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PREFACE 

In this paper, viability theorems are used to provide 
short proofs of extensions of Liapunov's second method to the 
case in which differential equations are replaced by differential 
inclusions, the Liapunov functions are only required to be 
continuous and viability constraints are present. 
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ABSTRACT 

The purpose of this note is to extend Liapunovls second 
method to the case of differential inclusions, when viability 
requirements are made and when the Liapunov functions are con- 
tinuous. 



A VIABILITY APPROACH TO 
LIAPUNOV'S SECOND METHOD 

Jean-Pierre Aubin 

When f is a continuous single-valued map from an open sub- 

set R of lRn to lRn and V is a differentiable function defined on 

R, the Liapunov method derives from estimates of the form 

informations on the behavior of a solution x(*) to the differen- 

tial equation x' = f(x), x(0) = xo given by inequalities of the 

form 

where w is a solution to the differential equation 

(see for instance ~oshizawa [ 19661 ) . 
We shall extend this result when we replace the differential 

equation by a differential inclusion, when we require viability 

conditions and when we assume that V is only continuous (because 
"interestingw examples of functions V are derived from non- 

differentiable norms, for instance). We look for solutions x(*) to 

( 4 )  for almost all tE[ 0.~1 ,x' (t) E F(x(t) ,x(O) = xo given in K 



satisfying 

i) Vt E [ O,T] ,x (t) belongs to a closed subset K (viability) 
(5) 

I ii) Vt E 0,Tl ,V(x (t) 5 w (t) 

where w(t) is a solution to the differential equation (3) . For 

that purpose, we choose among the concepts of tangent cones to 

subsets and generalized directional derivatives of a function 

- the contingent cone TK(x) to K at x, defined by 

(6) T~ (x) : = t v E nn 1 liminf d(x+hv,K) = 0) 
h + O +  h 

introduced by Bouligand [1932], (see also Aubin-Cellina 

[I9841 section 4.2, pp.176-177). 

- the hypo-contingent derivative D-V(x) of V at x, 

defined by 

(see Aubin-Cellina [1984], section 6.1, p.287). 

We shall prove the following: 

Theorem 1: 

Let V be a nonnegative continuous function defined on a 

neighborhood of the closed subset K and I) be a nonpositive con- 

tinuous function from JR+ to JR satisfying $(O) = 0. Let xo € K 

be given. 

(a) We assume that 

(8) 
F is upper semicontinuous with non-empty compact 

convex values. 
4 

If we replace estimate (1) by 

(9) Vx E K , ~ v  E F (x) fl TK (x) such that D-V(x) (v) - < ( V ( x )  ) 



there exist T > 0 and solutions w ( * )  , x ( * )  to the problem 

(31, (4) and (5). 

(b) We assume that 

(10 F is continuous with non-empty compact values 

If we posit the stronger estimate 

Vx E KtF(x) C TK(x) and sup D-V(x) (v) 5 $(v(x)) 
vEF (x) 

there exist T > 0 and solutions w(*), x(*) to the problem 

( 3 )  (4) and (5). 

(c) We assume that 

F is Lipschitz on a neighborhood of K and has non- 

(12) empty compact values and $ is Lipschitz on a neigh- 

borhood of [O,wo1 

Then estimate (11) implies the existence of T > 0 such 

that any solution (w(*) ,x(*)) to ( 3 )  and (4) satisfies 

property (5) . 
Remark : 

If we assume furthermore that F is bounded, we can take 

T = + in the above theorem. This implies that w(t) converges 

to some w, when t - where w,E[O,~(x~)l is a solution to the 

equation I) (w,) = 0. If I) (w) < 0 for all w > 0, we then deduce 

that 

(13) lim V(x(t)) = 0. 
t - t W  

Proof of Theorem 1: 

(a) We set: 

We introduce the viability domain 



which is a closed subset of IRn x IR x IR (where wo > V (xo) ) . 
We observe that if 

v E TK (x) satisfies D-V (x) (v) 2 q (~(x) ) 

then 

(v,q(w),O) belongs to ~ ~ ( x t w t h )  

Indeed, since v belongs to TK(x), there exist sequences of 

elements hn > 0 and vn converging to 0 and v such that 

Vn, x + hnvn E K 

By the very definition of D-V(x)(v), there exists a sequence 

of elements an E IR converging to D_V(X) (v) such that, for 

all n 1 0, 

If $(V(x)) = w, we take bn:= an + $(V(x)) - D-V(x) (w) if 
D-V(x) (w) > - and bn = $ (V (x) if D - V (x) (w) = - Q). 
If $ (V (x) ) < w, we take bn:= $ (w) and we deduce that 

V(x+hnvn) 2 w + hn$(w) for n large enough because V is 
continuous. In summary, bn converges to w and satisfies 

Vn,x + hnvn E K and V(x+hnvn) 2 w + hnbn 

This shows that (x+hnvn,w+hnbn,A+hnO) belongs to K and 

thus, that (y$ (w) , 0) belongs to TK (x,w, A). 
We consider now trajectories x ( * )  ,w ( a )  ,A ( * )  of the differ- 

ential inclusion 

[ i) (XI (t) ,w! (t) ,A' (t) ) E G(x (t) tw(t) A (t) 

(19) 1 ii) 0 w 0  A 0 1 = (xotV(x0) 10) 



which are viable in the sense that 

(20) fit E [OrTI r (x(t) rw(t) rA(t)) E K 

We then observe that A(t) = 0, that x(*) is a solution to 

(4), that w is a solution to (3) and that (20) implies 

properties (5). 

(b) If F satisfies assumptions (8) and (9), then G is also upper 

semicontinuous with compact convex values and 

G(x,w,A) nTK(xlw,A) # g. Hence Haddad's viability theorem 

(see Haddad 119811 Aubin-Cellina [1984] , Theorem 4.2.1, 
p.180) implies the existence of a solution to (19)-(20) on 

some interval. 

(c) If F satisfies assumptions (10) and (ll), then G is contin- 

uous with compact values and G (x,w, A) C TK (x,w, A) . Hence 

the viability theorem of Aubin-Clarke [1977] (see also 

Aubin-Cellina [1984], Theorem 4.6.1, p.198) implies the 

existence of a solution to (19)-(20) on some interval. 

(d) If F satisfies assumptions (11) and (12), then G is Lipschitz 

with compact values on a neighborhood of K and G(x,w,A) 

c TK (x,w,A) . Hence the invariance theorem of Clarke [19751 

(see also Aubin-Cellina [1984], Theorem 4.6.2, p.202) 

shows that any solution of (19) satisfies (20). 

Remark : 

We can solve in the same way the case when we consider 

I i) p nonnegative continuous functions Vi defined 
.J 

on a neighborhood of K 

ii) p nonpositive continuous functions I); from 
J I IR, to IR+ satisfying $ .  (0) = 0 

3 

and when we replace condition (5) by 

i) fit E 10 ,TI ,x (t) E K 
(22) 

ii) fit E [O.TI ,V = 1,. . . ,p,Vj (~(t) 5 W .  (t) 
j J 



where w.(*) is some solution to the differential equation 
3 

We have to replace Liapunov estimates (9) by 

Vx E K,3v E F(x) n TK(x) such that, 

V = 1 ,..., p, D-V.(x) (v) 2 qj(V (XI) 
j I j 

and estimate (11) by 

Vx E K,F(x) C TK(x) and V = l,...,p, j 

I sup D V (XI (v) 5 $ (Vs (XI 
vEF (x) - 3 3 3 

Therefore, the asymptotic properties of solutions to the differ- 

ential inclusions (4) are concealed in the following function 

defined by 

for set-valued maps F satisfying (8) or the function $ defined by 1 

(27) lJ1(w):= sup SUP D-V(x) (u) 
V(X)=W uEF(x) 

for set-valued maps F satisfying (10). 

Hence any continuous function $ larger than $ (or ql) will 
0 

provide solutions w ( * )  to (3) estimating the value V(x (t) ) on 

some trajectory of the differential inclusion (4). 

For instance, we obtain the following consequence on asymp- 

totic stability. 

Corollarv: 

Let V be a nonnegative continuous function defined on a 

neighborhood of K and let xo be given. Let F satisfy assumption 

(8). We assume further that A. EIR achieves the finite maximum 

in 



. - 
Po . - sup in£ (hw-$, (w) ) 

A Q R  wz0 

If po > 0 and V(xo) 5 gg (1-e-'oT) there exists a solution x(*) 

to the differential incyusion (4) satisfying 

- po(t-T) if ho = 0 

If po 5 0 and ho < 0, then there exists a solution x(*) to the 

differential inclusion (4) satisfying 

1 
(30) vt 2 0, V(x(t)) < (po - c ehot) where co = po-hoV(xo) 

0 
0 

Proof: We take $(w) := how - po 

Remark : 

Theorem 1 implies directly the asymptotic properties on U- 

monotone maps as they appear in corollaries 6 . 5 . 1  and 6 .5 .2 ,  pp. 320- 

321 of Aubin-Cellina (19841. 

Let U : IRn x IRn +IR+ (+ Urn) be a nonnegative function satis- 

f ying 

(31) U(yty) = 0 for all y E K 

which plays the role of a semidistance (without having to obey 

the triangle inequality). 

We assume that for all x E Kt x + U(x,y) is locally Lipschitz 

around K and we set 

Let @ be a continuous map fromlR+ tom+ such that @(O) = 0. We 

say that F is U-monotone (with respect to @ )  if 

Let us assume that c E K is an equilibrium of F (a solution to 



0 E F(c)) and that -F is U-monotone with respect to $. Then we 

observe that by taking V (x) := U (x,c) , we have 

Let w(*) be a solution to the differential equation 

If F satisfies either (8) or (lo), there exists a solution to 

the differential inclusion (4) satisfying 

(36) U(x(t),c) f ~ ( t )  for all t E [O,T]. 
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