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PREFACE 

In this paper, the authors prove several generalizations 
of the inverse function theorem which they apply to optimization 
theory (Lipschitz properties of maps defined by constraints) and 
to the local controllability of differential inclusions. The 
generalizations are mainly concerned with inverse function theorems 
for smooth maps defined on closed subsets and for set-valued maps. 
An extension of the implicit function theorem is also provided. 

This research, which was motivated partly by the need for 
analytic methods capable of tackling the local controllability 
of differential inclusions, was conducted within the framework 
of the Dynamics of Macrosystems study in the System and Decision 
Sciences Program. 

ANDRZEJ WIERZBICKI 
Chairman 
System and Decision 
Sciences Program 



ABST RACl' 

We prove several equivalent versions of the inverse func- 
tion theorem: an inverse function theorem for smooth maps on 
closed subsets, one for set-valued maps, a generalized implicit 
function theorem for set-valued maps. We provide applications 
to optimization theory and local controllability of differential 
inclusions. 
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ON INVERSE FUNCTION THEOREMS 
FOR SET-VALUED MAPS 

Jean-Pierre Aubin 
Halina Frankowska 

1. Introduction 

An "inverse function" theorem was proved in Aubin [ I  9821 and 

Rockafellar [to appear (d)] for set-valued maps F from a finite 

dimensional space X to a finite dimensional space Y. It stated 

that if xo is a solution to the inclusion y E F(xo) and if the 
0 

"derivative" C F (xo,yo) of F ( I )  at (xo,yo ) E Graph (F) is sur- 

jective from X to Y, then the inclusion y E F (x) can be solved 

for any y in a neighborhood of yo and F-' displays a Lipschitzean 

behavior around yo. The purpose of this paper is 

(a) to extend this theorem when X is any Banach space (the 

dimension of Y being still finite) 

(b) to provide a simpler proof 

(c) to extend Rockafellar's result [to appear(d)] on the 

Lipschitz continuity properties for set-valued Raps G 

defined by relations of the type 

where F is a set-valued Fay, fror.1 X 2; Y to Z and L C X 

and M C I ,  are close2 subsets. These.maps play an inport- 

ant role in optimization theory. Vye shall also esti~ate 



the derivative of G in terms of the derivative of F 

and the tangent cones to L and M. 

(d) to apply it for studying local controllability of a 

differential inclusion in the following sense: Let 

R (TI 6) denote the reachable set at time T by tra jector- 

ies starting at 6 of the differential inclusion x l E  F(x) 

and M C nn be a target. Let x ( - )  be a trajectory such 
0 

that x0(T) E M. We shall give sufficient conditions 

for proving that for all u in a neighborhood of o, there 

exists a trajectory x issud from 6 such that x (T)EM+u. 

Furthermore, if K denotes the set of trajectories such 

that x(T)EM, there exists a neighborhood of K such that, 

for any trajectory x in this neighborhood, we have the 

estimate 

(el Naturally, the application to the Lipschitz behavior of 

optimal solutions and Lagrange multipliers of convex 

minimization problems 

( 3 )  inf (U(x) - <  p,x >+V(Ax+y)) 

x E X  

studied in Aubin [I9821 , [I9841 still holds when X is 
any Banach space. We do not come back to this example. 

1 Let K be a closed subset of a Banach space X, A be a C map 

from a neighborhood of K to a finite dimensional space Y. We 

assume the "surjectivity" assumption 

(4 PA1 (x ) maps the tangent cone to K at x onto Y, 
0 0 

we can prove that a solution x to the equation 

( 5 )  x E K and A(x) = y 

exists when y is closed to yo and depends in a Lipschitzean way 

upon the right-hand side y. We then derive easily the inverse 
function theorem for set-valued maps from a Eanach space X to a 

finite dimensional space Y and we study the Lipschitz continuity 



p r o p e r t i e s  of  t h e  map G d e f i n e d  by ( 2 ) .  W e  c o n c l u d e  t h i s  paper  

w i t h  an  a p p l i c a t i o n  t o  l o c a l  c o n t r o l l a b i l i t y o f  a  dynarnical system 

d e s c r i b e d  by a  d i f f e r e n t i a l  i n c l u s i o n .  

2. The I n v e r s e  F u n c t i o n  Theorem 

Let  X be  a  Banach space  , ): C X be  a  s u b s e t  of  X -  W e  r e c a l l  

t h e  d e f i n i t i o n  o f  t h e  t a n g e n t  cone t o  a  s u b s e t  K a t  xo i n t r o d u c e d  

i n  C l a r k e  [I9751 . 

We say  t h a t  

i s  t h e  t a n g e n t  cone  t o  K a t  x  and t h a t  i t s  p o l a r  cone  

i s  t h e  normal cone  t o  K a t  x .  (See C l a r k e  [I9751 , [I9831 ; 
R o c k a f e l l a r  [I9781 ; Aubin and Ekeland [I9841 , etc .  ) 

W e  s t a t e  now o u r  b a s i c  r e s u l t .  

Theorem 2.1 

Let  X be  a  Banach s p a c e ,  Y be  a  f i n i t e  d i m e n s i o n a l  s p a c e ,  

K c X be a  c l o s e d  s u b s e t  o f  X and xo b e l o n g  t o  K .  L e t  A be  a  
d i f f e r e n t i a b l e  map from a  neighborhood o f  K t o  Y .  We assume t h a t  

( 2 . 1 )  A t  i s  c o n t i n u o u s  a t  x  
0 

and t h a t  

Then A(xo) b e l o n g s  t o  t h e  i n t e r i o r  of  A ( K )  and t h e r e  e x i s t  con- 

s t a n t s  p and R such  t h a t ,  f o r  a l l  

I Ylt='2 
E A(x ) + pB and any s o l u t i o n  xl  E K t o  t h e  

0 

e q u a t i o n  A(x l )  = y1 s a t i s f y i n g  llx 0 1 -  -x 1 < 2p, t h e r e  

e x i s t s  a s o l u t i o n  x2 E K t o  t h e  e q u a t i o n  A(x2)  = y2 

s a t i s f y i n g  ~ ~ x l - x 2 ~ ~  5 Rlly 1 2  -y 1 .  



We state several corollaries before proving the above 

theorem. 

Corollary 2.2 

Let K be a closed subset of a finite dimensional space. 

Then xo belongs to the interior of K if and only if C (x ) = Y. A 
K 0 

We shall derive the extension to set-valued maps of the 

inverse function theorem. For that purpose, we need to recall the 

definition of the derivative of F at a point (xo,y0) of its graph 

(see Aubin-Ekeland, Definition 7.2.4, p.413) and the definition 

of a pseudo-Lipschitz map introduced in Aubin [ I  9821 , [ I  9841 , (see 
Aubin-Ekeland, Definition 7.5.3, p.429). 

The derivative CF(xo,yo) of F at (xo,y0 ) E Graph (F) is the 

set-valued map from X to Y associating to any u E X elements v E Y 

such that (u,v) is tangent to Graph (F) at (xo,yo) : 

A set-valued map G from Y to Z is pseudo-Lipschitz around 

(yo' Zo ) E Graph (GI if there exist neighborhoods V of yo and W of - 
z and a constant R such that 
0 

(See Rockafellar [to appearld) for a thorough study of pseudo- 

Lipschitz maps.) 

Theorem 2.3 

Let F be a set-valued map from a Banach space X to a finite 

dimensional space Y and (xo,y0) belong to the graph of F. I£ 

(2.6) ~F(x~,y,) is surjective, 

then F-I is pseudo-Lipschitz around (yo,xo) E Graph (F-I). 

Proof 

We apply Theorem 2.3 when X is replaced by X x Y, K is the 
graph of F and A is the projection from X x Y to Y. 



Remark 

A c t u a l l y ,  Theorem 2 . 3  i s  e q u i v a l e n t  t o  Theorem 2 . 1 ,  when w e  

a p p l y  i t  t o  t h e  s e t - v a l u e d  map F f rom X t o  Y d e f i n e d  by F ( x ) : =  {AX} 

when x E K a n d  F ( x ) : =  fl when x F K .  

P roof  o f  Theorem 2. 1 

a )  S i n c e  A '  (xo)C ( X  ) = Y, s i n c e  C ( x  ) i s  a  c l o s e d  convex  c o n e  K 0 K 0 

and  s i n c e  A '  (xo) i s  a  c o n t i n u o u s  l i n e a r  o p e r a t o r ,  c o r o l l a r y  3 .3 .5 ,  

p .  134 i n  Aubin-Ekeland [ 19841 o f  Robinson-Ursescu  ' s Theorem (see 

Robinson [ 1 9 7 6 ] ,  U r s e s c u  [I9751 ) i m p l i e s  t h e  e x i s t e n c e  o f  a  con- 

s t a n t  k  > 0 s u c h  t h a t  

( 2 . 7 )  Vui E y ,  3vi  E C K (x  o ) s a t i s f y i n g  A '  (xo)v i  = u i and  

L e t  a  E 1 0 , 1 [  and  y s u c h  t h a t  y  < a/211A1 (xo)  1 1 .  s i n c e  A '  i s  con-  - 
t i n u o u s  a t  xo ,  t h e r e  e x i s t s  6.5 a / 2  (.k+y) s u c h  t h a t  f o r  any  

x E B K ( ~ 0 t 6 ) t  A X )  - A X )  1 - < 6.  

By t h e  v e r y  d e f i n i t i o n  o f  t h e  t a n g e n t  c o n e  C ( x  ) ,  w e  c a n  
K 0 

a s s o c i a t e  w i t h  any  vi  E CK (xo)  c o n s t a n t s  ni€]  0 ,  and  B > 0 s u c h  

t h a t  

T h e r e f o r e ,  w e  c a n  a s s o c i a t e  w i t h  a n y  u b e l o n g i n g  t o  t h e  u n i t  i 
s p h e r e  S o f  Y c o n s t a n t s  n i  > 0 and  B i  > 0 s u c h  t h a t  

The s p h e r e  S b e i n g  compact  b e c a u s e  t h e  d imens ion  o f  Y i s  supposed  

t o  b e  f i n i t e ,  it c a n  b e  c o v e r e d  by n b a l l s  ui + aB. W e  t a k e  

Q:= min n i  I B : =  min p i  and  c:= k+y. T h e s e  c o n s t a n t s  
1 = 1 , . .  . , n  i = 1  ,... , n  

depend  upon a  o n l y .  We d e d u c e  t h a t  



vu E Y, Vx E BK (xoty), Vh < 8, there exist 

y E K and w E Y satisfying 

i) u = A x ( 1  + w 
(2.9) 

ii) Ily-xll - < chllull , Ilwll < - allull 

rl 
b) We take y in the open ball A(xo) + rB where r i (7-a)- and 

11 y-A (x0) 11 C 

E such that 3 -a - < E <  - .  - 
We shall apply Ekeland's approximate variational principle 

(see Ekeland [I 9741 and Aubin-Ekeland I 1  9841 , Theorem 5.3.3, p. 255) 

to the function V defined by 

on the closed subset K: there exists xE E K satisfying 

i i) I l y - ~ ( ~ E ) l l  + ~llx~-x E II - < Ily-~(x o )II 
(2.10) 

ii) Ily-A(x&) II - < lly-~(x) II + ~llx-xEl for all x E K 

Inequality (2.10) i) implies that 

If y = A(x ) the result is proved. Assume that y # AxE. 
E 

Property (2.9) with u = y-A(xc) imply the existence of yc E K 
L 

such that, by setting v := 
E h , we have 

where 

We observe that we can write 



By taking x:= YE 
in inequality (2.10)ii), we deduce that 

(2.15) 
< - (EC+~) lly-A (xE) 11 + 11 0 (h) 11 

By letting h go to 0 and by observing that EC+< 1, we obtain 

equality y = A(xE). 

c) Then there exists a solution x in B (x ,y) to the equation K 0 
y = A(x). Furthermore, inequality (2.11) implies that 

1 -a By letting E converge to - 
C 

, we deduce that 

2 
Let p be smaller than 2c+1-a ' so that there exists E satisfying 

0 
Let y, E yo + pB and x1 E A-I (yl ) n K be a solution to the equa- 

C tion y = A(xl) satisfying ilx -x 11 < -Ily -y 11. We now apply 1 1 0  1-a 1 o 
Ekeland's theorem to the function x+lly - ~ ( x )  1 where y2 is given 

0 2 
in yo + pB: there exists x E K satisfying 

E 

I ii) Ily2-A(xE)II - < Ily2-~(x)II + E ~ I x - x ~ ~ ~  for all x E K. 

Inequality (2.19) i) implies that 

so that we can use again property (2.9) for deducing from inequality 

(2.19)ii) that y2 = A(xE) as before, and prove that 

- 1 C 
d (xl ,A (y2) n K) 2 G ~ ~ ~ 1 - ~ 2 ~ ~  - 



3. Applications to Non-smooth Optimization 

Let X,Y,Z be three finite dimensional spaces, F be a set- 

valued map from X x Y to Z, L C X and M C Z be closed subsets and 

f:X x Y +lR U {+a)bea proper function. The study of the Lipschitz 

continuity properties of the marginal function v of the minimiza- 

tion problem 

( 3 . 3 )  v(~y) := infI f (x,y) Ix E L and F(x,y) n M # % I  

is required for computing the generalized gradient of the 

marginal function (see Rockafellar [to appear] b) ) . This is the 

reason why we need to prove that the set-valued map G defined by 

is pseudo-Lipschitz. Let xo belong to G(yo) and zo be chosen in 

Theorem 3.1 

We assume that 

(3.3) L , M and Graph (F) are closed 

and that the following transversality condition holds true: 

Then the derivative of G is estimated by 

and the set-valued map G defined by (3.2) is pseudo-Lipschitz 

around (yo, xo). If we assume furthermore that 

(.3 . 6 1. F is lower semicontinuous at (xo , yo) ( = )  

then there exist a neighborhood U of xo and a constant R > 0 such 

that 



(3.7) vx E u , d(x,~(y)) - < t max (dL(x) ,b(F(xty) IM)) 

where we set 

(3.8) 6.(A,B) := inf{ I ~ X - ~  11 ,x E A,y E B )  

Remark 

Let us denote by CF(xo,yo.~o)* the coderivative of F at 

( x ~ ~ ~ ~ , z ~ ) ,  which is the transpose of the derivative of 

F (xot~,, zo) (see Aubin-Ekeland [I9841 , Definition 7.2.9, p.436). 
We say that (p,q) E CF (xo,yo~~o) * (r) if and only if 

The transversality condition (3.5) implies constraint qualifica- 

tion condition 

The only solution (p,q,r) E - 5(xo) x Y* x %(zo) i 
(3.10) {to the inclusion (p,q) ECF(xo~yotzo)*(r) is 

I p = 0, q = 0 and r = 0. 

When F is single-valued, we can set 

In this case, Theorem 3.3 reduces to a statement analogous to 

Theorem 3.2 of Rockafellar [to appearltl), where the derivative 

CF(xo,yo) is replaced by the generalized Jacobian aF(xotyo) 

introduced by Clarke [1976]b). We do not need to assume that F 

is locally Lipschitz, since we do not use the generalized jacobian. 

It is sufficient to assume only that the graph of F is closed. 

Corollary 3.2 

Let X,Y,Z be finite dimensional spaces, L C X and M C Z be 

closed subsets and F be a single-valued map from X x Y to Z with 

closed graph. We posit the transversality condition 



Then 

and G is pseudo-Lipschitz around (y otXo) . If F is continuous, 

there existsa neighborhood of x and a constant R p 0 such that 
0 

A 

Remar,k 

Let us observe also that by taking L = X and M = {O), 

we obtain the usual implicit function theorem for continuous maps 

(instead of locally Lipschitz maps, as in Clarke [1976], Hiriart- 

Urruty [I9791 1 .  In this case, we can assume that X is any Banach 

space, Y and Z being still finite dimensional. 

Corollary 3.3 

Let K:= {x E LIF(x) n M  # 8) where L C X  and M C Z  are closed 

subsets and where F:X - t Z  is a set-valued map with a closed graph. 

Let xo E K and z0 E F(x ) n M be fixed. If we assume that 
0 

then the tangent cone to K at xo satisfies 

3 . 6  { u E C L ( x o ) l ~ ~ ( x o t ~ o ) ( ~ )  nCM(z0) #!J}CCK(xO) 

A 
When F is a C' single-valued map, we obtain a result given 

in Aubin [I 9821 (see Aubin-Ekeland [I 9841 , Proposition 7.6.3, p. 440, 
which is true when X is a Banach space and Z a finite dimensional 

space). 

Proof of Theorem 3.3 

a) The graph of G is the projection onto Y x X of the subset 

Q = H(O,O, 0) where we set 



- 1 
(3.17) H(u,v,w);= Graph (F) x M x Y x L n B (u,v,w) 

where B is the linear map from X x Y x Z x Z x Y x X to X x Y x Z 

defined by 

Let ( x ~ , ~ ~ , z ~ )  E H(0,OtO)be chosen. We observe that the trans- 

versality condition (3.4) implies that 

Indeed, let (x,y,z) E X x Y x Z be chosen. Let z; belong to 
I 

Y CF ( x ~ , ~ ~ , z ~ )  (xIZ). By (3.4), there exist u E CL(xo) and 

w E C (Z ) such that z-zl E CF(xotyotzo) (u,$) - w. Hence, M 0 

CF(xo,yot~o) being a convex process, we have 

In other words, we have proved that 

(x,Y,z) = B(.X*~YI~*~W,O,U) where 

z x CM(zo) x y x CL(xo) (x*l~lz*lwlo~u) 'Graph(F) (xolYol 

Then ~roposition 7.6.3, p.440 of Aubin-Ekeland [I9841 implies that 

('Graph ( F )  (XotYotZo ) x C M (z o x Y x CL(x0)) n B-'(O) 

C C (X lY tzotzotYotxo) Q o o  

In other words, if we take (.u,v,w) E X x Y x Z such that 

then (u,v,w,w.v.u) belongs to C (x ,y , zot zotyotxo) . Therefore, 
Q o o  



(v,u) belongs to the tangent cone to Graph (G) at (yo,xo), or 

u E C G ( ~ ~ . X ~ )  (v) . (Indeed, if (yntxn ) E Graph(G) converges 

to (yotxo) and hn 5 0 converges to 0, we deduce that there are 

sequences u ,u' converging to u, v ,v' converging to v and n n n n 
wn,wA converging to w such that 

This implies that un = u' ntvn = v' w = w' and that n' n n 

i.e. that xn+hnun E G (yn+hnvn) for all n. Hence u CG (y0txo) ( v ) .  ) 

b) Theorem 2.1 applied to the map B defined on the closed sub- 

set Graph (I?) x M x Y x L implies that the set-valued map H defined 

by (3.17) is pseudo-Lipschitz around ((O,O,O), (xotyot~o,zotyot~o)). 

In particular, there exist R > 0 and r > 0 such that if 

max (Ilull, Ilvll, Ilwll) - < r , there exists (x,y,z) E X x Y x Z such 

that 

and 

max ( Ilx+u-x II , Ily+~-~ II , Il z+w-z II ) < 
0 0 0 - 

a max (Ilull , Ilvll , Ilwll) . 

By taking u = w = 0 and y = y we deduce that the map v-G(yo+v) 
0' 

is pseudo-Lipschitz around (yotxo). 

c) Let us consider now a pair (x,y). We choose x E L minimizing 

11c-xll over L and 5 E I?(x,y) and z E M minimizing Ilr;-zll on F(x,y) x M. - - - 
We set u = x-x,v = y-y and w = 5-2 so that llull = d (x) and llwll = 

0 L 
= d (I? (x,y) ,M) . Hence 



Since F is lower semicontinuous at x o f  Yo' there exists a - neighborhood V of such that d (x) = 1 1 ~ 1  < P g(F (xty) IM) - 
L - 

= IlwIl < p when (x,y) E V (because G(F(xty) ,MI 5 115-2 11 < P for some - 0 - 
5 E ~(x,y)). Let llvll - < p. Since H is pseudo-~ipschitz, there 

exists a solution ( % , ~ , ~ , ~ , ~ , % )  E H(O,O,O) such that 

(3.23) I < r max u v w = L max (dL(x), l~y-yoll, 6(F(x1y) ,M)) - 

By taking 9 = y = yo, we obtain inequality (3.7). 

Remark 

Let K be the map associating to y E Y the subset 

Since the graph of K is the image of Q:= H(O,O,O) by the 

map (x,y,z,z,y,x) -+ (y,x,z), the proof of Theorem 3.1 implies 

that 

(3.25) K is pseudo-Lipschitz around (yo , xot zO) 

and that 

If F is lower semicontinuous, inequality (3.23) implies that 

Remark 

If we take L = X (there are no constraints on x), we do not 

have to assume that the dimension of X is finite. We have to 

apply Proposition 7.6.3 of Aubin-Ekeland [I9841 and Theorem 3.7 



to the map Bo from (Graph (F) x M x Y to Y x Z defined by 

since the graph of G is the set of (y,x) such that 

~~(x,y,z,z,y) = (0,O) and (x,y,z) E Graph (F), M -  

The transversality condition (3.4) is replaced by 

and the derivative of G satisfies 

We shall apply corollary 3.3 to compute the epiderivative of the 

function x + V (x) + W (F (x) ) when F is a continuous single-valued 

map. When V is a function from X to IR U { + w } ,  we observe that the 

tangent cone C EP (v) 
(x,V (x) ) to the epigraph of V at a point 

(x,V(x)) (where x E Dom V) is the epigraph of a function denoted 

C+V(x) and called the epiderivative of V (see Aubin-Ekeland [I9841 

Definition 7.3.7, p.421). When V is Lipschitz around x, we obtain 

for all v E X 

(3.30) C+V (x) (v) = lim sup V(y+hv) - V(y) 
h E lR 

h + O  + 
Y + x  

Let X and Y be finite dimensional spaces and F be a single- 

valued map from Dom(F) C X to Y with closed graph, V:X + IR U {+m} 

and W:Y + IR U {+ml two lower semicontinuous proper functions. Let 

x E Dom V n Dom W satisfy the transversality condition: 
0 

(3.31) CF (xo) (Dam C+V (xo) 1 - Dom C+W(x ) = Y 
0 



Then 

i n  t h e  s e n s e  t h a t  

v v  E CF (xO) ( ~ u )  ,C+(.V+WF) ( x 0 )  ( u )  2 C+V (xO) ( u )  

( 3 . 3 3 )  

+ C+W(.F ( x o )  ( v )  . 

P r o o f  

W e  c o n s i d e r  the:.map G f r o m  X x  lR x  Y x  lR x  lR t o  Y x  lR d e f i n e d  

W e  o b s e r v e  t h a t  t h e  e p i g r a p h  o f  V + WF i s  t h e  i m a g e  u n d e r  t h e  

a p p l i c a t i o n  ( x , a , y , b , c )  -t ( x , c )  o f  t h e  s u b s e t  

I t  i s  e a s y  t o  c h e c k  t h a t  a s s u m p t i o n  ( 3 . 3 1 )  i m p l i e s  t h a t  

maps C ~ p  (v )  ( x o , V ( x o ) )  x  c EP ( W )  
( F ( x 0 )  rW(F(xO)  x IR 

o n t o  Y x l R .  Hence  C o r o l l a r y  3 . 3  i m p l i e s  t h a t  t h e  se t  o f  e l e m e n t s  

( u ,  A )  E C Ep ( V )  ( x o t V  ( x ~ )  ) 1 ( V ~ P  ) C E p  ( W )  ( F ( x o )  , W ( F ( x o ) )  a n d  v E IR 

s u c h  t h a t  C G ( x o , V ( ~ O ) ~ F ( ~ O ) , W ( F ( ~ O ) ) , V ( ~ O )  + W ( F ( x O ) )  maps 

( u ,  X , V , U  , v )  o n t o  ( 0 , O )  a r e  c o n t a i n e d  i n  t h e  t a n g e n t  c o n e  t o  Q a t  

(Xo , V ( x  o ) , F ( X ~ ) ~ W ( F ( ~ ~ ) ) , V ( ~ ~ )  + W ( F ( x o ) ) ) .  Hence 
v E C F ( X ~ )  ( u ) ,  A >_C+V(xo) ( u ) .  3 ) C W(F(x  1 )  ( v )  a n d  v = A+ II a n d  - + 0 

( u ,  A t v t  p , v )  b e l o n g s  t o  C ( x  , V ( x O )  , F  ( x O )  ,W(F ( x O )  ) (V+WF) ( x O )  1 .  Q 0 
T h i s  i m p l i e s  t h a t  v - 5 C+(V+WF) (x,) ( u )  . 



4. Applications to Local Controllability 

Let us consider a bounded set-valued map F from a closed 
n 

subset K C IRn to lR with closed graph and convex values, satis- 

fying 

By Haddad's Theorem, we know that for all 5 E K, the subset S$ (5) 

of viable solutions ( 3 )  to the differential inclusion 

is non-empty and closed in C(O,T:IR~) for all 5 E K. 

Let R(T,():= {x(T) Ix E ST(()) be the reachable set and M C R "  

the target, be a closed subset. We shall say that t.he system is 

locally controllable if 

(4.3) 0 E Int (R(T,() - M). 

This means that there exists a neighborhood U of 0 in IRn such that, 

for all u E U, there exists a solution x(*) E ST ( 5 )  such that 
x (T) E M + u. We denote by K c ST (6) the subset of solutions 
x E ST(<) such that x(T) E M. We denote by C 

$,(O (x) (T ) the 
I 

convex cone of elements v(T) when v ranges over the tangent cone 

We refer to Frankowska [ I  9841 , [to appear] a) and b) for the 
characterization of subspaces of CS ( ( )  (x) in terms of solutions to 

T 
a "linearized inclusion" around the trajectory ~ ( 0 ) .  

Theorem 4.3 

Let xo E K be a trajectory of (5.2) reaching M at time T. 

Assume that 



Then t h e  s y s t e m  i s  l o c a l l y  c o n t r o l l a b l e  and  t h e r e  e x i s t s  a  

ne ighborhood U o f  xo and  a  c o n s t a n t  R 

s o l u t i o n  x  E ST ( 5 )  i n  U ,  

F u r t h e r m o r e ,  

5 0  s u c h  t h a t ,  

P roo f  

f o r  any 

W e  a p p l y  Theorem 2.3 t o  t h e  c o n t i n u o u s  l i n e a r  map A f rom 

CI 0  ,T ;lRn) x  lRn t o  lRn d e f i n e d  by A ( x ,  y )  : = x(T) - y ,  t o  t h e  s u b s e t  

% ( [ )  x  M I  a t  ( x o . x o ( T ) )  E S T ( E )  x M .  W e  o b s e r v e  t h a t  A ( x o , x o @ ) )  

= 0  and  t h a t  c o n d i t i o n  ( 4 . 4 )  c a n  b e  w r i t t e n  

Hence 0  b e l o n g s  t o  t h e  i n t e r i o r  o f  A ( S  ( 5 )  x  M )  = R ( T I c )  - M and  
T  

t h e r e  e x i s t  c o n s t a n t s  r > 0  and  R . 0  s u c h  t h a t  WA-'  ( u ) n ( S T  (c)xM) 

i s  p s e u d o - L i p s c h i t z  a round ( O , x o , x o ( T ) ) .  L e t  u s  c o n s i d e r  now a  

b a l l  U o f  c e n t e r  xo a n d  r a d i u s  r .  L e t  u s  t a k e  a  s o l u t i o n  

x  E ST ( E )  n U o f  t h e  i n c l u s i o n  ( 4 . 2 )  so t h a t  dM ( x  (T) ) < llx ( T )  - 
- X ~ T )  - r .  L e t  y  b e l o n g  t o  n ( x  ( T ) ) .  Then I I ~ ( x , ~ ) l l = d ~ ( x ( T ) )  

M -1 
and w e  deduce  f rom t h e  f a c t  t h a t  w A  ( u )  n ( S T ( c )  x M )  i s  pseudo-  

L i p s c h i t z  t h a t  t h e r e  e x i s t s  % s u c h  t h a t  A (%,% ( T )  ) = 0  ( i . e . ,  a n  

e l e m e n t  2 E K )  s u c h  t h a t  d ( x , K )  - < Ilx-% 1 < - RIIO-A(x,y) 11 = Rd,(x(T))  . 
I n c l u s i o n  ( 4 . 6 )  f o l l o w s  from i n e q u a l i t y  ( 4 . 5 ) ,  a s  i n  t h e  p roo f  o f  

Theorem 3.2.  A 



NOTES 

The derivative of F at a point (x , y  ) of its graph is the 
0 0 

set-valued map CF (x oryo 
) from X to Y whose graph is the tangent 

cone C Graph ( F )  (Xo'Yo) to its graph at (xo,yo); it is a "closed 

convex process" (a map whose graph is a closed convex cone), which 

is the "set-valued" analogue to a continuous linear operator. 

We say that a set-valued map H from X to Y is lower semi- 

continuous at xo if for any yo € H(xo) and any neiyhborhood V of 

yo, there exists a neighborhood U of the x such that F(x) n V # J3 
0 

for all x E U. 

3 ,  A trajectory t -t x(t) is viable if, for all t E [O,T] , 
x(t) E K. 
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