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Attempts to find out relations between different criteria of optimal- 
ity have a long history descending to the fifties (Kiefer, 1958; Stone, 
1958). This paper mainly deals with analysis of relations between most 
widespread criteria used in estimation problems and some criteria for 
discriminating experiments which belong to T-criteria family (Atkinson 
and Fedorov, 1974). 
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DUALlTY OF 0FTIMA.L DESIGNS F'OR MODEL DISCRIMINATING 
AND PARAMETER EZXMATION PROBLEMS 

V. Fedorov and V. Khaborov 

1. INTRODUCTION 

The main object of this paper is the optimal designs for experiments 

which can be described by linear regression models: 

vij = l ) ; ~  (zi) + eij = I) (2. g l )  + eij. (1) 

Vector zi describes the conditions which the i - th  set of observations are 

- - n 
made under (j = l,ni, i = l ,n ,  C ni = N) and the value of its com- 

a =l 

ponents can be chosen (controlled) by an experimenter: zi E X  c R~ 

where X  is a compact. Components of the vector 19 E R are unknown 

parameters and the subscript " t "  points out their true values. Com- 

ponents of vector f (zi) are given basic functions, which are continuous 

on the compact X. 



The errors  E ~ ,  are assumed to be random, identically independently 

distributed with zero mean and finite variance which, without losing gen- 

erality, can be chosen equal to 1. These assumptions on errors are  

sufficient in  the  case when the estimation problem is under considera- 

tion, but for discriminating experiments the normality of their distribu- 

tion will be assumed in what follows below. Some more general situa- 

tions can be considered similarly to (Fedorov, 1980; Denisov, Fedorov. 

and Khaborov. 1981). 

The set  of values 

is a design of an experiment. Fractions pi can be considered as  meas- 

ures  prescribed to points zi and variations of these measures  must  be 

proportional to N - I  in experimental practice. 

To deal with discrete measures in optimization problems, one should 

apply t o  very complicated mathematical technique. The problem essen- 

tially can be simplified if the discreteness is neglected and any proba- 

bilistic measure ((dz) on X is considered as some experimental design. 

Corresponding designs are  called approximate or continuous. In this 

paper, they will be referred as "designs". 

For a comparatively large N, it is not a problem t o  construct an  

appropriate discrete approximation of any measure [(dz) especially if 

one takes into account tha t  almost for all widely used criteria of optimal- 

ity, there exist optimal designs with finite number of supporting points 

(points of concentration of measure ( ( d z ) ;  see for instance, Fedorov. 



1972; and  section 3 of this paper). Formally, the construction of optimal 

designs can be considered as  an  optimization problem in the  space of 

probabilistic measures: 

( *  = Arg inf +(() 
C 

where the  optirnality criterion + is defined by objectives of a n  experi- 

men te r  and is usually a convex function of (. 

In the parameter  estimation problem, the  dependence of + from ( 

can be expressed through elements of Fisher's information matrix: 

+(O = +[M(OI*  

where 

This matrix in the  regular case is inverse to the normalized dispersion 

(variance-covariance) matrix: 

$ is the (best linear unbiased) estimator of 19. In the case of discrirninat- 

ing (or more accurately, model testing) experiments, the s t ruc tu re  of .k 

is slightly more complicated For instance, when there a r e  two rival 

models: 

the  design problem can be described by the following optimization p r o b  

lem ( ~ t k i n s o n  and Fedorov, 1975). 

I' = ~ r g  sup inf j [qI (z  .JI) - ~ ~ b . f P 2 ) 1 ~ # ~ ) .  
€ X 

eeCoe 



Very oFten some nondegenerate regression Function q(d,z) is compared 

with zero hypothesis and in this case,  (3)  transforms in the more simple 

problem 

(' = Arg sup 9((), 
C 

where 

which will be mainly considered in the following sections. 

2. EQUlVALJ3NCY OF DFFZREXT DESIGN CRImRIA 

In this section, t he  equivalency between some criteria correspond- 

ing to model testing experiments and experiments oriented to  parameter  

estimation will be analyzed. The majority of results a r e  based on the 

well-known results from the theory of extrema of quadratic forms. 

1. Let us s tar t  with t he  most evident and  simple case when an 

experimenter is interested in some linear combination c T~ of unknown 

parameters. For interpolation or extrapolation problem c = f (z,), 

where z, is the  point of interest.  Then if he wants t o  estimate cT.9 the 

criterion 

*(#) = c T~'(#)c. (5) 

where "-" means pseudo-inverse matrix, can be used. If the significance 

of c T291 is tested, then 

It is easy to check out  tha t  in (6), instead of 1, any positive constant can 



be taken without influence of an optimal design if q ( z , d )  depends 

linearly of d. The similar fact will take place For the  criteria considered 

below and it will be used without any comments.  

I t  is natural to suggest tha t  

for any pseudo-inverse matrix.  Of course, if (7) takes place, then For any 

optimal design [ *  (very often the  solution of (2) is not unique), 

c T ~ - ( c * ) ~  < m, or in another  words, we assume t h a t  c Td is estimable in 

the experiments defined by c*. I t  will be useful t o  note tha t  the neces- 

sary and suEcient  condition of the estimability of c T d  is the  following 

equality (see for instance, Rao, 1973): 

c T(~-!d'(c)M(()) = 0 

for any pseudo-inverse matrix. The designs satisfying t o  (8) will be called 

regular. 

Consider now criterion (6) more detailly. Due to  (Z), one has 

and (6) transforms to  

@(c) = inf dTh!(<)d 
(c rd)Zz 1 

I t  is obvious tha t  all optimal designs [ *  for (9) coincide with the optimal 

designs for of the  more simple problem 

inf d T ~ ( [ ) $  
c rd=l 

Taking into account the condition (8) and  using t h e  standard Lagrangian 



technique, one can get  

inf f l T J f ( [ ) $  = c T J f - ( t ) c ,  
c Td=l 

with 

From the last equation, i t  immediately follows that regular optimal 

designs (in other words, the solutions of ( 2 ) )  are the same both for cri- 

teria ( 5 )  and (6). In this sense these criteria are equivalent (compare 

with Kiefer's equivalency theorem, Fedorov, 1972). The equivalency pro- 

perty is useful in several aspects: 

- I t  helps an experimenter, ensuring him that  he can solve two 

statistical problems simultaneously; 

- In numerical construction of optimal designs, i t  gives possibil- 

ity to choose the most convenient algorithm, because depen- 

dently on f ( z ) , ~  and c  either optimization problem (5) or (6) 

can be more simple; 

- In theoretical analysis of optimal designs, sometimes it is con- 

venient to relay between ( 5 )  and (6). 

2. If in the model testing case, there is some prior information on 

the parameters Gt described by prior distribution function, Fo ( d f l ) ,  then 

it is reasonable to use the mean of the noncentrality parameter as a cri- 

terion of optimality: ' 

If the dstribution Fo (d19) has a dspersion matrix equals to Do then ( 1 2 )  

can be transformed to 



In practice, the knowledge of Do is problematic and one can relax this 

demand and assume that  only the determinant value of a dspersion 

matrix are given to be greater than d > 0. In this case, the criterion 

can be the point of an interest. If the matrix M(#) is nonsingular, then 

the infrenum in (13) can be found easily (compare with Fedorov, 1981) 

Evidently the maximization of (15) is equivalent to the maximization of 

1 M(#) 1, or in other words, criterion (14) is equivalent to D-criterion: 

This criteria is one of the  most widely used criteria in the estimation 

problem. Some properties of D-optimal designs connected with model 

testing were discussed by Kiefer (1958) and Stone (1958). The above 

result gives additional explanation of the relation between D-criterion 

and the model testing problem. In the next section even more startling 

example illuminating this relation will be considered 

3. Let us start with a very natural criteria for model testing prob- 

lem: 

@(#I = inf J q2(z .$)C(& )I 
rm (pe(z,d)z 1 X *R 

which in the linear case takes the form: 



I t  is  not difficult to  check  the  following chain  of equalities: 

where,  of course ,  M-l(() exists for any  design with @(<) > 0 or 

+(() = I  I < m. 

The first equality follows from the inclusion: 

t he  second one is  the  corollary of the  resul t  of section 1. 

The c r i t e r ia  

belongs to  t h e  family of g-cr i ter ia  (see for ins tance,  Fedorov (1991)). 

When U = X and  q ( z )  = f ( z ) ,  one  can ge t  even s t ronger  re:sult because 

of t he  c r i t e r ia  1 M(<) k1 and  su f T ( z ) ~ - l ( < )  f ( z )  a r e  equivalent in  the  
Z E  1 

case  of continuous designs due to  Kiefer-Wolfowitz's t heo rem (see  for 

example, Fedorov (1972)). This fact leads t o  t he  equivalency of (16) and 

(17) immediately.  

4. The equivalency of some cr i ter ia  c a n  be achieved with t h e  help 

of t he  well-known resu l t  on eigenvalues of matr ices  (Rao, 1973). Let M be 

a symmetr ic  mat r ix  and C be a positively definite matrix.  If A, z.. .r  Am 

a r e  t h e  roots of 1 M -hC I = 0 then 

#A479 inf - - - A m .  
fl 1 9 ~ ~ 3  

From th i s  relation, t h e  equivalency of the  following two c r i t e r ia  



immediately occurs: 

an d 

When C = I,, then *([) is the popular E-criteria in the design theory. 

The results of sections 1-4 can  be summarized in 

THEOREM 1. The following criteria a r e  equivalent on the  se t  of 

regular designs 

1 )  c  T m - ( [ ) c  and inf y ( [ . $ ) .  
(c T d ) 4 6  

Z )  I M - ' ( [ )  I a n d ,  iojf, J Y(c .$)P,  (d-9)  . 

su ( q  T ( z ) ~ - l ( [ ) q  ( z )  and inf 
3' r E 5  

Y([ ,* )  
: & I T  (2 )+)%a 

4)  A ~ [ B ~ M - ~ ( [ ) B ]  and inf y ( [ , $ ) ,  where 6 > 0 and  
d T B ~ T * 6  

3. SOME PROPERTIES OF OPTIMAL DESlGNS 

m e o r e r n  1 allows some new results on the properties of optimal 

designs t o  be achieved or illuminate some of the  known results both for 

parameter  estirr~ation and model testing problems. In application, the 

number of supporting points in an optimal design is one of the  prime 

interests;  the lesser the number,  the simpler i t  is to realize in practice 

the corresponding optimal designs. 



The results on the  number of supporting points can be achieved by 

switching between the  following two theorems (see for example, Stone 

(1958); Fedorov (1972); Denisov, Fedorov, and Khaborov (1981)). 

THEOREM 2. In design problem (2) there exists optimal design 

containing no  more than  m ( m  + I)/ 2 supporting points. 

TEEOREM 3. In design problem (4) there exists optimal design 

containing no more than (m + 1) supporting points if R is a com- 

pact and convex set. If additionally in (4),at least k of con- 

straints a r e  active for optimal designs, then there  exists 

optimal design containing no more than (m -k +I )  supporting 

points. 

I t  should be noted tha t  if the conditions of meorem 3 are  fulfilled, it 

gives more strong resul t  than meorem 2. 

Ezarnple 1 

Consider t he  first case from Theorem 1 concerned with the extrapo- 

lation problem. There exist some results on the number of supporting 

points in this case which a re  ra ther  complicated in proving and a r e  

significantly based on the s t ructure of basic functions f ( z )  (see for 

instance, Fedorov (1972)). From lheorem 3, it follows that  for criteria 

under consideration, there exist optimal design containing no more than  

m supporting points. To get  this result, it is necessary to take into 

account tha t  the  design problem 

sup  inf y((,tP) 
C (cTd)%d 



is equivalent to 

sup  inf y((,+) 
t c T6n6 

due to evenness, both functions (c T+)2 and y((,+) and t h a t  for any design 

[, the  constraint c T+ 2 6 is active. 

It is useful to note tha t  the result does not depend on the  dimension 

of 2 .  

Ezample 2 

In spite of the similarity of the model testing criteria from point 3 

and 4 of meorem 1 to the one considered previously, it is not  possible to  

get  analogous results here.  I t  is the matter  of fact t h a t  t h e  sets  

su  (f T(z)IJ)2> d or gTBBTIJ % d are  not convex, and  therefore the  
z E R  

result  of Theorem 3 cannot be applied. Naturally, the result  of meorem 2 

happens to be t rue  but the  bound n, = m ( m  +I)/ 2 for t he  number of 

supporting points is not very eEcient and often cannot satisfy an  experi- 

menter .  In these cases, more detailed analysis could be don with the 

help of the so-called equivalency theorems. These theorems can be for- 

mulated (see Fedorov, 1980) for both sets  of optirnality criteria (for 

parameter  estimation and  model testing problems). 

THEOREM 4 (estimation problem). A necessary and  sufficient 

condition for a design ( *  to be optimal is the fulfillment of the 

inequality 

where 



If 1. (*(dz) > 0 then  the  function ( z )  achieves i ts lower 
x' 

bound on the  set  of XI. Naturally the existence of derivatives 

is suggested. 
aM 

THEOREM 5 (model testing problem). A necessary and 

sufficient condition for a design ( *  to  be optimal is the 

existence of such measure p*(d19) tha t  

y(z ,(*)  @((**+*) 

where 

and the  measure p* is defined on the set 

If 1 I * (&)  > 0 then the function ?(z,[*) achieves i ts  upper 
x' 

bound on t h e  se t  of XI. 

Note t h a t  in Theorem 5 the convexity of n is not assumed. 

Consider t h e  polynomial regression (f T(z)=l ,z , . . . , zm- l , \z  1 S 1) and 

prove by two different ways tha t  the number of supporting points in the 

optimal design for case 3 from Theorem I equals rn. Let us s ta r t  with 

Theorem 4 repeating the  well-known approach (see for instance, Fedorov 

(1972)). It is more convenient to put  here +(() = -1nI M([) I. In this case, 

-p(z,[) = f ' ( z ) ~ - l ( ( ) f  (2 )  and it is the  polynomial of degree 2m-2. 



Evidently, this polynomial can  achieve its maxima on interval 1 z11 1 no 

more than in m points. So the number of supporting points no due t o  

Theorem 4 cannot exceed m .  If no <m,  then 1 M(() I =O. Therefore for the 

optimal design no = m .  

Apply now to Theorem 5 to get the same result. I t  is clear tha t  the 

function y ( z . ( )  is a polynomial of degree less or equal 2m-2. Repeating 

the last part  O F  the  previous proof, one gets no =m.  

Consider now case (4) from Theorem 1 with B = I for the sake of sim- 

plicity. meorem 4 cannot be used here  without additional considera- 

tions because generally, optimal designs can have nonunique largest 

eigenvalue A[M-'([*)] and function +(M) is nondifferentiable in this  case. 

But Ilheorem 5 works here  and  similar to the previous case, one gets  

no = m for one dimensional polynomial regression of degree m - 1. 

Note tha t  l'heorem 5 becomes more convenient to  use particularly 

when rank B < m and one faces the nondfferentiability of +[MI in most 

cases due to the possible singularity of the information matrix M((*). 

4. NUldERICAL PROCEDURES 

Ilheorem I enables one to  choose between principally different algo- 

r i thms of the numerical construction O F  optimal designs. The first s e t  of 

algorithms based on 7heorem 4 and their description can be found in 

[Fedorov (1972); Silvy, (1980)l. The algorithms related to model testing 

criteria were described in [Atkinson and Fedorov (1975); Denisov, Fedorov 

and Khaborov (l981)l. 
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