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PREFACE

In this paper, the authors prove several generalizations
of the inverse function theorem which they apply to optimization
theory (Lipschitz properties of maps defined by constraints) and
to the local controllability of differential inclusions, The
generalizations are mainly concerned with inverse function theorems
for smooth maps defined on closed subsets and for set-valued maps.
An extension of the implicit function theorem is also provided.

This research, which was motivated partly by the need for
analytic methods capable of tackling the local controllability
of differential inclusions, was conducted within the framework
of the Dynamics of Macrosystems study in the System and Decision
Sciences Program.
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ABSTRACT

We prove several equivalent versions of the inverse func-
tion theorem: an inverse function theorem for smooth maps on
closed subsets, one for set-valued maps, a generalized implicit
function theorem for set-valued maps. We provide applications
to optimization theory and local controllability of differential
inclusions.
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ON INVERSE FUNCTION THEOREMS
FOR SET-VALUED MAPS

Jean-Pierre Aubin
Halina Frankowska

1. Introduction

An "inverse function" theorem was proved in Aubin [1982] and
Rockafellar [to appear (d)] for set-valued maps F from a finite
dimensional space X to a finite dimensional space Y. It stated
that if X is a solution to the inclusion Yo € F(xo) and if the
"derivative" C F(x_,y ) of F(!) at (x,,y,) € Graph (F) is sur-
jective from X to Y, then the inclusion y € F(x) can be solved
for any y in a neighborhood of Yo and F—l displays a Lipschitzean

behavior around Yor The purpose of this paper is

(a) to extend this theorem when X is any Banach space (the
dimension of Y being still finite)

(b) to provide a simpler proof

(c) to extend Rockafellar's result [to appear (d)] on the
Lipschitz continuity properties for set-valued maps G

defined by relations of the type

(1) G(y): = {x € L|F(x,y) "M # g}
where F is a set-valued man from X x Y to Z and L C X
and M C 7z are closed subsets. These maps play an import-

ant role in optimization theory. We shall also estimate



the derivative of G in terms of the derivative of F
and the tangent cones to L and M.

(d) to apply it for studying local controllability of a
differential inclusion in the following sense: Let
R(T,£) denote the reachable set at time T by trajector-
ies starting at £ of the differential inclusion x'€ F (x)
and M CR" be a target. Let xo(-) be a trajectory such
that xOCT) € M. We shall give sufficient conditions
for proving that for all u in a neighborhood of o, there
exists a trajectory x issud from £ such that x(T)EM+u.
Furthermore, if K denotes the set of trajectories such
that x (T )EM, there exists a neighborhood of K such that,
for any trajectory x in this neighborhood, we have the

estimate
(2) d(x,K) < 24(x(T) ,M)

(e) Naturally, the application to the Lipschitz behavior of
optimal solutions and Lagrange multipliers of convex

minimization problems

(3) inf (U(x) - < p,x > + V(Ax4y))
x € X
studied in Aubin [1982], [1984] still holds when X is

any Banach space. We do not come back to this example.

Let K be a closed subset of a Banach space X, A be a C1 map
from a neighborhood of K to a finite dimensional space Y. We

assume the "surjectivity" assumption

4) A'(xo) maps the tangent cone to K at X onto Y,
we can prove that a solution x to the eguation

(5) x € K and A(X) =y

exists when y is closed to Y, and depends in a Lipschitzean way
upon the right-hand side y. We then derive easily the inverse
function theorem for set-valued maps from a Banach space X to a

finite dimensional space Y and we study the Lipschitz continuity



properties of the map G defined by (2). We conclude this paper
with an application to local controllability of a dynamical system

described by a differential inclusion.

2. The Inverse Function Theorem

Let X be a Banach space , ¥ € X be a subset of X. We recall

the definition of the tangent cone to a subset K at Xy introduced
in Clarke [1975)] .

We say that

& (x+hv,X)

CK(xO): ={v € X|11m =

h-»o+
X +X
O

= 0}

is the tangent cone to K at x and that its polar cone

NK(xO): = CK(XO) C X*

is the normal cone to K at x. (See Clarke [1975], [1983];
Rockafellar [1978]; Aubin and Ekeland [1984] , etc.) A

We state now our basic result.

Theorem 2.1

Let X be a Banach space, Y be a finite dimensional space,
K C X be a closed subset of X and X belong to K. Let A be a
differentiable map from a neighborhood of K to Y. We assume that

(2.1) A' is continuous at X
and that

L —_—
(2.2) A (xO)CK(xo) =Y

Then A(xo) belongs to the interior of A(K) and there exist con-
stants p and 2 such that, for all

r .
YirYs € A(xo) + pB and any solution Xy € K to the

i = i i Ilx -x. I < 2 th
(2.3) ) equation A(xl) Y1 satisfying X Xl_ < %p, ere
exists a solution X, € K to the equation A(xz) =Y,

Lsatisfying Hxl—xzﬂ < QHyl-yzﬂ, .



We state several corollaries before proving the above

theorem.

Corollary 2.2

Let K be a closed subset of a finite dimensional space.

Then X belongs to the interior of K if and only if CK(xO) = Y. a

We shall derive the extension to set-valued maps of the
inverse function theorem. For that purpose, we need to recall the

definition of the derivative of F at a point (xo,yo) of its graph

(see Aubin-Ekeland, Definition 7.2.4, p.413) and the definition
of a pseudo-Lipschitz map introduced in Aubin [1982), [1984], (see
Aubin-Ekeland, Definition 7.5.1, p.429).

The derivative CF(xo,yo) of F at (xo,yo) € Graph (F) is the

set-valued map from X to Y associating to any u € X elements v € Y
such that (u,v) is tangent to Graph (F) at (xo,yo):

. € '
(2.4) v € CF(x ,y ) (u) # (u,v) € CGraph(F) (x_r¥,)
A set-valued map G from Y to 2 is pseudo-Lipschitz around
(yo,zo) € Graph (G) if there exist neighborhoods V of Yo and W of

zO and a constant £ such that

i) ¥y €V, G(y) # 8
(2.5)

ii) ¥y,.y, €V, Gly,) N W CG(y,) + 2ly -y, lB

(See Rockafellar [to appear]d) for a thorough study of pseudo-
Lipschitz maps.)

Theorem 2.3

Let F be a set-valued map from a Banach space X to a finite
dimensional space Y and (xo,yo) belong to the graph of F., 1If

(2.6) CF(xO,yO) is surjective,
then F_ | is pseudo-Lipschitz around (ygrx,) € Graph (F_]).

Proof

We apply Theorem 2.1 when X is replaced by X x Y, K is the
graph of F and A is the projection from X x Y to Y.



Remark

Actually, Theorem 2.3 is equivalent to Theorem 2.1, when we
apply it to the set-valued map F from X to Y defined by F(x):= { Ax}
when x € K and F(x):= # when x & K.

Proof of Theorem 2.1

. , - . .
a) Since A (Xo)CK(Xo) Y, since CK(xo) is a closed convex cone

and since A'(xo) is a continuous linear operator, corollary 3.3.5,
p.134 in Aubin-Ekeland [1984] of Robinson-Ursescu's Theorem (see
Robinson [1976], Ursescu [1975] ) implies the existence of a con-
stant k > 0 such that

. . ] —
(2.7) vu, €Y, 3v, € Cy(x,) satisfying A (XO)Vi = u; and

vl < Xl uyll

Let a € 10,1[ and y such that y < a/ZHA'(xO)". Since A' is con-
tinuous at X0 there exists §< o/2(k+y) such that for any

€ ' - ' .
x € By(x_,4), A" (x) A (xO)H < 8.

By the very definition of the tangent cone CK(xO), we can

associate with any vy € CK(XO) constants nié]O,& and Bi > 0 such
that

(2-8) ¥x € BK(Xo,ni) , ¥h € ]0181] ’ Vi € %(K-X) + YB

Therefore, we can associate with any u belonging to the unit

sphere S of Y constants n; >0 and Bi > 0 such that
o
¥x € BK(XO,ﬂi)'Vh € ]OIBl] /Yu € (ul+EB) ns.,
u € A'(x)(%(K-x)) + (k+y)(A'(xo) - A'(x))B+A'(x)YB+%B
C A'(x) (;—(K—x)) + oB.

The sphere S being compact because the dimension of Y is supposed

to be finite, it can be covered by n balls uy + aB. We take

n:= min n; s B:= min Bi and c:= k+y. These constants
i=1,...,n i=1,...,n
depend upon o only. We deduce that



Yu € Y, ¥x € BK(xo,y), ¥h < B, there exist

y € K and w € Y satisfying

i) u =A'(x)(L1:’i) +w
(2.9)
ii) ly-xI < chlul , lwl < alul

b) We take y in the open ball A(xo) + rﬁ where r < (1-a)g and

- |
€ such that “y A(xo)|
n

We shall apply Ekeland's approximate variational principle
(see Ekeland [1974] and Aubin-Ekeland [1984] , Theorem 5.3.1, p.255)
to the function V defined by

1-
< €< OL.
c

Vix):= ly-a(x)l

on the closed subset K: there exists X € K satisfying

r
J i) ||y—A(x€) I+ g"xo—xE” < "y—A(xO)"
(2.10)

ii) "y—A(xE)“ < ly-ax)I + e"x-xen for all x € K

\

Inequality (2.10)i) implies that

-1
(2.11) ||xo—x€|| < € ||y—A(xO)|| <

Ify = A(Xe) the result is proved. Assume that y # Axe.
Property (2.9) with u = y-A(xE) imply the existence of Ye € K

y =X
such that, by setting v i= Eh £ , we have
- . — '
(2.12) Yy A(Xe) A (XE)VE + W
where
(2.13) "Ve" < C"y—A(xE)","weu < a"y—A(xE)"

We observe that we can write

y-Aly.) = y-A(xe)-hA'(xe)ve—ho(h)

(2.14)
= (1-h) (y-A(x_)) + h(w_+0(h))
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By taking x:= Y in inequality (2.10)ii), we deduce that

"y-A(xe)" < "we" + E"Ven 4+ lo(n)l

(2.15)
< (gcﬂ)lly-A(,xe)ll + lo(h) |l

By letting h go to 0 and by observing that ec+o< 1, we obtain
equality y = A(xe).

c) Then there exists a solution x in BK(xo,y) to the equation

y = A(x}). Furthermore, inequality (2.11) implies that

(2.16)  d(x A7 (y) NK) < Ly-a(x )]

1-

By letting € converge to , we deduce that

~1 c
(2.17) d(x_,A (y) NK) < 1_a"y—A(xo)"
(1-a)%n
Let p be smaller than 2ecTi-g SO that there exists e satisfying
2cp 1-0
(218 Tmaynmes < ¢ @

0 -
Let vy, € Yo t 0B and Xy € A ](y1) N K be a solution to the equa-
. _ . . _ c _
tion y, = A(x,) satisfying "x] xo" < T:E"y1 yO". We now apply
Ekeland's theorem to the function x—»"y2 - A(x) |l where y, is given
0

in Y, t PB: there exists X € K satisfying

i) "yz—A(xE)" + €||x€—x1" < ||y2—y1||
(2.19) <
ii) "Yz”A(xg)" < "yz—A(x)" + e"x-xeﬂ for all x € K.

Inequality (2.19)1i) implies that

1
HXE_XO" < -E"y2 y]" + ||xo—x]||
(2.20)
2p c
e + =—p f n

: 1-a

\
so that we can use again property (2.9) for deducing from ineguality
(2.19)1ii) that Yy = A(x_) as before, and prove that

-1 c
d(x],A (y2) N K) < ]_a“y,l—yz”.




3. Applications to Non-smooth Optimization

Let X,Y,Z be three finite dimensional spaces, F be a set-
valued map from X x Y to 2, L € X and M C Z be closed subsets and
f:X x Y 1R U {+=} be a proper function. The study of the Lipschitz

continuity properties of the marginal function v of the minimiza-

tion problem
(3.1) v(y):= inf{ f(x,y)[x € L and F(x,y) N M # g}

is required for computing the generalized gradient of the
marginal function (see Rockafellar [to appear]b)). This is the

reason why we need to prove that the set-valued map G defined by
(3.2) G(y):= {x € L|F(x,y) N M # g}

is pseudo-Lipschitz. Let X belong to G(yo) and z, be chosen in

F(xo,yo) N M,

Theorem 3.1

We assume that
(3.3) L , M and Graph (F) are closed
and that the following transversality condition holds true:
(3.4) Yv € Y, CF(xo,yo,zo)(CL(yo),v) - CM(zO) =7
Then the derivative of G is estimated by
(3.5) {u € ¢ (x ) |CF(x_,y,,2.) (u,v) N Cyu(z ) # B} C CGly_,x,) (V)

and the set-valued map G defined by (3.2) is pseudo-Lipschitz

around (yo,xo). If we assume furthermore that
(3.6) F is lower' semicontinuous at (xo,yo)(z)

then there exist a neighborhood U of X and a constant 2 > 0 such

that



(3.7) ¥x € U ’ d(X,G(Y)) 5 £ max (dL(X)lﬁ(F(XIY)IM))

where we set
(3.8) §(A,B):= inf{lx-yl,x € A,y € B} a

Remark

Let us denote by CF(xo,yo.zo)* the coderivative of F at
(xo,yo,zo), which is the transpose of the derivative of
F(xo,yo,zo) (see Aubin-Ekeland [1984] , Definition 7.2.9, p.l16).
We say that (p,q) € CF(xo,yo,zo)*(r) if and only if

(3.9) ¥(u,v) € X x Y,¥w € CF(xO,yo,zo)(u,v),<p,u> +<g,u>< <r,w>

The transversality condition (3.5) implies constraint gualifica-

tion condition

-
The only solution (p,q,r) € - NL(xO) X Y* x NM(zO)

(3.10) ﬁ to the inclusion (p,qg) € CF(xO,yO,zo)*(r) is

p=0, g=0andr = 0.

Y

When F is single-valued, we can set
(3.11) CF (XO’yO) := CF (XO’yO’F(xO'yO))

In this case, Theorem 3.1 reduces to a statement analogous to
Theorem 3.2 of Rockafellar [to appear] @), where the derivative
CF(xo,yo) is replaced by the generalized Jacobian BF(xo,yo)
introduced by Clarke [1976] b). We do not need to assume that F

is locally Lipschitz, since we do not use the generalized Jacobian.

It is sufficient to assume only that the graph of F is closed.

Corollary 3.2

Let X,Y,Z be finite dimensional spaces, L € X and M C Z be
closed subsets and F be a single-valued map from X x Y to Z with

closed graph. We posit the transversality condition



(3.12) ¥v € X, CF(x_,y ) (€ (x)),v) = Cu(F(x_,y,)) =2

Then

(3.13) {u € CL(xO)|CF(Xo,yO)(u,v) N CM(F(xO,yO) # g} C CG(yO,xO)(v)
and G is pseudo-lLipschitz around (yo,xo). If F is continuous,

there existsa neighborhood of X5 and a constant & » 0 such that

(3.14) ¥x € U, d(x,G(y)) 5 & max (d; (x), dy(F(x,y)))

Remark

Let us observe also that by taking L = X and M = {0},
we obtain the usual implicit function theorem for continuous maps
(instead of locally Lipschitz maps, as in Clarke [1976], Hiriart-
Urruty [1979] ). In this case, we can assume that X is any Banach

space, Y and Z being still finite dimensional.

Corollary 3.3

Let K:= {x € L|F(x) "M # g} where L C X and M C 2 are closed
subsets and where F:X -2 is a set-valued map with a closed graph.

Let xo € K and z, € F(xo) N M be fixed. If we assume that
(3.15) CF(xO,ZO)(CL(xO)) - CM(zO) =7 ,
then the tangent cone to X at X5 satisfies

(3.16) {u € CL(xo)|CF(xO,zO)(u) N CM(zo) # g} C CK(XO)
A
When F is a c! single-valued map, we obtain a result given
in Aubin [1982] (see Aubin-Ekeland [1984], Proposition 7.6.3, p.440,
which is true when X is a Banach space and 2 a finite dimensional

space) .

Proof of Theorem 3.J

a) The graph of G is the projection onto Y x X of the subset
Q = H(0,0,0) where we set
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-1
(3.17) H(u,v,w):= Graph (F) x MxYxLOB (u,v,w)

where B is the linear map from X x ¥ x 2 X2 x Y x X to X x Y x 2

defined by

(3.18) B(¢&,n,t,z,y,x) = (E-x,n-y,5-2)

Let (xo,yo,zo) € H(0,0+,0)be chosen. We observe that the trans-

versality condition (3.4) implies that

(3.19) B(CGraph(F)(xo’yo’zo) X CM(zo) x Y x CL(XO))==X XY x 2

€X x Y xZ be chosen. Let 2, belong to

Indeed, let (x,Y,2)
Y .
CF(xo,yo,zo)(x,z). By (3.4), there exist u € CL(xO) and

- Yy _—
w € CM(zO) such that z z, € CF(Xo’yo’zo)(u’Z) w. Hence,
CF(xo,yo,zo) being a convex process, we have
Y Yy -
z € CF(xo,yo,zo)(x, ) + CF(xO,yo,zo)(u,2 w
C CF(xo,yo,zo)(x+u,y) - W

In other words, we have proved that

(x,y,2) = B(x+u,y,z4w,w,0,u) where

(x+u,y,z4w,w,0,u) € CGraph(F)(Xo’yo’zo) X CM(zO) x Y x CL(XO)

Then Proposition 7.6.3, p.440 of Aubin-Ekeland [1984] implies that

1

A Re
(CGraph(F)(xo'yo'zo) b4 CM(ZO) X Y x CL(XO)) B  (0)
- CQ(xo,yo,zo,zo,yo,xo)
In other words, if we take (u,v,w) € X x Y x 2 such that
(3.20) u € Cp(x,),v €Y and w € CF(x,,y_,2_) (u,v) N Cyl(z),
Therefore,

then (u,v,w,w,v,u) belongsto CQ(xo,yo,zo,zo,yo,xo).



(v,u) belongs to the tangent cone to Graph (G) at (yo,xo), or
u € CG(yo,xO)(v). (Indeed, if (yn,xn) € Graph(G) converges

to (yo,xo) and hn > 0 converges to 0, we deduce that there are
seguences un,uﬂ converging to u, vn,vé converging to v and

wn,wé converging to w such that

w' +h v',x +h u') €
(xn+hnun’yn+hnvn’zo+hnwn’zo+hn n'¥n™MpVnr¥n nun) 0

. . . — = o = o
This implies that uy un,vn Vn’ wn wn and that

N
(3.21) xn+hnun € CL(xo), F(xn+hnun,yn+hnvn) M#4d,

] €
i.e. that xn+hnun € G(yn+hnvn) for all n. Hence u CG(yo,xo)(v).).

b)  Theorem 2.1 applied to the map B defined on the closed sub-
set Graph (F) x M x Y x L implies that the set-valued map H defined

by (3.17) is pseudo-Lipschitz around «0,0,0),(xo,yo,zo,zo,yo,xo)L
In particular, there exist 2 > 0 and r > 0 such that if

max (lull, lvl, Iwl) < r , there exists (x,y,z) € X x Y x 2 such
that

(3.22) x € L,z € (F(x+u,y+v) - w) N M

and

max (lIx+u-x | lv+v=y | lz4w=-2 1) <
a ( o ! y Yo ' W o ) <
2 max (lal , Ivl , dwly,

By taking u = w =0 and y = Yor we deduce that the map V»G(yo+v)

is pseudo-Lipschitz around (yo,xo).

c) Let us consider now a pair (x,y). We choose x € L minimizing

lg-xl over L and 7 € F(x,y) and z € M minimizing l¢-zl on F(x,y) x M.

We set u = x-X,V = y-y, and w = Z-z so that lul = d; (x) and lwl =
= d(F(x,y),M). Hence
B(xl Y ZI -z-l Y . r )—() = (ulvlw)

O
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Since F is lower semicontinuous at X 1Yo there exists a
neighborhood V of (xo,yo) such that dL(x) = lul < p , 8(F(x,y),M)
= lwl < p when (x,y) € V (because &(F(x,y) M) < "Q—zoﬂ_f p for some

r € F(x,y)). Let "v"lf p. Since H is pseudo-Lipschitz, there

~ N A AN oA e

max (ni_xu,uy-yn,uz_gu,uz_zu,uy_you,ng-iu)
(3.23)
< & max (lul,lvl,lwl) = 2 max (dL(x),“y—yO",d(F(x,y),M))

By taking ¥y = y = Yo+ We obtain inequality (3.7).

Remark

Let K be the map associating to y € Y the subset
(3.24) K(y):= { (x,2) €L x M|z € F(x,y)}

Since the graph of K is the image of Q:= H(0,0,0) by the
map (x,Y,2,2,yY,%X) - (y,x,2), the proof of Theorem 3,1 implies
that

(3.25) K is pseudo-Lipschitz around (yo,xo,zo)

and that

{ (u,w) € C (%)) x Cylz )|w € CF(x_,y_,2,) (a,V)}
(3.26) <

- CK(YO:X Izo) (v)

(o]

\

If F is lower semicontinuous, inequality (3.23) implies that

(3.27) §({x} x F(x,y), K(y)) £ 2 max (d; (x), 8(F(x,y),M)).

Remark

I1f we take L = X (there are no constraints on x), we do not
have to assume that the dimension of X is finite. We have to

apply Proposition 7.6.3 of Aubin-Ekeland [1984] and Theorem 3.1
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to the map B  from (Graph (F) x M x Y to Y x Z defined by
B (&,nsL,2,y) = (n-y,l-2)
since the graph of G is the set of (y,x) such that
Bo(x,y,z,z,y) = (0,0) and (x,y,z) € Graph (F), z € M,
The transversality condition (3.4) is replaced by
(3.28) ¥Yv € Y, CF(xO,yO,zO)(x,v) - CM(zO) =2
and the derivative of G satisfies

N
{u € X|CF(x_,y sz ) (u,v) N Cylz)) # #}
(3.29)

C CG(y,,x_) (V).

o'"o a

We shall apply corollary 3.3 to compute the epiderivative of the
function x » V(x) + W(F(x)) when F is a continuous single-valued
map. When V is a function from X toR VU {+=}, we observe that the

tangent cone C X,V(x)) to the epigraph of V at a point

Ep(V)(
(x,V(x)) (where x € Dom V) is the epigraph of a function denoted

C+V(x) and called the epiderivative of V (see Aubin-Ekeland [1984]
Definition 7.3.7, p.421). When V is Lipschitz around x, we obtain

for all v € X

(3.30) CV(x) (v) = lim sup V(y+hv)h- V) e g

Proposition 3.4

Let X and Y be finite dimensional spaces and F be a single-
valued map from Dom(F) C X to Y with closed graph, V:X » R U {4}
and W:Y - R U {+o} two lower semicontinuous proper functions. Let

X € Dom V N F_1 Dom W satisfy the transversality condition:

(3.31) CF(xO)(Dom C+V(xo)) -~ Dom C+W(xo) =Y



Then

(3.32) C+(V+WF)(XO)(u) < C+V(xo)(u) + C+W(F(xo))(CF(xo)(u))

in the sense that

¥v € CF(x) (u),C (VHF) (x ) (u) < C,Vix,) (u)
(3.33) ﬁ
+ C+W(F(xo))(v).

\
Proof

We consider themap G from X xIR x ¥ xR xR to Y x R defined
by

(3.34) G(x,a,y,b,c) = (F(x)-y,a+b-c)
[

We observe that the epigraph of V + WF is the image under the

application (x,a,y,b,c) » (x,c) of the subset

(3.35) 0:= (Ep(V) x Ep(W) xR) N G~ (0,0)

It is easy to check that assumption (3.31) implies that
CG(xO,V(xo),F(xo),W(F(xO)), V(xo) + W(F(xo)))

maps CEp(V)(Xo’V(Xo)) X CEp(W)(F(XO)'w(F(XO)) x IR

onto Y x IR. Hence Corollary 3.3 implies that the set of elements

(u,1) € CEp(V)(XO,V(xO)),(VAJ) € CEp(w)(F(xo),W(F(xo)) and v € R

such that CG(xo,V(xO),F(xo),W(F(xo)),V(xo) + W(F(xo)) maps
(u,A,v,u,v) onto (0,0) are contained in the tangent cone to Q at
(xo,V(xo),F(xo),W(F(xo)),v(xo) + W(F(xo))). Hence

v € CF(xo)(u), X>2C+V(xo)(u),112 C*W(F(xo))(v) and v = A+ u and
(u,A,v,u,v) belongs to CQ(xo,V(xo),F(xo),W(F(xO)),(V+WF)(xo)).
This implies that v > C+(V+WF)(xO)(u).
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4. Applications to Local Controllability

Let us consider a bounded set-valued map F. from a closed
subset K CZRn to]Rn with closed graph and convex values, satis-

fying
(4.7) ¥x € K, F(x) NT (x) # 0

By Haddad's Theorem, we know that for all ¢ € K, the subset ST(E)

of viable solutions (3) to the differential inclusion
(4.2) x'(t) € F(x(t)), x(0) = &

is non-empty and closed in C(O,TﬂRn) for all £ € K.

Let R(T,&):= {x(T)|x € ST(g)} be the reachable set and M C R"
the target, be a closed subset. We shall say that the system is
locally controllable if

(4.3) 0 € Int (R(T,E) - M).

This means that there exists a neighborhood U of 0 in R" such that,
for all u € U, there exists a solution x(+) € ST(E) such that
x(T) €M + u. We denote by K C ST(g) the subset of solutions
x € ST(g) such that x(T) € M. We denote by CST(E)(X)(T) the

convex cone of elements v(T) when v ranges over the tangent cone
CST(E)(X) to ST(E) at x(*).
We refer to Frankowska [1984], [to appear]a) and b) for the
characterization of subspaces of Cq (g)(x) in terms of solutions to
T °°

a "linearized inclusion" around the trajectory x(-).

Theorem 4.1

Let X € K be a trajectory of (5.2) reaching M at time T.

Assume that

(4.4) S (6) (x,) = Cpy(x (T)) =R"
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Then the system is locally controllable and there exists a
neighborhood U of X, and a constant & > 0 such that, for any

solution x € ST(i) in U,

(4.5) d(x(*),K) = & dy(x(T))

Furthermore,
(4.6) {v € CST(E)(X0)|V(T) € Cpu(x (T)} C Cpix)). A

Proof

We apply Theorem 2.1 to the continuous linear map A from
C(OﬁFﬂRn) x R" to R" defined by A(x,y):= x(T) - y, to the subset
c
ST(E) x M, at (xo,xo(T)) ST(E) X M. We observe that A(xo,xOCT))

= 0 and that condition (4.4) can be written

n

(4.7) A - CM(XO(T)) = 1R

s, (8) o)
Hence 0 belongs to the interior of A(ST(g) X M) = Rf?,g) - M and
there exist constants r > 0 and £ > 0 such that wA (u)ﬂ(sT(a)xM)
is pseudo-Lipschitz around (O,XO,xO(T)). Let us consider now a
ball U of center X and radius r. Let us take a solution

x € §, (&) NU of the inclusion (4.2) so that dy, (x(T)) < x(T) -

- XO(T)" <r. Let y belong to m, (x_(T)). Then "A(x,y)"=dM(x(T))
and we deduce from the fact that u»A-1(u) N (sT(g) X M) is pseudo-
Lipschitz that there exists X such that A(X,X(T)) =0 (i.e., an
element ¥ € K) such that d(x,K) < Ix-xl < glo-Aa(x,y)l = QdM(x(T)).
Inclusion (4.6) follows from inequality (4.5), as in the proof of
Theorem 3.2.



NOTES

1) The derivative of F at a point (xo,yo) of its graph is the
set-valued map CF(XO’YO) from X to Y whose graph is the tangent

cone C to its graph at (xo,yo); it is a "closed

Graph(F)(xo’yo)
convex process" (a map whose graph is a closed convex cone), which

is the "set-valued" analogue to a continuous linear operator.

z) We say that a set-valued map H from X to Y is lower semi-
continuous at X if for any Yo € H(xo) and any neighborhood V of
Yoo there exists a neighborhood U of the X such that F(x) NV # @
for all x € U.

3) A trajectory t » x(t) is viable if, for all t € [0,T],
x(t) € K.
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