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The stochastic generalized transprtation problem (SGI'P) has an 
opt* solution: each of the connected subgraphs of its qraph is 
either a tree or a one-loop tree. We ca l l  such a graph an A-forest. 
We propse here a finitely convergent method, the A-forest iteration 
method, to solve the SGI'P. It iterates from one base A-forest tr iple 
to another base A-Forest triple. The iteration techniques constitute 
some modifications of those for the £&st iteration method for 
solving the stochastic transprtation problem (STP), which was given 
in [16]  . Sensitivity Analysis and numerical examples are also given. 



1. Introduction 

In 1955 and 1956. some of the earliest papers on the stochastic pro- 

gramming problem, under the name: linear programming under uncertainty 

were published Ferguson and Dantzig [7] [8] presented an allocation prob- 

lem of aircraft to routes. In the modem terminology. this is a stochastic 

linear problem with simple recourse [27]. The demands are stochastic 'If 

we fix the demands, then we have a weighted distribution problem, or a 

generalized transportation problem ( G V )  [5]. Therefore. an appropriate 

mathematical name of their problem is stochastic generalized transportation 

problem (SGTP). In their papers, the distribution functions of the stochas- 

tic demands are discrete. They proposed a special version of the simplex 

method to solve them. This material. with minor changes. forms as the last 

chapter of Dantzig's celebrated book [5]. 

In 1960, Elmaghraby [6] studied this problem with continuously distri- 

buted random demands. He showed that Ferguson and Dantzig's method 

will cause error -in this case. He presented an iteration method for solving 

it He claimed that his method is finitely convergent However, in each 

iteration step. a SYSTEM of nonlinear simultaneous equations must be 

solved. This is not so easy and the solutions of the system need not be 

unique. He pointed out that at any iteration, several or even infinitely 

many tableaux may ensue. 



Since then. in almost twenty years. several papers appeared which dis- 

cuss a relatively simple case: the stochastic transportation problem (STP). 

where all transformation coefficients are 1's. [3] [23] [28] [29] [30] (311. 

The SGTP was discussed in few papers [I].  Some authors proposed the use 

of some general convex programming algorithms to solve the STP or SGTP. 

These methods are not finitely convergent in general. Some of them . like 

[29] [30] gave some easily calculated prior bounds for the STP 

LQ [161, we have presented 2 f in i te ly  convergent method, namely the 

forest iteration m e t h d ,  to  solve the SI'P. This mthd is  based on the 

network structure of the problem. A t  each step, the nonlinear problm 

consists of solving a sndll number of one-dimensional mnotone equations. 

M i c a t i o n s  of this method can be faund in [17].  

The difference be- the SGIl? and the STP is that the graph of a 

"basic" op- solution of the SGIF is not necessarily a collection of 

trees, i .e . ,  a forest,  but a collection of trees and one-loop trees,  which 

we call A-trees. We ca l l  such a graph an A-forest. Haever, it is still 

possible to  develop an i terat ion method for solving the SGI'P, which is 

based on A-forests and has the same characteristics as  the f o r e  

iteration mthd for the SD. 

In Section?, we s ta te  the f o d a t i o n  of the SGIl? as  w e l l  as  its 

optimality conditions. In S d o n  3 ,  we define A-forests and discuss their 

properties. In Section 4, we discuss the minimization problem on an A-forest 

when w e  discard the nornegativity restrictions. In Sections 5 and 6, we 

discuss the i terat ion techniques: cutting, connecting and pivoting. 

w e d  with [161, the technique of connecting i s  improved so that it is 

not necessary t o  calculate the flow changes in connecting. There are 

also same other improvemnts for those techniques. In 



Section 7, we give the A-forest iteration algorithm and its convergence 

theorem. In Section 8. we give sensitivity analyses. In Section 9. we 

uqe Elmaghraby's allocation problem as our numerical example. Elmaghraby 

used the solution. when the demands were considered fixed at its expected 

values, as the starting point of his method in his example. We see that the 

optimal A-forest is already in hand in this example and few calculations of 

the method described in Section 4 will give an optimal solution. This 

shows that in many cases the required iteration number will be very small if 

we start from a good approximate solution. In Section 10. we use this 

example to illustrate sensitivity analyses and the iteration techniques. 

Our method can be extended to the generalized nerwork tlow problem 

case [ 5 ]  [13] [24]. This extension work is similar to what we have done for 

the STP in [I61 . We shall not repeat it here. 



2. The Stochastic Generalized Transportation Problem 

The formulation of the SGTP is as follows [ I ]  [ 5 ]  [ 6 ]  [ 7 ]  [8]: 

n 
min c C i j X i j  + bj(wj)  
L W  ( i .  j)cS j= 1 

S.t x j  X i j  5 a i l  i ,.... m, 
(i. j)eS 

xi, r 0 ,  all ( i , j ) ~ S .  

where 

S : the set of available cells. 

a i :  the available amount of resource i. ai > 0. 

cij: the cost of manufacturing product j using one unit  of source i. cij 2 

0. 

xij: the quantity of resource i devoted to product j in specific unit time. 

r,,: the productivity per unit of resource i when producing item j. 

wj:  the amount of product j produced in specific unit time. 



5 j: the observed value of E j .  

5 j :  the random variable of demand for product j. 

F j :  the marginal distribution function of bold Tj .  which is known. 

q: : the salvage cost per unit of excess inventory of item j. 

- 
q ,  : the penalty cost per unit of inventory shortage of item j. 

We assume q j  = qr + q; 1 0. In [I] ,  the transformation coeffi- 

cients are in the constraints containing ai . It is the same thing essentially 

since we can put ?ij = rij xij to transfer this formulation to that formula- 

tion. If we have rij = 1, for all i and j, then we get the formulation of 

the STP. 

According to [XI, we know that b j  is convex and continuous. We can 

add m slack variables XI.,+ 1 ,...., x,-,+ 1 to (2.1) to change it to t h e  fol- 

lowing form: 

min 2 cijXij+ &j(wj) 
%W (i,])cS j= 1 

x.. = a -  S . t  z j  IJ  ,, i = l ,  .... m. 
( i ,  j)cS 

zi r . - x . , =  wj, j = l  ...., n, 'I '1 
(i. j)cS 

xij a 0. all ( i , j ) ~ ~ ,  



where we extend S to s to include all slack variables. 

In many practical situations. all ril 's are nonnegative. We denote such 

problems as  the S G T .  Sometimes, we also call a variable X i j  a slack 

variable i f  rij = 0. To simplify our discussion. we suppose all rij f 0. 

According to convex programming theory [IS] [lY]. (x. w) is an optimal 

solution if and only if there exist u C P. v € Rn such that  

j X i j =  a ; ,  i = l ,  .... m. 

(i.  j)eS 

x . .  2 0 ,  
11 

all (i. j) E S. 

xij(cij- U i -  r . .  1, vj )  = 0 ,  (i. J) E S. 

If we fix w at (2.2) and only minimize on x we get a generalized tran- 



sportation problem (GTP), or  sometimes called weighted distribution p rob  

lem. We denote it by T(w). According to linear programming theory, x is 

an optimal solution of T(w) if and only if  there exist u E P, v € Rn such 

that: 

y j  X i j = a i ,  i = l ,  ..., m, - 
( i ,  j)cS 

We see that the only difference between (2.3) and (2.4) is that (2.3) 

has one more condition. the last condition. 

In [ 5 ] ,  Dantzig gave a nice method to solve the GT'P. Consider solu- 

tions on an m x (n+ 1 )  tableau. What we are interested is [ 5 ]  [ l j ] :  



Theorem 2.1 If a GTP is solvable, then it has  an optimal basic ,mph, each 

of whose connected subgraphs is either a tree with exactly one slack vari- 

able, or a one-loop tree without slack variables. o 

We give such a graph a name: an A-forest We discuss such A-forests 

in detail in the next section. 

Denote the objective function of (2.2) by cx + cf~(w). 



3. A- Forests 

Suppose we have an m x (n+ 1) transportation tableau T. The n+ 1 

column is for slack variables. Suppose we have coefficients cij's and rij's 

given by (2.1 ) associated with T. 

Definition 3.1 Suppose we have a set of cells on T, which forms a loop and 

which has no slack variables. Then the coefficients of 1's and rij's in 

(2.1) forms a square matrix If this matrix is nonsingular, we call this cycle 

a proper loop; otherwise, we calI it a false loop. c 

Note that there is no proper loop in the standard transportation prob  

lem. 

Definition 3.2 On T, a graph is called a one-loop tree, or an .4-tree, i f  i t  is 

connected and has exactly one loop. which is a proper loop, and if it has no 

slack variables. A ,graph is called an A-forest. if each of its connected s u b  

m p h s  is a tree or an A-tree and its row indices run throughout (1, .... m). b 

In Fig.1, we see an example of an A-forest with an A-tree component 

and a tree component 

According to Theorem 3.2 of E161, the numker of cells of a forest 

is no more .than m+ n. This is also true for an A-forest even though i t  has 



loop. 

Theorem 3.3 The number of cells of an A-forest is no more than m+ n. 

and no less than m. 

Proof Since the row index set of an A-forest runs throughout (1.. .. .mi, we 

have the second conclusion. For any k-component A-forest (k>l) ,  if it has 

a loop, we can break this loop by deleting a cell on the loop and we can 

insert a cell in the column of the deleted cell and in a row containing a cell 

of another component. The resulting graph is a k-1 component A-forest. 

the number of whose cells is the same and the number of whose loop is 

reduced. In this way, we can break all the loop of an A-forest without 

changing the number of the cells. Now we have a forest with the same 

number of cells ac the original A-forest According to Theorem 3.1 of 

[ 1 6 1 , we have our conclusion. 13 

Applying this to (2. I ) ,  we have 

Definition 3.1 Let x C R m x ( n f  I), and Gr x. the ,mph of x, be the ,graph 

associated with the set { ( i . j )  I xi j  # 0 }. if (LW) is a feasible point of 

(2.2) and f = Gr x is an A-forest. then we call (x  w) an A-forest point of 

(2.2) and ( x w :  f) an .A-forest triple of (1.2). Tf (C,u%) is an optimal 

solution of ( 2 . 2 )  and t- = Gr f is an A-forest. then we all t* an optimal 



A-forest of (2.2), and ( 9 , w " ;  P) an optimal .A-forest triple of (2.2). 

The following lemma can be proved by Theorem 2.1 and Definition' 3.1: 

Lemma 3.3 If a GTP  is solvable, then it has an optimal basic graph. which 

is an A-forest. 

Now we have 

Theorem 3.6 The SGTP (2.2) has an optimal A-forest triple. 

Proof Replace wj's in the objective function by combinations of xij's. We 

see that (2.2) becomes an optimization problem in x. Clearly, it is feasible 

and the Feasible set is compact Since the objective function is continuous, 

we know that it attains a minimum. Suppose (%w*)  is an optimal solution 

of (2.2). Then T(via) is feasible and bounded. According to the theory of 

linear p r o p m m i n g  and Lemma 3.5, T ( W )  has a basic optimal solution $ 

such that F = G r  YF is an A-forest. Comparing objective values. we see 

that (x*.w") is also an optimal solution of (2.2). Therefore. (x*,w"; f") is 

an optimal A-forest triple of (2.2). c 



F i g u r e  1 .  A - f o r e s t  

(The l o o p  i s  a p r o p e r  1  oop h e r e . )  



4.4. hlinimization on an A-Forest 

As in [161, we use k l ,  and iV, to denote the row index set and 

the column index set (not including n+ 1) of a graph s. If we have a cell 

(i, j) such that i E M , and j E LV,, then we say (i, j) is in the area of s. 

If i E M ,, j E N [, and s and t are unconnected. then we say that (i. j) is 

in the joint area of s and t 

Suppose f is an A-forest Consider to solving 

Ci  rijXij= W j .  J E , v f  

(i, j ) ~ f  

If f is an optimal A-forest, an optimal solution of (4.1) will be a part of an 

optimal solution of ( 2 . 2 ) ,  with other parts being zeros. Without confusion. 

when we talk about an optimal solution ( x  w) of (4.1) in the following, it 

implies that we talk about an m x (n+ 1) + n vector such that its 

corresponding part is an optimal solution of (4.1) and other parts are zeros. 

As in Theorem 4.1 of [I61 , i f  f is a k-component A-forest, k > 

1. then (1.1) can be separated into k minimization problems: 



min C i j X i j  + b j ( w j )  
X (i,j)ct jc.V I 

xi rijXij= W j ,  J E h l t .  
( i .  j)ct 

where t's are component trees or component A-trees of f. 

We discuss (4.2) in three different cases. 

A. Minimization on a tree with a slack variable x h,,& 1.  

The tree in Fig. 1 is an example. The necessary and sufficient condi- 

tions of optimal solutions on such a tree t are: 

xi rijXij= Wj, j € N t ,  
(i. j)c t 



Similarly to [161, the third and the fourth expressions of (4.3) 

form a triangular linear system of ui ' s  and vj's; the first and the second 

expressions of (4.3) form a triangular linear system of x ij's. We can use 

the former triangular linear system to get u i's and v ,  's. use the fifth 

expression of (1.3) to determine wj's, and use the latter triangular linear sys- 

tem to determine xij's. 

B. Minimization on a tree without slack variables. 

The necessary and sufficient conditions of optimal solutions on such a 

tree t are: 

j X i j =  a ; ,  i~ M r ,  
( i .  j)et 

r "Xi '=  'J J W j .  j e  r V t ,  

(i. j)et 

Again, this is similar to [I61 ad we still have triangularity. 

Treat any v j  as a parameter d. Then we can solve the third expression of 

(4.4) to get other ui 's and vj's in term of this parameter d. We see that 

the first and the second expressions of (4.4) form a linear system such that 



the number of variables xij's is less than the number of equations by 1 .  

Therefore, in nondegenerate case. we can cancel xij's to get a linear equa- 

tion of w j's: 

for some coefficient5 e j  and eo. By the fourth expression of (3.4). we 

know wj is a nonincreasing function of vj, therefore also of d. for j E . V t .  

Therefore. (4.5) gives us a nonlinear equation of d. Solving this nonlinear 

equation, we get d. In terms of d. we a n  get ui's and vj's. By the 

fourth expression of (4.4), we u n  get wj's. By the first and the second 

expressions of (4.4), we can now get xij's. In degenerate case. as long as 

(4.2) is feasible. we still can get an expression (1.5) which is consistent with 

the coefficient matrix of the first and the second sets of (4.1). In the case 

of the S G P .  we can see that when treating a vk as a parameter d. other 

v , ' ~  can be expressed by a linear expression of this parameter with positive 

coefficient i. e.. 

And it is not too difficult to prove that all ej's have the same signs in the 

S G T  case. Therefore. (4.5) gives us a monotone equation of d in this 

use .  



The A-tree in Fig. 1 is an example. The necessary and sufficient con- 

ditions of optimal solutions on such an A-tree t are the same a (4.4) in 

appearance, though in fact there is a loop. which means that there is one 

more equation in the first and the second expressions of (1.4) and that there 

is one more equation in the third expression too. According to our assurnp 

tion on proper loops. we know that the third expression of (4.1) forms a 

nonsingular linear system. which is near-triangular [5], and the first and the 

second expressions of (4.1 ) form a nonsingular near-triangular linear system 

too. Therefore, we can solve the third expression of (4.4) to get u i 's  and 

vj's. A nice method to solve such a system is given in [5]. i.e.. treating 

any u i or  v j as a parameter, we shall get other ui's and vj's in terms of 

this parameter. There is exactly one ui or  one Vj which has two linear 

expressions in term of this parameter. By equating these two expressions. 

we get this parameter. therefore. other u j's and vj's. From the fourth 

expression of (4.4), we get wl's. Applying the same method to the first 

and the second expressions of (4.1). we get xijas. 



Proof According to (5.3). we have 

x i ,  
r = 1 - min 

(i. j ) ~ 1  
X i j  - kij ' 

Since J = 0, we know r < 1. Therefore, (5.6) holds. According to 

(5.2), (5.4) and the convexity of the objective function, we know (5.5) 

holds. 

Theorem 5.4 Suppose we have an A-forest triple ( x w ;  f), which is not a 

base A-forest triple. By repeating the cutting technique at most n times, we 

obtain a base A-forest triple ( x ' .  w' ; f '  ) such that (5.5) holds. 

Proof By (5.6), the number of cells of the A-forest is strictly decreasing in 

each cutring i f  it is still not a base A-forest triple. According to Theorem 

3.3, we have our conclusion. o 



If f is not a base A-forest triple. then we a n  get an optimal solution (kw) 

of (4.1) such that I := { (i . j)  1 k i j  < 0 } + 0 and 

Now take 

r := min { r '  ( 0 I r I 1, ( 1 - r f ) f  + r '  x 2 0 } (5.3) 

and 

Let w '  correspond to x ' ,  f '  = Gr x'. Then ( x 1 , w ' ;  f ' )  is an A-forest 

triple of ( 2 . 2 ) ,  and (5.1) holds according to the convexity of the objective 

function and (5.2). In general, we don't know whether strict inequality 

holds in (5.1) or not since r may be 1. However. we have 

Theorem 5.3 In the above case. if J := { (i.j) € I 1 X i j  = 0 } = 0 ,  in 

particular if  ( x w ;  f )  is an A-forest triple, then 

and 



5. Base A-Forest Triples and Cutting 

In the forest iteration method for solving the STP, the concept of the 

base forest triple plays a fundamental role. Here we have 

Definition 5.1 If ( q w ;  f )  is an A-forest triple of (1.2) and the correspond- 

ing part of (x,w) is an optimal solution of (4.1) associated with f. then f is 

called a base A-forest of (2.2) and ( x w ;  f )  is called a base A-forest triple 

of (2.2). 0 

From an A-forest triple, we need a method to get a ba5e A-forest triple 

with a lower objective value. The technique is again called cutting. We 

now need to extend the concept of A-forest triple. 

Definition 5.2 If ( x w )  is a feasible point of (2.2) and f > G r  x is an A- 

forest, then we call (x w; f )  a generalized A-forest triple of (2.2). 

Cutting Suppose we have a generalized A-forest triple (x,w; f) of (2.2). 

We solve (4.1) on f. If f is a base A-forest. then we can get a nonnega- 

tive optimal solution ( x f , w ' )  of (3.1) such that (x ' ,wf  ; f )  is a ba5e A- 

forest triple and 

cx' + +(w' )  I CX + +(w) 



6. Connecting and Pivoting 

If ( x w ;  f) is a base A-forest triple. then there are u C Rm. v C Rn 

such that: 

j X i j  = a i .  i= 1 ...., m. 
(i. j)cS 

Xij a 0. all ( i . j ) e ~ ,  

u; = 0, for ( i n +  1 ) ~ f .  

x i j  = 0. all ( i , j ) e ~ -  f .  

Comparing (6.1 ) with (2.3), we see that if 

and 

u i  + r i jvj  5 C i j .  ( i . j ) ~ S -  f ,  (6.2) 

ui r 0.  for ( i . n s  1 ) e S -  f ,  (6.3) 



then (K W ;  f) is an optimal A-forest triple of (2.2). If (6.2) or (6.3) is not 

satisfied, we need to apply connecting or pivoting. For connecting, we fol- 

low an idea similar to Chapter 3: connecting without changng tlows. 

A. Connecting If in above there is a cell (h.k) violating (6.2), (h.k) is in 

the joint area of two distinct components of t; and not both of these two 

components are A-trees. then we simply let 1 = f U ((h. k)). Or if in 

above f has no slack variable and there is a cell (h,n+ 1) violating (6.3), we 

let f: = f U ((h.n+ I)}. Then, we get a generalized A-forest triple ( q  w; -f). 

Suppose F is continuous. Similarly to E l  61 , we know + is dif- 

ferentiable and we have 

Theorem 6.1 (Connecting) In the above. if we apply cutting to ( q  w; f)  

once, we shall get an A-forest triple (x ' ,wr  ; f ' )  such that 

cx' + +(wl)  < cx + +(w) (6.1) 

and 

(h.k) C f '  . 

where k= . n+ 1 in the second case. 

Proof Suppose h is in the row index set of a component of f. Then there 

is a cell (hip) < f. Let 6 be a small positive number and 



for other (i. j)'s and j's. For 6 small enough. since xhp > 0. we know that 

(%(6),w(6); i) is an A-forest triple, where f = G r  k(6) = f U {(h.k)}. 

Now, we prove that for 6 small enough, 

As in [ I  61, we see that 

is a differentiable convex function of 6 and 

The second equality of e(0) is due to (h.p) € f and (6.1 ). According to 

(6.1 ). 



Therefore, 

This proves that (6.6) holds for 6 small enough. 

We now apply cutting on ( x  w; f). If i is a base A-forest then (4.1) 

- 
has an optimal solution (x ' ,  w ' )  such that x ' ,  w '  ; f '  = f )  is an A-forest tri- 

ple with lower objective value and satisfies (6.5). Suppose that is not a 

base A-forest and that we find an optimal solution ( i w )  of (4.1) on 1. 

Then 

We claim that 

Suppose we get an A-forest triple ($6),w(6); f(6)) by applying cutting to 

( 6  ( 6 )  ) By (5.5) and (6.6), we have 

If (6.8) does not hold. then when 6 is small enough, we have 



This implies that 

Since ( x w ;  f)  is a base A-forest triple and ($6),irr(S)) is nonnegative. we 

know that 

(6.9) and (6.10) are contradicted to each other. Therefore, (6.8) holds. 

This proves that J = G in Theorem 5.3. According to Theorem 5.3. we 

know that if  we apply cutting to ( x w :  f), we can get an A-forest triple 

( x '  , w'  ; f '  ) such that (6.4) holds. According to (6.8). we know rhat (6.5) 

also holds. This completes our proof. G 

B. Pivoting If ( x w :  f) is a base A-forest triple but (6.2) or (6.3) is 

violated at a cell (h.k), and if (h,k) is not located in a location described in 

cutting, then we do pivoting as described on pages 418-119 of [ 5 ] :  Assume 

x h k  is increased into 8. We have Lwk = - rhk 8, Lab = -8. other Aai's 

and LwImsaare zeros. Then we can solve Lxij on the one or two com- 

ponents of f. whose area or joint area (h.k) is. in term of H multiplied by 

some real numbers. Since xij's on f are positive. we a n  determine tf and 

an exit cell on f. Then we can make the changes in x 



We have 

Theorem 6.2 (Pivoting) In pivoting described above, we get a new A-forest 

triple such that w is not changed, that the objective value is strictly 

decreased by a quantity of (uh + rhk vk - chk )e, or uh, ,- 1 6 correspondingly, 

where 8 is positive. 

Proof The key point to prove is that we can get an strict decreae of the 

objective value. It suffices to prove that the current value of x is not an 

optimal solution of T(w). Consider the area of the sub,oraph including 

(h,k). Consider the minimization problem of fixing 5, 's  out of this area 

and fixing all wj's in (3.2). This is a linear programming problem. We 

know that the current value of x is not an optimal solution of this subprob 

lem since (6.2) or (6.3) is violated at (h. k) and since the current basic solu- 

tion for this subproblem is positive, i. e., nondegenerate. Therefore, the 

current value of x is not an optimal solution of T(w). The expression of 

the decrem of the objective value is obtained from the theow of linear pro- 

gramming too. This proves our theorem. c. 

Example for pivoting Suppose f is the A-forest in Fig. 1 and (h.k) = 

(7.6). Assume that s76 is increased to 8. Then we put La7 = -8. Awg 

= -r768. other Aai's and other l w j ' s  zeros. We have system lor l q j q s :  



After solving Ax86 and we get a nonlinear system on the loop. We 

can choose one Axij, say Ax42 as a parameter. Then it can be used in 

turn to express other 1xij 's  and back to hq2. This gives an equation in 

1x42 alone. and the latter can be nurnericallv evaluated. Substituting AXQ 

to the expressions of other 1xij.s. we can evaluate other 1xij.s numerically. 

Now all Axi;s are expressed by 0 homogeneou~ly. Comparing them with 

current xijms. we can determine the value of 8 and an exit cell. 



7. The .&-Forest Iteration Algorithm 

Now we can give the algorithm and its convergence theorem. 

Algorithm 7.1 ( A-Forest Iteration .Algorithm) 

(1) Starting Erom an estimate w of the optimal fl, solve T(w) to get an 

A-forest triple ( x w ;  f). A convenient estimate of w is the expected value 

of the demand. 

(2) Apply repeated cuttings to get a base forest triple with a lower objec- 

tive value. 

(3) Check whether (6.2) and (6.3) are satisfied or not If they are satis- 

fied, an optimal A-forest triple is in hand. Stop. If they are not, do con- 

necting or pivoting. Go to Step 2. C .  

Theorem 7 .2  (Convergence Theorem) If F is continuou5. then Algorithm 

7.1 converges in finitely many steps. 

Proof According to Theorem 6.1 and Theorem 6.3. we have a strict 

decrease of the objective value from one base A-forest triple to another base 

A-forest triple. Since the number of base A-forest triples is finite. we get 

our conclusion. E 



8. Sensitivity .Analyses 

suppse we have an o p t k l  A-forest t r i p l e  (x,w; f )  with multipliers 

u and v. We discuss when the optimal A-forest w i l l  renain an optimal 

A-forest under perturbations of the data. W e  divide the perturbations 

of data into several cases: 

(A) .  Perturbation of a direct cost coefficient c hk . 

This case is the same as the case for the ST'P. Therefore. we onlv list 

the results. 

(1). (h. k)  is not in f. 

If we increase chb (qw; f )  is still an optimal A-forest triple since (2.3) 

still holds. On the other hand, the maximal decrease of chk such that the 

optimality is not changed is chk - uh  - rhkvk. When we decrease chk 

greater than chk - uh - rhkvk. ( q w ;  f)  loses optimality and iteration 

techniques described in Sections 5 and 6 are needed to get an optimal 

A-forest triple. 

(2). (h-k) is column non-corner cell of f. i.e., (h ,k)  is in f and in the h-th 

row there is no other cell of f. e. g., (2.2) and (3.7) in Fig. 1. 

The behavior is the converse of (1). If we decrease chk. ( x w :  f )  is 



still .an optimal solution. However. the objeaive value decreases by a quan- 

tity equal to the change of chkxhk. The maximal increase of chk such that 

the optimality is not changed is min { chj - uh  - rhk vk ( j = 1 ,Z,. . . , n+ 1. 

j # k }. ~therwke.  iteration techniques are needed to get an optimal A- 

forest triple. 

(3). (h,k) is in f and (2)  does not hold. 

We should use the method described in Section 4.4 to recalculate u, v. 

w and x on the component of f where (h, k) is, then check optimality by 

(2.3). If (2.3) holds with the new u, v and x then f is still an optimal 

A-forest with new ( X  w). If (2.3) does not hold, then iteration techniques 

are needed to get an optimal A-forest triple. 

(B) .  Perturbation of a transformation coefficient r hk  , where (h .k)  is not 

in f. 

We confine the discussion to the S G T .  Suppose wk is positive. Then 

there is a cell (p,k) E f such that 

Since u p  is nonpositive, since cpk is nonnegative and since rpk is positive, 

we know that vk is nonnegative. If v k  is zero. whatever rhk is. there is no 

change in optimality. Suppose vk  is positive. If we decrease rhk, ( x  w; f )  



is still an optimal A-forest triple since (2.3) still holds. Similarly. we know 

that the maximal increase of rhk such that the optimality is not changed is 

(c hk - uh - rhkvk) / v k  Otherwise. iteration techniques are needed to get 

a new optimal A-forest triple. 

(C).  Other cases. 

There are three other cases: perturbation of a transformation coefficient 

rhk, where (h. k) is in f; perturbation of a resource a i ;  perturbation of a 

penalty coefficient q k* or qk-. In all these cases, we face the same situa- 

tion of (A)(3). We need to use the method described in Section 4.4 to 

recalculate u, v. w and x on the component of f. where (h. k) is. then check 

optimality by (2.3). If (2.3) holds with the new u v and x then f is still 

an optimal A-forest with new (x  w). If (2.3) does not hold. then iteration 

techniques are needed to get an optimal A-forest triple. 

A numerical illustration is given in Section 10. 



9. An Example 

In [6], Elmaghraby gave a numerical example which is a modification of 

the problem of allocation of aircraft to routes. presented by Ferguson and 

Dantzig in [8]. 

The problem. simply stated. is the following. An airline company 

operates more than one route, and has available more than one type of air- 

craft Each type has its relevant capacity and costs of operation. The 

demand on each route is known only in the form of a distribution function, 

and the question asked is: which aircraft should be allocated to which route 

in order to minimize the expected total cost of operation? This latter 

involves two kinds of costs: the direct costs connected with running and ser- 

vicing an aircraft and the penalty costs incurred whenever a passenger is 

denied transportation kcause of lack of seating capacity. However. there is 

- 
no salvage cost of excess seating capacity. i.e., q ,  = 0 in (2.1). 

In this example. m = 4, n = 5, S = ((1.1). (1.2), (1,3), (1.4). (1,5), 

(2.2)- (2.3), (2,4), (2.5), (3.2), (3.3), (3,5), ( 1  ) (4.2). (4,3), (3.3), 

( 5 ) .  Elmaghraby gave his data with an optimal allocation (x w), when 

the demand is considered fixed at its evpected value. as follows: 



routes j 
craft I Air- 1 1 I I Aircraft 

Table 1 

where x,j is in units of aircraft; rij and wj are in 100 passengen; c i j  is in 

- 
SIOOO units. q j  is in 510 units. This makes the unit of c i j x i j  and the 

- 
unit of qj  W, the same so that we can sum up them in the objective 

function without consideration of units. Here we cmit all the 

subscripts in our tables. Therefore, a. x w. u. v, r. c. q and p represent 

- 
a i, x ij, w j, u i, v j, rij, c ij, q j and pj correspondingly. 

Let pj be the probability density function of the demand for the jth 

product. Elmaghra by's data are as f o l l o ~ :  



1 Route 1 Interval(1n hundreds ( density 1 

Table 2 

1 

1 

In other places, the density functions are zeros. 

Elmaghraby used the ( x w )  in the first table as his starting point As 

of passengers) 
190 - 210 
210 - 230 
240 - 260 
260 - 290 
290 - 31 0 

expected. f = G r  x is already an optimal forest In [6], Elmaghraby 

P 
0.01 
0.005 1 3  
0.01 75 
0.02 13  
0.01 

7 - 

3 

noticed that the cells containing a positive allocation are identical in his 

starting point and the optimal solution. He used the term contiguration and 

0 -  100 
1 0 - 2 0 0  
130 - 150 
150- 170 
170 - 190 
190 - 210 

defined it as any pattern of positive and zero cells in the tableau. Thus, he 

0.003 
0.007 
0.005 
0.01 O 
0.020 
0.01 0 

said in a matrix of N cells there were all possible configurations correspond- 

ing to the 1" possible allocations of positive or  zero entries in the cells. 



He suggested assuming the configuration at the outset and solving the set of 

simultaneous equations. h l a t  he did not notice in [6j is that only some 

special configurations should be treated: that is. A-forests. We first see 

numerically how we can get the optimal solution by the method given in 

Section 1 i f  we know the optimal forest 

The A-forest f = Gr  x is a one-tree forest Tt does not contain slack 

variables. Suppose v l  = d. By the third set of equations of (4. 1). we get 

By the first and the second sets of equations of (4.4). we get 

This is the numerical realization of (4.5). Tn this example. & j  is continu- 

ously differentiable. According io the fourth set of equations of (4.1). we 

have 

where 



Solving above equations. we get d = 9.831 1 .  The values of u. v and u ;  + 

Table 3 

From (9.3) and (9.1), we get wj. Solving the first and the second sets of 

equations of (3.4), we get X i j .  The results are as follows: 

u 

-1 39.2976 
-40.3054 
-1 7.6527 
- 71.4799 

I 

i 

1 
2 

3 1 

v 

Table 4 

We see that all xij's are nonnegative and that u ; + r i j  v j 5 c i j  . for all i 

u +  v - c  

j= 1 
0 

4 0  
9.8311 

j= 3 
-44.687 1 

0 

-~~~~~~ 
0 1 
4.021 8 

j= - 7 

- 77.340 
0 
0 

- 26 .64  
5.5305 

j= 3 
-72.081 

0 
-1.310 1 

-14.933 
3.6204 

j= j 
-82.232 
-28.81 6 

0 
-36.621 

0.81 56 



and j. Therefore. we have obtained an optimal solution. The optimal cost 

is J 1,699.456. The results are the same as Elmaghraby's (there was a mis- 

take in wl ,  therefore also in the optimal cost. in [ 6 ] ) .  



10. Sensitivity .Analyses of This Example 

We can use a b v e  example as a numerical illustration of the discussions 

in Sections ' 5, 6 and .8. 

( I ) .  The cases when (x.w; f) remains an optimal forest triple. 

There are three cases discussed in Section 1.8. when ( x w ;  f) remains 

an optimal forest triple. i. e., (A) . ( l ) ,  (A).(?), (B). 

(1). Perturbation of a direct cost coefficient chk. where (h,k) is not in f. 

From Table 3, we see thac i f  (h.k) C {(1.2). (1.3), (1.41, (1,5), (4,2), 

(3,4), (4.5)). chk can be any nonnegative number without changing the 

optimality of (x  w; f). For (h. k) = (2.5). c25 can be changed by A € 

[-2.81 56. + x); for (h. k) = (3,-1), c;j can be changed by A C [ - I .  3099, 

+ x )  without changing the optimality of ( x w ;  f). There is no change of 

the optimal cost in this case. 

( 2 )  Perturbation of a direct cost coefficient chk. where (h.k) is a column 

non-corner cell of f. 

There is only one such a cell in our example: (h.k) = (1 .1 )  Check 

Table 3. We know that ( x w ;  f )  will remain an optimal forest triple i f  we 

decrease c 11  to anv extent or if we increase ell by less than 44.6872. The 

optimal cost will be changed with a quantity of the change of 10cl 1.  



(3). Perturbation of a transformation coefficient rhk. where (h.k) is not in f. 

As discussed in Section 8, any decrease of rhk will not affect the 

optimality of ( x w ;  f ) .  The maximal increase of c such that the optimality 

is not changed is (chk - uh - rhk vk)  / vk, which is listed as follows: 

Table 5 

There is no change of the optimal cost in this case. 

(11). f remains an optimal forest hut ( x . w )  is changed. 

This covers the uses of small perturbations of a direct cost coefficient 

chb  where (h.k) is in f and is not a column non-corner cell. or a transfor- 

mation coefficient rhk, where (h. k )  is in f, or a source ah, or a penalty 

coefficient q k- or qk - .  For example. suppose c22 is changed from I 5  to 

16. This does not change (9.2) but changes (9.1 ) into: 



Combining (1 0.1 ) with (9.21, (9.3) and (9.1). we get 

u +  v - c  

Table 7 

1 v 1 9.8157 

We see that all x i j ' s  are nonnegarive and thar u ; + r ; j v j 5 c ;, for all i 

5.6217 1 4.0155 1 3.6145 1 0.8313 1 

and j. Therefore. f is still an oprimal forest with a slightly changed ( x w ) .  

Table 6 



The optimal cost is S1.709.679. The original ( x  w) is still feasible with an 

objective value 91.715.080. The change in x reflects that the optimal forest 

is not changed but the flows are dispersed from cell (2.1) to other cells of 

the forest f to balance the rise in the cost of (2.2). 

(111). f is no longer an optimal forest when the perturbation is big 

enough. 

For example, we decrease c;4 from 9 to 7. This makes cell (3.3) 

cheap enough to enter the optimal forest We first do a pivoting to let cell 

(3.4) enter and to let cell (3.2) exit. We get a new feasible solution: 

1 w 1 236.257 1 137.770 1 176.273 / 75.520 ( 592.108 ( 

Table S 

The objective value is now 51.696.383. which is less than the original objec- 

tive value S1,699,456. Minimizing on the new forest. we get new x w, u 

and v as follows: 



I I u +  v - c  

Table 9 

Table 10 

Again, we know that we have got an optimal solution. since all x ;j 's are 

nonnegative and since all u , + r ;j v j - c i j  are nonpositive. The optimal 

objective value is $1,696,353 now. It is a little less than the objective 

value we have got in the last tableau 
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