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ABSTRACT

The stochastic generalized transportation problem (SGIP) has an
optimal solution: each of the connected subgraphs of its graph is
either a tree or a one-loop tree. We call such a graph an A-forest.
We propose here a finitely convergent method, the A-forest iteration
method, to solve the SGTP. It iterates from one base A-forest triple
to another base A-Forest triple. The iteration techniques constitute
some modifications of those for the first iteration method for
solving the stochastic transportation problem (STP), which was given
in [16]. Sensitivity Analysis and numerical examples are also given.



1. Introduction

In 1955 and 1956. some of the earliest papers on the stochastic pro-
gramming problem, under the name: linear programming under uncertainty
were published. Ferguson and Dantzig [7] [8| presented an allocation prob-
lem of aircraft to routes. In the modern terminology, this is a stochastic
linear problem with simpie recourse [27]. The demands are stochastic. If
we fix the demands, then we have a weighted distribution problem, or a
generalized transportation problem (GTP) [5]. Therefore. an appropriate
mathematical name of their problem is stochastic generalized transportation
problem (SGTP). In their papers, the distribution functions of the stochas-
tic demands are discrete. They proposed a special version of the simplex
method to solve them. This matenal. with minor changes. forms as the last
chapter of Dantzig's celebrated book [35].

In 1960, Elmaghraby [6] studied this problem with continuously distri-
buted random demands. He showed that Ferguson and Dantzig's method
will cause error in this case. He presented an iteration method for solving
it  He claimed that his method is fimtely convergent However, in each
iteration step. a SYSTEM of nonlinear simultaneous equations must be
solved. This is not so easy and the solutions of the system need not be
unique. He pointed out that at any iteration, several or even infinitely

many tableaux may ensue.



Since then. in almost twenty years. several papers appeared which dis-
cuss a relatively simpie case: the stochastic transportation problem (STP),
where all transtormation coefficients are 1's. [3] [23] [28] [29] [30] [31].
The SGTP was discussed in few papers [1]. Some authors proposed the use
of some general convex programming algorithms to solve the STP or SGTP.
These methods are not finitély convergent in general. Some of them . like -

[29] [30] gave some easily calculated prior bounds for the STP.

In [16], we have presented a finitely convergent method, namely the
forest iteration method, to solve the STP. This method is based on the
network structure of the problem. At each step, the nonlinear problem
consists of solving a small number of one-dimensional monotone equations.
Modifications of this method can be fourd in [17].

The difference between the SGIP and the STP is that the graph of a
"basic" optirﬁal solution of the SGIP is not necessarily a collection of
trees, i.e., a forest, but a collection of trees and one~loop trees, which
we call A-trees. We call such a graph an A-forest. However, it is still
possible to develop an iteration method for solving the SGTP, which is
based on A-forests and has the same characteristics as the forest
iteration method for the STP.

In Section2, we state the formulation of the SGTP as well as its
optimality conditions. In Section3, we define A-forests and discuss their
properties. In Sectionl4, we discuss the minimization problem on an A-forest
when we discard the nonnegativity restrictions. In Sections 5 and 6, we
discuss the iteration techniques: cutting, connecting and pivoting.
Campared with [16], the technique of connecting is improved so that it is
not necessary to calculate the flow changes in connecting. There are

also same other improvements for those techniques. In



Section 7, we give the A-forest iteration algorithm and its convergence
theorem. In Section 8. we give sensitivity analyses. In Section 9, we
use Elmaghraby’s allocation problem as our numerical example. Elmaghraby
used the solution, when the demands were considered fixed at its expected
values, as the starting point ot his method in his example. We see that the
optimal A-forest is alreadv in hand in this example and few calculations of
the method described in Section 4 will give an optimal solution. This
shows that in many cases the required iteration number will be very small if
we start from a good approximate solution. In Section 10. we use this
example to illustrate sensitivity analyses and the iteration techniques.

Our method can be extended to the generalized network flow problem
case [5] [13] [24]. This extension work is similar to what we have done for

the STP in [16]. We shall not repeat it here.



2. The Stochastic Generalized Transportation Problem

The formulation of the SGTP is as follows [1] [5] [6] [7] [8]:

. n
mn v CiXj;+ 3§ d)J(WJ)
XW(1))eS =1

.t T Xij= aj, 1=1,....m,
(i.))eS

Ti TijXij = Wj, j=1,....n
(i,))eS

xij= 0, all (i,]) €S,

where
bj(w) = qi" [ (wj-€)dF(§) + q5 [ (&~ w)dFj(§))
§i< Wj §j> Wj
S : the set of available cells.
aj: the available amount of resource i, a; > O.
Cjj: the cost of manufacturing pfoduct ] using one unit of source i. ¢j; =
0.
Xijj: the quantity of resource i devoted to product j in specific unit time.
rij: the productivity per unit of resource i when producing item j.

wi: the amount of product j produced in specific unit time.



§j: the observed value of ;.
£;: the random varnable of demand for product j.

Fj: the marginal distribution function of boid ;. which is known.

qf’: the salvage cost per unit of excess inventory of item 1}
qj : the penalty cost per unit of inventory shortage of item }.

We assume qj = g + g = 0. 1Tn (1], the transformation coeffi-

cients are in the constraints containing a;. [t is the same thing essentially

since we can put Xij = rijxjj to transfer this formulation to that formula-
tion. If we have rj; = 1, for all i and j, then we get the formulation of
the STP.

According to [25], we know that ¢ is convex and continuous. We can
add m slack variables x| p+1.,----- Xm.n+1 10 (2.1) to change it to the fol-

lowing form:

. n
min ¥ CiXijt+ T $j(W))
XW (i, ])eS =

S.t Sj Xij = aj, 1=1,....m.
(i,j)€S

Si TijXij = Wi, j=1....,n,
(i.))eS

xij= 0. all (i,j)eS,



where we extend S to S to include all slack variables.

In many practical situations, all rj;'s are nonnegative. We denote such
problems as the SGTP*. Sometimes, we also call a variable xjj a slack
variable if rjj = 0. To simplify our discussion. we suppose all rjj # 0.

According to convex programming theory [18] [19]. (x. w) is an optimal
solution if and only if there exast u € RM. v ¢ RM such that

sj Xij= aj, i=1...m
(i.)eS
Si TijXij= wj, j=1,...,n,

(i,))eS

(2.3)

If we fix w at (2.2) and only minimize on x. we get a generalized tran-



sportation problem (GTP), or sometimes called weighted distribution prob-
lem. We denote it by T(w). According to linear programming theory, X is
an optimal solution of T(w) if and only if there exist u € R™, v € R? such

that
S Xij= aj, i=1,...,m,
(i.))€S

Ti TijXij= wj, j=1,....n,
(1,))eS

xjj(cij— ui—1ijvy) = 0. (i,)) €S,
UiXin+1 =0, 1=1,....m,
—Vje adaj(wj), j=1,...,n
We see that the only difference between (2.3) and (2.4) is that (2.3)
has one more condition. the last conditjon.

In [5], Dantzig gave a nice method to solve the GTP. Consider solu-

tions on an m X (n+1) tableau. What we are interested is [S] [13]:



Theorem 2.1 If a GTP is solvable, then it has an optimal basic graph, each
of whose connected subgraphs is either a tree with exactly one slack varni-

able, or a one-loop tree without slack variables. O

We give such a graph a name: an A-forest We discuss such A-forests
in detail in the next section.

Denote the objective function of (2.2) by cx + &(w).



3. A-Forests

Suppose we have an m X (n+1) transportation tableau T. The n+1

column is for slack vanables. Suppose we have coefficients ¢jj's and ryj's

given by (2.1) associated with T.

Definition 3.1 Suppose we have a set of cells on T, which forms a loop and
which has no slack vanables. Then the coefficients of 1's and Tij's 1In
(2.1) forms a square matrix If this matrix is nonsingular, we call this cycle

a proper loop; otherwise, we call it a false loop. C

Note that there is no proper loop in the standard transportation prob-

lem.

Definition 3.2 On T, a graph is called a one-loop tree, or an A-tree, if it is
connected and has exactly one loop. which is a proper loop, and if it has nb
slack vanables. A graph is called an A-forest, if each of its connected sub-
graphs is a tree or an A-tree and its row indices run throughout {1,....m}

a

In Fig.1l, we see an example of an A-forest with an A-tree component
and a tree component
According to Theorem 3.2 of [16], the number of cells of a forest

is no more than m+n. This is also true for an A-forest even though it has
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loops.

Theorem 3.3 The number of cells of an A-forest is no more than m+ n.

and no less than m.

Proof Since the row index set of an A-forest runs throughout {1...., m}, we
have the second conclusion. For any k-component A-forest (k>1), if it has
a loop, we can break this loop by deleting a cell on the loop and we can
insert a cell in the column of the deleted cell and in a row containing a cell
of another component. The resulting graph is a k-1 component A-forest,
the number of whose cells is the same and the number of whose loop is
reduced. In this way, we can break all the loops of an A-forest without
changing the number of the cells. Now we have a forest with the same

number of cells as the original A-forest  According to Theorem 3.1 of

[16], we have our conclusiocn. o

Applying this to (2.2), we have

Definition 3.4 Let x ¢ RMx(n+1) and Gr % the graph of x, be the graph
associated with the set { (i.j) | x;; # 0 } If (xw) is a feasible point of
(2.2) and f = Gr x is an A-forest. then we call (x.w) an A-forest point of
(2.2) and (xw: f) an A-forest triple of (2.2). [If (x*.w*) is an optimal

solution of (2.2) and t* = Gr x* is an A-torest. then we call t* an optimal
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A-forest of (2.2), and (x*,w*; f*) an optimal A-forest triple of (2.2).

O

The following lemma can be proved by Theorem 2.1 and Definition 3.1:

Lemma 3.5 If a GTP is solvable, then it has an optimal basic graph. which

is an A-forest.
Now we have

Theorem 3.6 The SGTP (2.2) has an optimal A-forest triple.

Proof Replace wjs in the objective function by combinations of xjj's. We
see that (2.2) becomes an optimization problem in x Clearly, it is feasible
and the feasible set is compact. Since the objective function is continuous,
we know that it attains a minimum. Suppose (X w*) is an optimal solution
of (2.2). Then T(w*) is feasibie and bounded. According to the theory of
linear programming and Lemma 3.5, T(w*) has a basic optimal solution x*
such that f* = Gr x* is an A-forest Comparing objective values. we see
that (x*.w*) is also an optimal solution of (2.2). Therefore. (x*,w*; f*) is

an optimal A-forest triple of (2.2). u]
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Figure 1. A-forest

(The loop is a proper loop here.)
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4.4. Minimization on an A-Forest

As in [16], we use M and N to denote the row index set and
the column index set (not including n+1) of a graph s. If we have a cell
(i,j) such that i € Mg and j € N, then we say (i,]) is in the area of s.
Ifie€ Mg, j€ Ny, and s and t are unconnected. then we say that (i.j) is
in the joint area of s and t

Suppose f is an A-forest Consider to solving

min ¥ CijXij+ T oj(wj)
Wi j)et jENt

s.L 3§ Xij= aj, 1=1,....m,

(i, et
(4.1)

Si TijXij = Wi, je Ng.

(i.))et
If fis an optimal A-forest, an optimal solution of (4.1) will be a part of an
optimal solution of (2.2), with other parts being zeros. Without confusion,
when we talk about an optimal solution (x.w) of (4.1) in the following, it
implies that we talk about an m X (n+1) + n vector such that its
corresponding part is an optimal solution of (4.1) and other parts are zeros.

As in Theorem 4.1 of [16],‘ if £ is a k-component A-forest, k >

1, then (4.1) can be separated into k minimization problems:
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min ¥ CijXjjt T oj(Wj)
XWo(i,))et j€Nt

stosj Xij= 2, 1e My,
(i,))et

Si TijXij= Wj, je Ny

(i.))et

where t's are component trees or component A-trees of f.

We discuss (4.2) in three different cases.
A. Minimization on a tree with a slack variable x p ..

The tree in Fig. 1 is an example. The necessary and sufficient condi-

tions of optimal solutions on such a tree t are:

S Xij= aj. leMy,
(i,))et

Ti TijXij= Wi, je Ny,

=
(e (4.3)

Ui + 15 vy = Gy, (L)) et.
up = 0,

—Vj€ 8d)j(Wj), j€ N .
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Similarly to [16], the third and the fourth expressions of (4.3)
form a tnangular linear system of u;’s and v;'s; the first and the second
expressions of (4.3) form a tnangular linear system of xjj’'s. We can use
the former tnangular linear system to get uj's and vj's. use the fifth

expression of (4.3) to determine wj's, and use the latter triangular linear sys-

tem to determine Xj's.

B. Minimization on a tree without slack variables.

The necessary and sutficient conditions of optimal solutions on such a

tree t are:

(4.4)

uj + Tijvj = cij, (iLj)et,

_Vj € a(‘bj(Wj), j& N[.

Again, this is similar to [16] and we still have triangularity.
Treat any vj as a parameter d. Then we can solve the third expression of

(4.4) to get other ui's and vj's in term of this parameter d. We see that

the first and the second expressions of (4.4) form a linear system such that
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the number of variables xjj's is less than the number of equations by 1.
Therefore, in nondegenerate case, we can cancel xjj's to get a linear equa-
tion of wj's:

S ejo = €. (4-5)

j€Ny

for some coefficients e; and eg. By the fourth expression of (4.4), we
know wj is a nonincreasing function ot vj, therefore also of d. for j € V.
Therefore. (4.5) gives us a nonlinear equation of d. Solving this nonlinear
equation, we get d. In terms of d. we can get ui's and vj's. By the
fourth expression of (4.4), we can get w;'s. By the first and the second
expressions of (4.4), we can now get xjj's. In degenerate case. as long as
(4.2) is feasible, we still can get an expression (4.5) which is consistent with
the coefficient matrix of the first and the second sets ot (4.4). In the case
of the SGTP*. we can see that when treating a vy as a parameter d. other
vi's can be expressed by a linear expression of this parameter with positive

coefficient: i.e..

v = C!jd+ Bj C!j>0, tor j € Ny.

And it is not too difficult to prove that all e;’s have the same signs in the
SGTP* case. Therefore. (4.5) gives us a monotone equation of d in this

case.
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C. Minimization on an A-tree.

The A-tree in Fig. 1 is an example. The necessary and sufficient con-
ditions of optimal solutions on such an A-tree t are the same as (4.4) in
appearance, though in fact there is a loop. which means that there is one
more equation in the first and the second expressions of (4.4) and that there
is one more equation in the third expression too. According to our assump-
tion on proper loops. we know that the third expression of (4.4) forms a
nonsingular linear system. which is near-triangular [S], and the first and the
second expressions of (4.1) form a nonsingular near-triangular linear system
too. Therefore, we can solve the third expression of (4.4) to get u;’'s and
vi's. A nice method to solve such a system is given in [5]. ie.. treating
any u; or v as a parameter, we shall get other u;’s and vj's in terms of
this parameter. There is exactly one uj or one Vv; which has two linear
expressions in term of this parameter. By equating these two expressions.
we get this parameter. therefore. other u;’s and v;'s. From the fourth
expression of (4.4), we get wy's. Applying the same method to the first

and the second expressions of (4.4). we get x;j's.



- 20 -

Proof According to (5.3). we have

r=1- min —K’l.—
(iper X1 7 Xl
Since J = &, we know r < 1. Therefore, (5.6) holds. According to

(5.2), (5.4) and the convexity of the objective function, we know (5.5)

holds. m]

Theorem 5.4 Suppose we have an A-forest triple (x.w; f), which is not a
base A-forest triple. By repeating the cutting technique at most n times, we

obtain a base A-forest triple (x'.w'; f’) such that (5.5) holds.

Proof By (5.6), the number of cells of the A-forest is strictly decreasing in
each cutting if it is still not a base A-forest triple. According to Theorem

3.3, we have our conclusion. =]
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If fis not a base A-forest tripie. then we can get an optimal solution (kW)

of (4.1) such that T:= {(i,j) | k; < 0} # <& and

cX + (W) < cx + d(w) (5.2)
Now take
re=mn{r [0=sr=1, 1)+ r'x= 0} (5.3)
and
x' = (I-n)x+ < (5.4)
Let w' correspond to x', f' = Gr x'. Then (x',w'; f') is an A-forest

triple of (2.2), and (5.1) holds according to the convexity of the objective
function and (5.2). In general, we don't know whether strict inequality

holds in (5.1) or not since r may be 1. However, we have

Theorem 5.3 In the above case. if J:= {(ij) € I|x;;= 0} = &, in

particular if (x w; t) is an A-forest triple, then

cx' 4+ (W) < cx + d(w) (5.5)

and

(' Cff o* f (5.6)
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S. Base A-Forest Triples and Cutting

In the forest iteration method for solving the STP. the concept of the

base forest triple plays a fundamental role. Here we have

Definition 5.1 If (x,w; f) is an A-forest triple of (2.2) and the correspond-
ing part of (x,w) is an optimal solution of (4.1) associated with f. then f is
called a base A-forest of (2.2) and (x.w; f) is called a base A-forest triple

of (2.2). o

From an A-forest triple, we need a method to get a base A-forest triple
with a lower objective value. The technique is again called cutting. We

now need to extend the concept of A-forest triple.

Definition 5.2 If (gw) is a feasible point of (2.2) and f 2O Gr x is an A-
forest, then we call (x.w; f) a generalized A-forest triple of (2.2).

O

Cutting Suppose we have a generalized A-forest triple (xw; f) of (2.2).
We solve (4.1) on f. If f is a base A-forest. then we can get a nonnega-
tive optimal solution (x',w’') of (4.1) such that (x',w’; f) is a base A-

forest triple and

cx' + d(W') = cx + (W) (5.1)
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6. Connecting and Pivoting

If (xw; f) is a base A-forest triple. then there are u ¢ Rm, v ¢ R"

such that

T Xij= ai. =le..,m
(i.j)eS

i TijXij= Wi, jJ=1l...,n,
(i,))eS

xij= 0. all(i.j)e$,

(6.1)
uj + vy = G, (ij)ef,
uij= 0, for(in+1)ef,
xij= 0. all(i,j)eS-f,
—vijeddj(wy), =1,...,n
Comparing (6.1) with (2.3), we see that if
uj+ vy = ¢jj. (i.jjeS-f, (6.2)

and

u; = 0. for(i.n+1)eS~f, (6.3)
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then (x.w; f) is an optimal A-forest triple of (2.2). If (6.2) or (6.3) is not
satisfied, we need to apply connecting or pivoting. For connecting, we fol-

low an idea similar to Chapter 3: connecting without changing flows.

A. Connecting If in above there is a cell (h.k) violating (6.2), (h,k) is in
the joint area of two distinct components of f, and not both of these two
components are A-trees, then we simply let f=fU {hk)} Orifin
above f has no slack variable and there is a cell (h,n+1) violating (6.3), we
let f = fU {(h.n+1)}. Then, we get a generalized A-forest triple (x,w; f).

Suppose F is continuous. Similarly to [16], we know ¢ is dif-

ferentiable and we have

Theorem 6.1 (Connecting) In the above. if we apply cutting to (x,w; f)

once, we shall get an A-forest triple (x',w’; f’) such that
cx' + (W) < cx + d(W) (6.4)
and
(h.k) € f". (6.5)
where k= n+1 in the second case.

Proof Suppose h is in the row index set of a component of f. Then there

is a cell (h;p) € . Let 8 be a small positive number and
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Xhk(d) = 3, W(d) = Wy + rhgO.
ihp(a) = th - 6. WP(S) = Wp - rhpa.
Xij(3) = xjj, wi(d) = wy

for other (i.j)'s and js. For & small enough. since xnp > 0. we know that
(%(8),w(3); f) is an A-forest triple, where f = Gr x(8) = f U {(h.k)}

Now, we prove that for & small enough,

cx(8) + d(WMB)) < cx + (W) (6.6)

As in [16], we see that

e(8) := (cX(3)+ d(W(d))) — (cx+ d(W))
= (Chk = Chp)d + dk(Wk+ rpkd) — bk (W)

T dp(Wp— rhpd) = dp(Wp)

is a differentiable convex function of & and

e'(0):= chk — Chp+ Thkd k(Wk) — Thpd' p(Wp)
= Chk — Uh — ThpVp + Thk &'k (Wk) — Thp &' p (Wp)
= Chk — Uh — Thk Vk + Thk (Vk + &'k (Wk)) = Thp (Vp + &'p (Wp))
The second equality of e(0) is due to (h.p) € t and (6.1). According to

(6.1).

- vk = & k(Wk) —Vp = &' p(Wp)
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Therefore,
e(0) = chk — up — Thk vk < 0.

This proves that (6.6) holds for 8 small enough.

We now apply cutting on (x.w; ). If f is a base A-forest. then (4.1)
has an optimal solution (x’,w’) such that x’,w’; f’ =-f) 1s an A-forest tri-
ple with lower objective value and satisfies (6.5). Suppose that f is not a
base A-forest and that we find an optimal solution (xw) of (4.1) on f.

Then
ck+ d(Ww) < cx + od(w) (6.7)
We claim that
Xhk = 0. (6.8)

Suppose we get an A-forest triple (x(3),Ww(3); f(8)) by applying cutting to

(%(8),%(8); f). By (5.5) and (6.6), we have
cx(3) + d(W(d)) < cx(B) + d(W(B)) < cx + d(w). (6.9)
If (6.8) does not hold. then when 3 is small enough, we have

Xpk(d) = 0.
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This implies that
£(8) C ¢

Since (x.w; f) is a base A-torest triple and (X3),w(3)) is nonnegative, we

know that
cx + (W) = cx + & (W(d)). (6.10)

(6.9) and (6.10) are contradicted to each other. Therefore, (6.8) hoilds.
This proves that J = & in Theorem 5.3.  According to Theorem 3.3. we
know that if we apply cutting to (xw; f), we can get an A-forest triple
(x',w’; t") such that (6.4) hoilds. According to (6.8), we know that (6.3)

also holds. This completes our proof. C

B. Pivoting If (xw; f) is a base A-torest triple but (6.2) or (6.3) is
violated at a cell (h.k), and if (h,k) is not located in a location described in
cutting, then we do pivoting as described on pages 418-419 of [5]: Assume
Xhk IS increased into 8. We have Awy = - rpe 8, Aap = -8, other Aaj’s
and Awj's are zeros. Then we can solve Axjj on the bne or two com-
ponents of . whose area or joint area (h.k) is. in term ot 8 multiplied by
some real numbers. Since xj's on f are positive, we can determine 8§ and

an exit cell on . Then we can make the changes in x
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We have

Theorem 6.2 (Pivoting) In pivoting described above, we get a new A-forest
triple such that w s not changed, that the objective value 1s stnctly
decreased by a quantity of (up + rpg Vg — Chk )8, Or up n+1 8 correspondingly,

where 8 is positive.

Proof The key point to prove is that we can get an strict decrease of the
objective value. It suffices to prove that the current value of x is not an
optimal solution of T(w). Consider the area of the subgraph including
(h.k). Consider the minimization problem of fixing x;'s out of this area
and fixing all wy's in (2.2). This is a linear programming problem. We
know that the current value of x is not an optimal solution of this subprob-
lem since (6.2) or (6.3) is violated at (h.k) and sin.ce the current basic solu-
tion for this subproblem is positive, i.e., nondegenerate. Therefore. the
current value of x is not an optimal solution of T(w). The expression of
the decrease of the objective value is obtained from the theory of linear pro-

gramming too. This proves our theorem. C

Example for pivoting Suppose f is the A-forest in Fig. 1 and (h.k) =
(7.6). Assume that x7¢ Is increased to 6. Then we put da; = -6, Awg

= -r760, other Aa;’s and other Aw;'s zeros. We have system for Axj's:
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Axyy + Axy7 = 0,
Ax77 + Ax9g = — 8,

Axge + Axgg = 0.

Axgr + Axgg = 0.
ry2 x> + rog Axgz = 0,
rge Axge = — 1769,

r474x47 + 1774%77 = 0,
r7§ Ax7g + rgg Axgg + rog Axgg = 0.
After solving Axges and Axgg, we get a nonlinear system on the loop. We
can choose one Axj, say Axyp as a parameter. Then it can be used in
turn to express other Axj’s and back to Axy;. This gives an equation in
Axy2 alone. and the latter can be numencally evaluated. Substituting Axy
to the expressions of other Axjj's. we can evaluate other Ax;;’s numerically.
Now all Axjjs are expressed by 6 homogeneously. Comparing them with

current xjj's, we can determine the value of 6 and an exit cell
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7. The A-Forest Iteration Algorithm
Now we can give the algorithm and its convergence theorem.

Algorithm 7.1 (A-Forest Iteration Algorithm)

(1) Starting from an estimate w of the optimal w*, solve T(w) to get an
A-forest triple (x.w; f). A convenient estimate of w is the expected value
of the demand.

(2) Apply repeated cuttings to get a base forest triple with a lower objec-
tive value.

(3) Check whether (6.2) and (6.3) are satisfied or not If they are satis-
fied, an optimal A-forest triple is in hand. Stop. If they are not, do con-

necting or pivoting. Go to Step 2. =

Theorem 7.2 (Convergence Theorem) If F is continuous. then Algorithm

7.1 converges in finitely many steps.

Proof According to Theorem 6.1 and Theorem 6.2. we have a strict
decrease of the objective value from one base A-forest triple to another base
A-forest triple. Since the number of base A-forest triples is finite. we get

our conclusion. ]
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8. Sensitivity Analyses

Suppose we have an optimal A-forest triple (x,w; f) with multipliers
uand v. We discuss when the optimal A-forest will remain an optimal

A-forest under perturbations of the data. We divide the perturbations

of data into several cases:

(A). Perturbation of a direct cost coefficient ¢ p .

This case is the same as the case for the STP. Therefore. we only list

the results.

(1). (h.k) 1s not 1n £

If we increase cpi, (x,w; f) is still an optimal A-forest tniple since (2.3)
still holds. On the other hand, the maximal decrease of cpyx such that the
optimality is not changed is cj,k - Up - ThkVk. When we decrease Cpk
greater than cpg — up — ThkVk. (xw; f) loses optimality and iteration
techniques described in Sections 5 and 6 are needed to get an optimal

A-forest triple.

(2). (h.k) is column non-comer cell of f. i.e., (h,k) is in f and in the h-th
row there is no other cell of f. e.g, (2.2) and (3,7) in Fig.1.

The behavior is the converse of (1). If we decrease chg, (xw: f) is
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still an optimal solution. However, the objective value decreases by a quan-
tity equal to the change of chyXpk. The maximal increase of cpy such that
the optimality is not changed is min {chj — up — rhk.vk [ ] =1,2,....n+ 1,
] #k L Otherwise, iteration techniques are needed to get an optimal A-

forest triple.

(3). (h,k) is in f and (2) does not hold.

We should use the method described in Section 4.4 to recalculate u, v,
w and x or; the component of f where (h,k) is, then check optimality by
(2.3). If (2.3) holds with the new u, v and x, then f is still an optimal
A-forest with new (x.w). If (2.3) does not hold, then iteration techniques

are needed to get an optimal A-forest triple.

{B). Perturbation of a transformation coefficient r ik, where (h.k) is not

in f.

We confine the discussion to the SGTP*. Suppose wy is positive. Then

there is a cell (p,k) € f such that
uy + TpkVk = Cpk-

Since up is nonpositive, since Cpk is nonnegative and since rpk IS positive,
we know that vy is nonnegative. If vy is zero. whatever ry, is. there is no

change in optimality. Suppose vk is positive. If we decrease rpk, (x.w; f)



- 31 -

is still an optimal A-forest triple since (2.3) still holds. Similarly. we know
that the maximal increase of ryp  such that the optimality is not changed is
(chk — Uh — ThkVk)/Vk. Otherwise, iteration techniques are needed to get

a new optimal A-forest triple.
(C). Other cases.

There are three other cases: perturbation of a transformation coefficient
The, Where (h.k) is in f; perturbation of a resource a;; perturbation of a
penalty coefficient qx~ or qx . In all these cases, we face the same situa-
tion of (A)3). We need to use the method described in Section 4.4 to
recalculate u, v. w and x on the component of f, where (h.k) is. then check
optimality by (2.3). If (2.3) holds with the new u. v and x then f is still
an optimal A-forest with new (x w). If (2.3) does not hold. then iteration

techniques are needed to get an optimal A-forest triple.

A numerical illustration is given in Section 10.
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9. An Example

In [6], Elmaghraby gave a numerical example which is a modification of
the problem of allocation of aircraft to rou.tes, presented by Ferguson and
Dantzig in [8].

The problem. simply stated. is the following. An airline company
operates more than one route, and has available more than one type of air-
craft  Each type has its relevant capacity and costs of operation. The
demand on each route is known only in the form of a distribution tunction,
and the question asked is: which aircraft should be allocated to which route
in order to minimize the expected total cost of operation? This latter
involves two kinds of costs: the direct costs connected with running and ser-
vicing an aircraft. and the penalty costs incurred whenever a passenger is
denied transportation because of lack of seating capacity. However. there is
no salvage cost of excess seating capacity, i.e., q;7 = 0 in (2.1).

In this example. m = 4, n = 5, S = {(1.1). (1.2), (1,3), (1.4). (1,3),
(2.2), (2.3), (2.4), (2.5), (3.2), (3,4), (3.5), (41), (42), (43), (44,
(4.5)}. Elmaghraby gave his data with an optimal allocation (x,w), when

the demand is considered fixed at its expected value. as follows:
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Air- | routes j Available
craft _ 1 Alrcraft
i 1 2 3 4 5 a

x10 x 0 x 0 x 0 x O
1 rlé ri1s r 28 r23 r 81 10
c18 c2l c18 clb c10
x 8 X 5 x 6 x 0
2 r10 rl4 rl1s r 57 19
c15 cl6 cld c9
x 7.8 x 0 x17.2
3 rS r 7 r29 25
c10 c9 c 6
x10 x O x 5 x 0 x O
4 ro9 ril r22 rl7 rS55 15
cl7 clé c17 c1S c10
qg | 13 13 | 7 7 !
w | 250 119 | 180 90 198.8

Table 1

where Xij is in units of aircrafg Tij and w; are in 100 passengers; Cij iIs in
$1000 units, q;~ is in $10 units. This makes the unit of cjj xj; and the
“unit of q;” wj the same so that we can sum up them in the objective
function without consideration of units. Here we amit all the

subscripts in our tables. Therefore, a. x. w, u. v, r. ¢. q and p represent
aj, Xih Wj Upp Vj Tij Cij qj and pj correspondingly.

Let p; be the probability density tunction of the demand for the jth

product. Elmaghraby's data are as follows:
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Route I[nterval(In hundreds density
j of passengers) p
190 - 210 0.01
210 - 240 0.005/3
1 240 - 260 0.0175
260 - 290 0.02/3
| 290 - 310 0.01
0-100 0.003
2 100 - 200 0.007
130 - 150 0.005
150 - 170 0.010
3 170 - 190 0.020
190 - 210 0.010
210 - 230 0.005
0- 30 0.02/3
30- 70 0.005
4 70 - 90 0.015
90 - 110 0.010
330 - 350 0.005
‘ 570 - 590 0.005
5 590 - 610 0.040
610 - 630 | 0.005
Table 2

In other places, the density functions are zeros.

Elmaghraby used the (x,w) in the first table as his starting point As
expected, f = Gr x is already an optimal forest In [6], Elmaghraby
noticed that the cells containing a positive aliocation are identical in his
starting point and the optimal solution. He used the term configuration and
defined it as any pattern of positive and zero cells in the tableau. Thus. he
said in a matrix of N cells there were all possible configurations correspond-

ing to the 2N possible allocations ot positive or zero entries in the cells.
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He suggested assuming the configuration at the outset and solving the set of
simultaneous equations. What he did not notice in [6] is that only some
special configurations should be treated: that is, A-forests. We first see
numencally how we can get the optimal solution by the method given in

Section 4 if we know the optimal forest

The A-forest f = Gr x is a one-tree forest [t does not contain slack
variables. Suppose vy = d. By the third set of equations of (4.4), we get

u; = 18 - 164, ur» = 16 - 63d/11,

uzy = 10.5 - 63d/22. ug = 17 - 9d,

vy = -0.1 + 63d/110, vy = 9d/22. (9.1)

vy = -2/15 + 21d/55, vs = -9/58 + 63d/638.
By the first and the second sets of equations of (4.4). we get

2wy + 126wy + 9ws + 8.dwy + 63ws/29 = 10459 (9.2)

This is the numerical realization of (4.5). 1In this example, &; is continu-
ously differentiable. According to the fourth set of equations of (4.4). we

have

vi= (Wil =12.345, (9.3)

where
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$i(w) = a7 [y - w)fi(yndy. (9.4)

W)

Solving above equations. we get d = 9.8311. The values of w. v and u; +

rijvj - cjj are as follows:

| u+ v-c
, .
=l j=2 =3 =4 =3
1] 0 -77.340 | -44.687 | -72.082 | -82.232 | -139.2976
2 0 0 0 -28.816 -40.3054
3| 0 -1.310 0 -17.6527
4.0 -26.644 0 -24.933 | -36.621 -71.4799
v | 9.8311 5.5305 40218 | 36204 | 0.8156

Table 3

From (9.3) and (9.4), we get w; Solving the first and the second sets of

equations of (4.4), we get xjj. The results are as follows:

X
1 ] a
=1 =2 =3 =4 =5
1 10 0 0 0 0 10
2 11.631 |  2.334 5.035 0 19
3 4.582 0 20.418 25
4 8.473 0 6.327 0 0 15
w | 236.527 | 139.225 | 176.273 | 75.520 592.108
Table 4

We see that all xjj's are nonnegative and that u; + rjvj = ¢jj. for all i
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and J. Therefore, we have obtained an optimal solution. The optimal cost
is § 1,699.456. The results are the same as Elmaghraby's (there was a mis-

take in wj, therefore also in the optimal cost. in [6]).
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10. Sensitivity Analvses of This Example

We can use above example as a numerical illustration of the discussions

in Sections 5, 6 and 8.
(I). The cases when (x,w; f) remains an optimal forest triple.

There are three cases discussed in Section 4.8, when (x w; f) remains

an optimal forest triple. i.e., (A).(1), (A).(2), (B).

(1). Perturbation of a direct cost coefficient cpx. where (h.k) i1s not in f
From Table 3. we see that if (h.k) € {(1.2). (1.3), (1.4), (1.,5), (4,2),

(4.4), (4.5)}. cpk can be any nonnegative number without changing the

optimality of (xw; f). For (h.k) = (2.5). c25 can be changed by A ¢

[-2.8156. + x); for (h.k) = (3,4), ¢34 can be changed by A € [-1.3099,

+ =) without changing the optimality of (x.w; f). There is no change of

the optimal cost in this case.

(2). Perturbation of a direct cost coefficient chy. where (h.k) is a column
non-comer cell of f.

There is only one such a cell in our example: (h.k) = (1.1). Check
Table 3. We know that (x.w; f) will remain an optimal forest triple if we
decrease ¢y to any extent or if we increase ci; by less than 44.6872. The

optimal cost will be changed with a quantity of the change of 10c.
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(3). Perturbation ot a transformation coefficient rpx. where (h.k) is not in f.
As discussed in Section 8. any decrease of rpk will not affect the
optimality of (x.w; t). The maximal increase ot ¢ such that the optimality

is not changed is (chk — Up — Thk Vk) / Vg, Which is listed as follows:

R J‘

1

| ] > 3 4 5

1 13.9843 11.1112 19.9101 100. 8284

2 3.4514

3 0.3618 |

4 4.8177 6.8868 | 44.9012
Table 5

There is no change ot the optimal cost in this case.
(I). f remains an optimal forest but (x,w) is changed.

This covers the cases of small perturbations of a direct cost coefficient
Chk, Where (h.k) is in f and i1s not a column non-corner cell. or a transfor-
mation coetficient ryg, where (h.k) i1s in f, or a source ap, or a penalty
coefficient qk; or qx . For example. suppose c2> is changed from 15 to

16. This does not change (9.2) but changes (9.1) into:
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uy = 18 - 16d, ur = 16 - 63d/11,
us = 10 - 63d/22, uy = 17 - 9d,
vy = 63d/110, vy = 9d/22. (10.1)
vy = -2/15 + 21d/55, vy = -4/29 + 63d/638.
Combining (10.1) with (9.2), (9.3) and (9.4), we get
u+ v-¢
I u
j=1 1= 2 j=3 | j= 4 i= 5
110 -75.725 -44.617 -71.918 -81.713 -139.0511 |
2 0 0 0 -1.920 -46.2172
3 0 -1.351 0 -18.1086
1] 0 -25.641 0 -25.034 -35.757 -71.3413
v | 9.8157 5.6217 4.0155 3.6145 0.8313
Table 6
T X w
1 W a
j=1 =2 =3 i=4 i= 5
Il 10 0 0 0 0 10
2 11.524 2,438 5.038 0 19
3 4.596 0 20.404 25
4 8.552 0 6. 448 0 0 15
w | 236.968 | 138.223 | 176.318 | 75576 | 591.716
Table 7
We see that all xjj’s are nonnegative and that u; + ryvj = ¢y for all i
and j. Therefore. f is still an optimal torest with a slightly changed (x.w).
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The optimal cost is $1.709.679. The original (x.w) is still feasible with an
objective value $1.715.080. The change in x reflects that the optimal forest
is not changed but the flows are dispersed from cell (2.2) to other cells of

the forest f to balance the rise in the cost of (2.2).

(IID. f is no longer an optimal forest when the perturbation is big

enough.

For example, we decrease c34 from 9 to 7. This makes cell (3.4)
cheap enough to enter the optimal forest We first do a pivoting to let cell

(3.4) enter and to let cell (3.2) exit. We get a new feasible solution:

< ]

1 ] a

1= 1 =2 =3 1 1= 4 | 1=5

1 10 0 0 0 0 10

2 13.770 | 2.334 2.896 0 19
3 0 ‘ | 4.582 20.418 25

4 8.473 0 6.527 | 0 0 15

w | 236.257 | 137.770 | 176.273 | 75520 | 592.108 | |

Table 8

The objective value is now $1.696.383, which is less than the original objec-
tive value 31,699,456. Minimizing on the new forest. we get new x. W, u

and v as follows:
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o u+ v-c |
i T T
j=1 1= 2 1= 1= 4 1= 3
10 -77.367 | -44.709 | -72.057 | -81.340 | -139.3559
2 0 0 0 -1.463 -40.3263
3 -0.689 0 0. -17.5127
410 -26.654 0 -24.944 | -35.329 -71.5127
v | 9.8347 5.5326 40231 | 3.6217 0.8397
Table 9
X
1 ] a
i= i= j=3  j=4 j=5
1 10 0 0 0 0 10
2 13.810 2.304 2.886 0 19
3 0 4.603 20.397 25
4 8.454 0 6.546 0 0 15
w | 236.089 | 138.103 | 176.262 | 75507 | 591.507 |

Table 10

Again, we know that we have got an optimal solution. since all xij's are
nonnegative and since all uj + rjjVvj — cjj are nonpositive. The optimal
objective value is $1,696,353 now. It is a little less than the objective

value we have got in the last tableaw
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