.1 Algorithmic Details. Let us now look at the main ingre-
diants of an algorithm based upon generalized LP for solving the
above problem.(1)
1. Computing the Objective Fumctions: Y(x) is easily computed
from (3.3) and (3.4). The objective function cx + ¥(x) and it is
useful to explicitly introduce a scale factor p > 0, and define
the objective to be cx + p¥(x). This is simply a device for para-

meterizing the objective function of the recourse problem.

(1)The algorithm of this section 3.1.1 is quite similar to the
one given in unpublished notes by Parikh, 1968.



- 14 -

2. Initialization: Motivated by the results of Section 2, in
particular Theorem 2.1, we initially solve the problem

minimize c¢x + pq+y+ + pq y + pA1W(x1)

subject to
Ax = b
+ -
TXx + Iy - Iy = XA;x =0 (3.6)
A1 =1
x,y+,y- > 0
where
1__
x = h = E{h(-)}
This is, of course, equivalent to (2.1), since x1 = 1 and

pX1W(ﬁ) is just a constant term, but we prefer (3.6) because it
is of the same form as the master program below. From Wets, 1972,
we see that successfully solving (3.6) immediately implies feasi-

bility and boundedness of the original problem.

3. Solving the Master Program: This has the form
K
minimize cx + pq y  + pqgy + ) Aka(xk)
k=1

subject to

OK: Ax = b
K
e Tx o+ Iy - Iy - ¥ kak =0
k=1
. % (3.7)
B s A = 1
k=1 X



Further initial tenders, other than X1= h could be introduced
here. Let oK,wK,eK denote the optimal multipliers of (3.7).
Then the components of nK satisfy
+ -
-q; < - n? < gy . (3.8)

4. Solution of the (Lagrangian) Subproblem: This is given by

minimize VY(x) + nKx (3.9)
XX

m
Let us take X = R 2. Since ¥(x) is separable, we must solve the

following for i = 1,2,...,m2

mlnlmlﬁe Wi(xi) *OTIXy (3.10)
X;CR

and since Wi(xi) is given by (3.3b), we are dealing in (3.10)
with the unconstrained minimization of a piecewise-linear function,
and this is easily done.

The optimal solution x§+1 satisfies

- n?g:awi(x§+1) (3.11)

Now from (3.4a) we know that
+ -
- q; < 9¥ (xy) < gy (3.12)

for an . in the support of the distribution of h,(+). It follows
Y Xji i

K+1

from (3.8), (3.11) and (3.12) that Xi can be found such that

K+1
hig < x5 = hiki (3.13)

where hil are defined by (3.2a).

5. Adding and Deleting Tenders: A tender XK+1 is improving for
(3.9) provided that

v (x KTy o+ 2B L 6K e (3.14)



If no such tender can be found, then the current solution is
optimal. Note, in particular, that the subproblem does not
have to be pushed to optimality. Furthermore, several improv-
ing tenders, each satisfying (3.14), could be deduced from one
call to the subproblem.

We have not investigated in any detail the question of
dropping columns corresponding to tenders from (3.7) when they
become out-of-date. In implementations of the related Dantzig-
Wolfe decomposition algorithm, see for example Ho, 1974, it is
common to drop columns from (3.7), when they have not played a
role in the optimal solution for some time and the same strategy
could obviously be implemented here. The question is discussed
further in Nazareth and Wets, 1983. Much of the theory on dropp-
ing cutting planes is also applicable, see, for example, Eaves
and Zangwill, 1971,

3.1.2 Ezperimental Implementation and Test Example: We have
implemented the above algorithm in an experimental code. Matrices
are stored as 2-dimensional arrays and sparsity is not taken into
account, so that it can only handle relatively small problems.
The master program is solved using the Harwell LP code LAO1BD and
the subproblems (3.10) are solved by simply finding where sil-+n§
changes sign from negative to positive. A single optimal tender
is introduced at each iteration, and all tenders are retained in
(3.7). The code was written in Fortran for the vax 11/780 and
validated using the test problems and solutions of Kallberg and
Rusy, 1976 and Cleef, 1981.

For an illustrative example, consider the following product-
mix problem due to Jim Ho. (Though only a small and highly sim-
plified SLP problem, its full scale version comes from a real life
application). The problem involves two products and three ingre-
dients. The variables Xjr1Y;,2; are the amounts of ingredients
1 and 2. The demand for each product is a random variable with
known probability distribution. The problem can be summarized as

follows:

minimize x, + 2y1 + 3z1 + x2 + 2y2 + 3z, + ¥(x)
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subject to

matrix

Fat/Protein in Product 1:

Fat/Protein in Product 2:

2
Amt. of Ingredient 1: X, + X,
Amt. of I dient 2:
of Ingredien Y, +y,
. of Product 1: x, ¢+ Y, + z, = X4

. of Product 2:

*3x, + -4y1 + -2z

| v

3.3

4.0

| v

15.

I A

I A

12.

(3.15)

X.,¥.,Z2. > 0
iV 2

1

The penalties for under and over production are 2.0 and 1.0 units

respectively and the probability distribution on demand h(w) is

as follows:

product 1 levels 8 10 12
probs .25 .5 .25

product 2 levels 15 18 20
probs .2 .4 .4

The recourse function ¥(x) is defined by (3.1) where q+ = (2.0,2.0)

and q- =

(1.0,1.0).
The following table summarizes the progress of the algorithm
Iteration First period cost Total cost
cx cx + ¥ (x)
1 39. 46.06
2 39. 44.75
3 37. 43.575
4 35.9 43,4727
5 35.5 43.4625 optimal
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Initial Solution: x

"
o
~
i
-—
I
.
~
N
-—
"
o
4
~
L]
N
H
vo
.
~

1
Yy, = 8. , z, = 0.

L {10
Initial Tender: (18.2)

Final Solution: Xy = 8. , Y4 2.25, zy = 0. , X, = 7. ,

Yy, = 8. , z, = 0o .
\ 10 12y _ [10.25
Final Tender: 0.875 (15) + 0.125 (15) = ( 15 )

An implementation of the algorithm of Section 3.1.1 which is
designed to solve reasonably large and sparse SLP problems with
simple recourse is given in Nazareth and Wets, 1984. Such prob-
lems might typically arise when a given linear program is ex-
tended into the domain of SLP with simple recourse by allowing
some of its right-hand-side elements to be random variables with
known probability distribution; if the SLP arose in this way, the
row of the original LP matrix corresponding to stochastic rhs
elements would then define the T matrix. These considerations
have influenced our design of standardized input formats for SLP
problems with recourse, in which a "core" file defining elements
of A,T,c,b, bounds and ranges on variables is specified in standard
MPS format, and a "stochastics” file identifying which rows cor-
respond to the T matrix, and defining distributions and recourse
costs is specified in an MPS-1ike format. The implementation is
based on the MINOS code of Murtagh and Saunders, 1978.

3.2 When distribution of h(w) is other than discrete, or only

known implicitly

In Section 3.1, the discrete distribution of h(w) was known
explicitly and this in turn led to the explicit form ¥(x) given
by (3.3) and (3.4). When the distribution of h(w) is not discrete,
then ¥(x) is not polyhedral and may be difficult to obtain expli-
citly. (In some cases it will still however, be possible to ob-
tain ¥(x) quite accurately using numerical integration, in partic-
ular one dimensional integration routines when ¥ (x) is separable).
Even when h(w) has a discrete distribution, this may only be known

implicitly, for example, through a simulation model involving the
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(explicitly) known distributions of the random variables w.
When interrogated, this model would produce different observa-
tions of h(w) distributed according to its joint probability
distribution, but the distribution itself is not explicitly
available.

In this section we wish to consider modifications to the
algorithm of Section 3.1.1 when the distribution function of
h(w) is available in a form that provides samples and when
estimates of ¥(x) are obtained from a finite set of such samples.
The main modifications involve items 1 and 4, with items 2,3 and

5 remaining unchanged, and they are as follows:

1' Computing ¥(x): Suppose the distribution is sampled S times,
giving observations h1,h2,...,hs. Then a crude estimate of ¥(y)

is
S
By = % Y vE(x,n%) (3.16a)
k=1
where
wE(X, hk) = ) qI(ht-xi) -9 q;(ht-xi) (3.16b)
. k . k
is (hi-xi)zO i: (hi-xi) <0

Estimates of the subgradient = (x) can also be obtained by

+ k
-q; if (hf-x;) > O
Exn®y <3 7L Lt (3.17a)
+q] if (hex) <0
i) = L % 72 (x,h¥) (3.17b)
itxh =g LTy .

4' Solving the (Lagrangian) subproblem: When minimizing (3.9)
with ¥(x) being obtained by (3.16) above, we are dealing with a
non-smooth unconstrained function with a fixed level of noise
(for fixed sample size). 1In principle we would needkto use
methods suggested, for example, by Polyak, 1978 and others.

In practice, however, it is possible to employ heuristic methods
based upon techniques for smooth problems with good results,

see Lemarechal, 1982.
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3.2.2 Results of some experimentation. We modified the ex-
perimental code of section 3.2.2 along the above lines. Using
a random number generator which produced pseudo/random numbers
r, 0 <r <1, we simulate sampling from the discrete distribu-
tion (3.2), by generating a sample, say hk as follows:

t+1

hy=h;, if 121 £i0>1 2> £,9

et

1=1

¥(x) was obtained by (3.16) with a fixed sample size S. Follow-
ing Lemarechal, 1982, to solve the subproblem (3.9) we employed
the VA13AD Harwell code based on the BFGS update, with subgradient
estimates (3.17) used in place of the gradient.

Results are summarized in the following table: With sample
size 300 for estimates of ¥Y(x) introduced into the master, and
sample size 100 for estimates of ¥(x) and its subgradient used
in the unconstrained minimization step, the progress of the

algorithm during 8 iterations was as follows:

Iteration First period cost Total (estimated) cost
cx cx + ¥(x)

1 39. 44 .17

2 38.14 44.86

3 39. 44.46

4 35.27 43.84

5 37.14 43.53

6 36.12 43.33

7 35.76 42.93

8 36.08 42.928 optimal
Initial Solution: x, = 6., yq = 4. , z, = 0.1, X, = 9. ,

Y2 - 8. Y 2 Zz = 0.
L. 10
Initial Tender: 2

Final Solution: X, = 7.62, yq = 2.54, zy = 0. , Xy = 7.38,
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. 10.02 11.91) _ [(10.14
Final Tender: 0.927 (15.25) + 0.073 (17.04) = (15.38)

There are obviously many different strategies that could be used
here e.g. progressively increase sample size, and refinement of

the estimation of WE(x).

4. GENERAL RECOURSE

In (1.2c), ¥{x,h(w)) is now given by the solution of an LP
problem defined by W. Since the computation of ¥(x) by (1.2b)
involves a multidimensional integration over y(x,h(w)) it is,
in general a function that is difficult to compute.

As in Section 3, we distinguish two cases a) when ¥(x) and
possibly a subgradient of ¥(x) can be computed accurately, in
particular, when the distribution of h(w) is defined by a set of
scenarios, each having a known probability. b) when ¥(x) and ele-
ments of 3Y¥(x) must be approximated in some way. Case b) is much
more common, but it pays to dwell on case a), because it gives
a lot of insight into methods of solution.

Our aim in this section is to give an overview of some ap-
proaches to solving (1.2) based upon generalized linear programm-

ing, and not to give specific algorithms.

4.1 Scenarios with known probabilities

Suppose h1,...,ht are a given set of scenarios with associ-

ated probabilities f1,...,f Then as noted in Section 2, (1.1)

£
can be put into the equivalent LP form.

minimize c¢x + gy + f1qy1+...+ftqyt

subject to

Ax = b
TX + Wy - ¥ =0 (4.1)

X + Wy = n'

vyt = nt
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Note that even in the above LP formulation it 1s worthwhile
to make the problem transformation involving x, since otherwise
Tx would repeat itself in every row involving hi. (4.1) is a
much more sparse representation than the equivalent LP in which
X is not present. If there are relatively few scenarios, it would
be practical to solve (4.1) directly. What is to be gained by a
method based on GLP even in this context?

In the GLP approach, solving (1.5) (and in the process com-
puting the objective row coefficients of (1.4)) can be the most tax-
ing part of the computation. Under our present assumptions, this

subproblem, namely

minimize &(x) = ¥(x) + % (4.2)
YER 2

can be expressed as:

minimize nKx + f1qY1+---+ftht

subject to

X + Wy = h

: . : (4.3)
X + wy® = n°

y? >0

Note that ¢(x) is polyhedral. Consider the following two ways
of solving (4.2):
a) Use the revisedsimplex method to solve the equivalent

LP problem (4.3) and take advantage of its very special
structure. ©Note, in particular, that W occurs in each
row but in different variables. This makes it likely
that a feasible starting basis B can be found in va-
riables y1,...,yt which is square-block diagonal with
many sub-matrices on the diagonal repeating themselves.

FTRAN and BTRAN operations can be done very efficiently
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with such a basis matrix, and subsequent iterations
to find an optimal solution can be based on the Schur
Complement Update, see Bisshop and Meeraus, 1977, and
Gill et al., 1982, which retains the advantage of B.

b) Solve (4.2) using a minimization routine for non-smooth
functions. Note, in particular, that the dimension of
this problem is determined by the number of rows in
the technology matrix T and this will often be small,
even when the number t of realizations of the right-
hand-side is large. An evaluation of ¢(x) and its
subgradient, say at the point i, which will normally
be required at each iteration of the minimizer, involves

the solution of the following separable problem:

minimize f1qy1+...+f1qyt
subject to

W = h =¥ (4.4)

yl >0

and various techniques that go under the heading of
bunching and sifting, see Wets, 1983a, can now be _
profitably employed to substantially speedup the solu-
tion of (4.4). It is precisely these techniques, coupled
with the use of the dual simplex method which give the
L-shaped method for SLP, (see Birge, 1982), a substantial
edge over straight LP applied to (4.1). The same would
hold true for our method.

When t is large* we would not want to solve (1.4) unless
a Schur Complement Update approach was attempted. Even then
there might be difficulties, since n, could be large and

*
Suppose T had 10 rows, and the components hi(w) were independ-
ently distributed, each with 3 possible levels. Then t = 310.
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consequently many columns of (;) could play a role in the optimal
basis. 1In contrast, approaches based upon a) and b) above would
still be viable. We have, for purposes of discussion, left yx un-
constrained, and minimized ¢(x) in (4.2). In practice, there are
three important points to note. First, not all elements of h{w)
are necessarily stochastic. 1In this case the levels of the cor-
responding components of x can be fized in the solution of (4.3)

as discussed in a) above, and in the solution of (4.4) as discussed
in b). This reduces the dimensionality further. Recalling also the
discussion after equation (1.5), we could restrict y to the support
of the distribution. This means we could often work with bound

constrained problems of the form

minimize Y¥{x} + WKX

subject to

l1<x<u (4.5)

with 1i = uy for some components. As an extreme case suppose
only one element of h(w) in the recourse problem was stochastic;
then (4.5) is, in effect, a unidimensional problem. The second
point to note is that (4.2) does not have to be pushed to opti-
mality. All we really need is a solution XK+1 which satisfies

v (KT + 2K T LK ¢ o where 68X is the optimal dual multiplier
on the convexity row of the master (1.3). This can easily be
incorporated into the methods discussed above for solving the
subproblem. Thirdly, it is likely that a good set of 7nitial
tenders can be specified, and this will again considerably speed

up the convergence of the algorithm.

4.2 ¥ (x) must be approximated

One approach is to use sampling and couple this with use of
the stochastic quasi-gradient method (see Ermoliev, 1983) to
solve the subproblem. Another approach is to proceed by re-
peated apporximation of the distribution of h(w) and to compute
bounds on ¥{x). Some preliminary suggestions are given in Birge,
1983. An important question is how to satisfactorily integrate
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the approximation strategy and the generalized programming al-
gorithm, and the interpretation given in Theorem 2.2 may prove
useful in this regard. We defer further discussion of this to

a later date.

5. CONCLUSIONS

The methods introduced in this paper for solving SLP problems
with recourse, involve the problem transformation (1.2), combined
with the use of generalized linear programming. The problem
transformation restricts the degree of nonlinearity to M, the
number of rows of T and this, of course, enhances the efficiency
of the GLP method. The problem transformation (1.2) is useful
in other contexts. We have seen this already in (4.1) and the
subsequent discussion. We believe it could also be usefully
employed within the L-shaped method, see Van Slyke and Wets,

1969 and Birge, 1982, since each cut introduced would have at
most m, elements rather than n,, the dimension of x. For yet
another example of such transformations, see Nazareth, 1983.

The approach discussed here could also be used to devise
algorithms for solving a wider class of problems than (1.1).

For example, cx, Ax - b = 0 and Tx could be replaced by nonlinear

functions c(x), g(x) < 0 and T(x) and a nonlinear programming

method could then be used to solve the associated master. Also
if T were stochastic we could apply GLP to {(1.1), but now the

degree of nonlinearity would be n,. In practice only a few
columns of T are normally stochastic. 1In this case, we could
introduce a problem transformation TyXq-Xq = 0 where T1 repre-
sents the nonstochastic columns of T and Xq0 the corresponding
x-variables. Then GLP could be applied to a transformed problem
whose degree of nonlinearity is only (number of stochastic columns
of T) + (number of rows of T). Both these extensions deserve

further exploration.
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