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A LAGRANGIAN FINITE GEXXRATION T E m Q U E  F'OR 
SOLVING LINEAR-QUADRATIC PROBLEMS IN STOCHASI'IC 

PROGRAMMING 

R. T. RockafeEEar* and R. J.  -8. FYets* 

ABSTRACT 

A new method is proposed for solving two-stage problems 
in linear and quadratic stochastic programming. Such prob- 
lems are dualized, and the dual, although itself of high 
dimension, is approximated by a sequence of quadratic pro- 
gramming subproblems whose dimensionality can be kept 
low. These subproblems correspond to meximizing the dual 
objective over the convex hull of finitely many dual feasible 
solutions. An optimizing sequence is produced for the primal 
problem that converges a t  a linear rate in the strongly qua- 
dratic case. An outer algorithm of augmented Lagrangian 
type can be used to  introduce strongly quadratic terms,  if 
desired. 

*This work was supported in part by the OEce of Naval Research under grant no. 



In the recourse model in stochastic programming, a vector z must 
be chosen optimally with respect to present costs and constraints as well 
as certain expected costs and induced constraints that are associated 
with corrective actions available in the future. Such actions may be 
taken in response to the observation of the values of various random vari- 
ables about which there is only statistical information a t  the time z is 
selected. The actions involve costs and constraints that depend on these 
observed values and on z .  The theory of this kind of stochastic program- 
ming and the numerical methods that have been proposed for it has been 
surveyed recently by Wets [lo]. 

We aim here at developing a new solution procedure for the case 
where the first and second stage problems in the recourse model fit the 
mold of linear or quadratic (convex) programming. We assume for simpli- 
city that the random variables are discretely distributed with only finitely 
many values. This restriction is not fully necessary in theory, but it 
reflects the realities of computation and a natural division among the 
questions that arise. Every continuous distribution must in practice be 
replaced by a finite discrete one, whether empirically, or through sam- 
pling, mathematical approximation, or in connection with the numerical 
calculation of integrals expressing expectations. The effects of such 
discretization raise important questions of convergence and statistical 
confidence in the solutions that are obtained, but such matters are best 
left to separate study. 

We assume therefore that the probability space is a finite set 0: the 
probability associated with an element ~ € 0  is p,, and the expectation of 
a quantity u, that depends on o is 

The fundamental problem we want to address is 

(P) 
1 minimize c *x t i - x C z  + E,+,(z) over all z EX cRn . 

where X is a nonempty convex polyhedron, c is a vector in R n ,  C is a 
symmetric matrix in Rnxn that is positive semidefinite, and l//,(z) is the 
minimum cost in a certain recourse subproblem that depends on w and 
z. We view this recourse subproblem as one of linear or quadratic pro- 
gramming, but instead of handling it directly we work with its dual. More 
will be said about this later (Proposition 1 in §2), but what counts in the 
end is the following: we suppose a representation 

1 +,(z)= max lz,{h,- T,z] --i-zu*H,zu] 
zoEZw 

is on hand, where 2, is a nonempty convex polyhedron in Am,  T, is a 
matrix in Rmxn ,  h, is a vector in Rm,  and H, is a symmetric matrix in 
~ n x m  that is positive semidefinite. Note from the subscript o that all 
the elements in this representation are in principle allowed to be ran- 
dom, although a particular application might not involve quite so much 
randomness. 



Two basic conditions are imposed on the given data. We assume X 
and C are  such that for every v €Rn the set  

is nonempty and bounded. We also assume Z, ,  h,, T,, and H,, are such 
that for every x  EX the set  

is nonempty and bounded. Certainly the first condition holds if X is 
bounded or C is positive definite, and the second holds if Z ,  is bounded 
or H, is positive definite. 

The first condition is quite innocuous, since in practice X can always 
be taken to be bounded. I t  implies that the function 

1 p(v) = inf ivn t i x . C z  1, 
zEX 

whch  will have a role in duality, is finite everywhere. 
The second condition is more subtle, since it involves dual elements 

that might not be given directly but derived instead from a primal state- 
ment of the recourse subproblem that depends on x  and w .  I t  ensures in 
particular that for every x € X  and w €Cl, the optimal value $ , ( x )  in this 
subproblem is finite, and an optimal recourse exists. This means that our 
stochastic rogramrning problem ( P )  is one of r e l a t i v e l y  comp le t e  
r ecourse  [8r there a re  no induced constraints on x  that  arise from the 
need to keep open the possibility of recourse a t  a later time. 

Of course, if our problem were not one of relatively complete 
recourse, we could make it so by identifying the induced constraints and 
shrinking the set  X until they were all satisfied. The smaller X would still 
be a convex polyhedron, although its description might be tedious. In 
this sense our second condition forces no real restriction on the problem 
either, except in requiring that  the induced constraints, if any, be 
identified thoroughly in advance. 

The t e rm E,$,(x)  in ( P )  can also be interpreted as an expected 
pena l t y ,  incidentally. In terms of 

1 B,(u) = max t z , -u  - 2 ~ y - H y ~ y ]  
z , E Z ,  

we have 

( 1 . 6 )  $,(.I = Q,(h, - T , z ) .  
If OEZ,,  then 

( 1 . 7 )  B,(u) 2 0  for all u ,  8,(0)  = 0 .  

We can view B,(h,- T s )  as  a penalty attached to certain degrees or 
directions of deviation of T, z  from the vector h,. Many suitable penalty 
functions can be expressed as in ( 1 . 5 ) ,  and this provides further motiva- 
tion for taking $ , ( x )  to be of the form ( 1 . 1 ) .  Note that the case where 



@,(ha - Tux) is a sum of separate terms, one for each real component of 
the deviation vector h, - Tux, can be identified with the case where each 
2, is a product of intervals and H, is diagonal. 

The solution procedure that we shall present depends on a Lagran- 
gian representation of problem (P) which leads to the dual problem 

1 
maximize rp(c -E,T:z,) +E,[Z,&,-~Z,.H,Z,] 

subject to z,EZ, for all o€R. 

Here rp is the function in (1.4), for which another representation will later 
be given (Proposition 2 in $2). The asterisk * signals the transpose of a 
matrix. The maximization in (D) takes place over the convex polyhedron 

we think of 2, as the component in 2, of a point Z E Z .  The vector space 
( R ~ ) '  here, which is a produce of copies of R m ,  one for each &;En, is 
likely to be of very high dimension, since the number of points in 0 may 
be very large. Despite this formidable dimensionality it is by way of (D), 
at least in concept, that we propose to solve (P). Properties of expecta- 
tion, decomposition and quadratic structure, will make this plausible. 
The relationship between (P) and (D) is explored in 92 along with other 
issues of quadratic programming duality that are important in our formu- 
lation. 

We approach problem (D) by a "finite generation" technique in which 
the feasible region Z is approximated from within by polytopes of com- 
paratively low dimension, a polytope being a subset generzted as the con- 
vex hull of finitely many points. This technique is presented in g3. It 
resembles the classical finite-element or Galerkin approach to the uncon- 
strained maximization of a functional defined over an infinite-dimensional 
space, where one maximizes over finite-dimensional subspaces that grow 
in size as the approximation is refined. An important difference, how- 
ever, is that in our case the new element or elements that are introduced 
at each stage in modifying the polytope over which we maximize are not 
obtained from some predetermined scheme, as classically, but identified 
in an "adaptive" manner. Furthermore, the total number of elements 
used in generating the polytope does not have to keep increasing; the 
sequence of polytopes does not have to be nested. We prove in $4 that 
when the matrix C is positive definite these elements can readily be con- 
solidated without threat to ultimate convergence, although the rate of 
progress may be better if a substantial set of generating elements is 
maintained. In this way the dimension of the subproblem to be solved in 
every iteration can be kept as low as seems desirable. 

The subproblem of maximizing over a polytope can be represented as 
a standard type of quadratic programming problem and solved exactly by 
available codes. It yields as a byproduct an approximate solution vector 
for (P) along with bounds that provide a test of near optimality. The 
sequence of such approximate solutions converges to an optimal solution 
to (P). If not only C but also the matrices H, are positive definite, the 
rate of convergence is linear, in fact with guaranteed progress of a 



certain sort  in every iteration, not just for the tail of the sequence. 
In producing a new element to  be used in the polytopal subrepresen- 

tation of 2, we have a particular x on hand and must carry out the max- 
imization in (1.1) for every o€n. In other words, we must solve a large 
number of closely related Linear or quadratic programming problems in 
R". This could be a difficult task in general, but techniques such as have 
already been developed in connection with other approaches to  stochas- 
tic programming problems of a more special nature (see Wets [lo]) do 
offer hope. Furthermore, there are cases of definite interest where the 
maximization in (1.1) is trivial, for instance where 2, is a product of 
intervals and H ,  is diagonal. Such a case has been described in [9]. 

Not all of the problems we wish to solve have C and H, positive 
definite, but this does not prevent the application of our method and the 
achievement of a linear rate  of convergence. Augmented Lagrangian 
techniques [5] can be effective in approximating any problem (P) by a 
sequence of similar problems that  do exhibit positive definiteness. We 
explain this in $5 after having established in 54 the results that  show the 
advantages of the strongly quadratic case. 



2. Lagrangian Representation and Duality. 
As the L a g ~ a n g i a n  associated with problem (P) under the representa- 

tion (1.1) of the recourse costs, we shall mean the function 
1 

(2.1) L ( z . z ) =  c e x i - ~ x  ~ C X + E , I Z , ~ [ ~ , - T , X ]  - - 2 - ~ y e ~ , ~ u ]  for zEX, ~ € 2 ' .  

where Z is the convex polyhedron in (1.5). Clearly L ( z  , z )  is convex in z 
and concave in z ,  since C and H ,  are positive semidefinite. General dual- 
ity theory [6]  associates with L ,  X ,  and 2 ,  the primal problem 

(2.2) minimize F over X ,  where F ( z ) :=  rnax L ( z  , z ) ,  
z €2 

and the dual problem 

(2.3) maximize G over 2, where G ( z ) : = m i n  L ( z , z )  
z a  

The functions F and G are convex and concave, respectively. Our 
assumptions in 3 1 allow us to write "max" and "rnin" in their definitions 
rather than "sup" and "inf". 

These problems turn out to be the ones already introduced. In terms 
of the notation in (1 .2)  and (1 .3) ,  we have 

(2.4) argmaxL(z,z)  = i z  I z , ~ < , ( z )  for all C J E Q ] ,  
z €2 

Moreover for z EX and z E Z  we have 

(2.7) 
1 G ( z )  = rp(c -E,T: z,) + ~ , ~ z , ~ h , - - - ~ , ~ H ~ z , ] .  
2 

Thus the primal and dual problems (2.2)  and (2 .3)  can be identified with 
(P) and (D),  respectively. 

In order to continue with our analysis of these problems, we need to 
step back briefly for a look at some basic facts about duality in quadratic 
programming, not only as they might apply to (P) and (D),  but also to 
various subproblems in our schemes. A quadratic programming problem 
is usually defined as a problem in which a quadratic convex function is 
minimized (or a quadratic concave function maximized) subject to a sys- 
tem of linear constraints, or in other words, over a convex polyhedron. As 
is well known, such a problem has an optimal solution whenever its 
optimal value is finite (see Frank and Wolfe [3, Appendix ( i ) ] ) ;  the Kuhn- 
Tucker conditions are both necessary and sufficient for optirnality. For 
the purpose at hand, it is essential to adopt a more general point of view 
in which a problem is considered to fall in the category of quadratic pro- 
gramming as long as it can be represented in this traditional form, possi-. 
bly through the introduction of auxiliary variables. 

Consider an arbitrary Lagrangian of the form 

(2.8) 
1 1 l ( ~ . v ) = p * u + ~ * v i - ~ u ~ P u - ~ v ~ Q ~ ~ - v  e R u  for U E U ,  V E V ,  



where U and V are nonempty convex polyhedra, and P and Q are sym- 
metric, positive semidefinite matrices. Let 

(2.10) Uo = tu I f (u)  f inite j = iu I SUP in (2.9) attained 1, 

(2.1 1) 
1 

g ( v )  = i n f  Iu *[p-R 'v]  - - 2 ~  *I+], 
U E U  

(2.12) Vo = lv I g ( v )  finite j = [v  I inf in (2.11) attained 1. 
The primal and dual problems associated with 1 ,  U, and V by general 
duality theory can then be written as: 

(P 0) 
1 minimize p * u ~ ~ u * P u + f ( u )  over u ~ ~ n ~ ~ ,  

(Do) 
1 maximize q *v -2v Q v  +g (v ) over v E Vn Vo. 

The following duality theorem for (Po) and (Do) extends the standard 
results in quadratic programming that were achieved by Dorn [2] and 
Cottle [I]. Those authors concentrated in effect on the case where U and 
V are orthants. 

THEOREM 1. R - o b l e m s  (Po) a n d  (Do) are  r epre sen tab l e  as q-ue 
dra t ic  p r o g r a m m i n g  in t h e  t rad i t iona l  s ense .  I f  (Po) a n d  (Do) bo th  have  
feas ib le  so lu t ions ,  or  i f  e i t h e r  (Po) or  (DO) h a s f i n i t e  o p t i m a l  va lue ,  t h e n  
bo th  have  o p t i m a l  so lu t ions ,  a n d  

T h i s  o c c u r s  i f  a n d  o n l y  i f  t h e  Lagrangiczn L h a s  a saddle  po in t  (T,q r e  la- 
t i ve  to  UxV, in w h i c h  case  t he  saddle  v a l u e  l(u,v) co inc ide s  with the 
c o m m o n  o p t i m a l  v a l u e  in (Po) a n d  (Do), a n d  t h e  saddle  p o i n t s  are  the  
pa i r s  (C,q s u c h  thut T is an o p t i m a l  s o l u t i o n  to  (Po) a n d  T is an 
o p t i m a l  s o l u t i o n  t o  (Do). 

PROOF. General duality theory [6] assures us that 
inf(Po) 2 sup(Do) and in particular that both (Po) and (Do) have finite 
optimal value if both have feasible solutions. I t  also informs us that (u,v) 
is a saddle point of L on UxV if and only if zL is an  optimal solution to 
(Po), T i s  an optimal solution to (Do), and min(Po) = max(Do), this com- 
mon optimal value then being equal to 1 (C,q. We know further that a 
quadratic programming problem in the traditional sense has an optimal 
solution if i t  has finite optimal value [3, Appendix (i)]. The Kuhn-Tucker 
conditions are both necessary and sufficient for optimality in such a 
problem, because the constraint system is Linear. The proof of the 
theorem can be reduced therefore to demonstrating that (Po) and (Do) 
are representable as quadratic programming in the traditional sense and 
in such a manner that the Kuhn-Tucker conditions for either problem 
correspond to the saddle point condition for 1 on U xV. 



The sets U and V are associated with systems of linear constraints 
that can be expressed in various ways, but to be specific we can suppose 
that 

(2.13) U = ! u € R n  I A u I a ] # #  and V = ! V E R ~  18: 5 b ] #  #, 
where A is m ' x n  and B is m x n ' .  Let U ' E R ~ '  and V ' E R ~ '  be Lagrange 
multiplier vectors paired with the conditions B * v  5 b and Au Za,  respec- 
tively. 

Formula (2.9) gives f ( u )  as the optimal value in a classical quadratic 
programming problem in v .  The optimal solutions to this problem are 
vectors that satisfy the usual Kuhn-Tucker conditions, or in other words, 
correspond to saddle points of the Lagrangian 

relative to u ' E R  y '  and v € R m .  In particular, then, we have 

1 (2.15) f ( u ) =  inf s u p ~ b x ~ ' + v * [ ~ - ~ u - ~ u ' ] - - ~ v ~ ~ v f .  
u'ER?' tram 

The inner supremum here is attained whenever finite, and it is attained 
at a point v =uf f .  Thus it equals m unless there exists a vector u M ~ R r n  
such that [q - R u - B u t ]  - Qu" = 0, in which case it equals 

1 b *u' +-5u'r*Qu' ' ,  a value that actually depends only on u and uf .  We may 

conclude that 

(2.16) Uo = fu€Rn I ~ u ' E R ~ ' ,  with Ru+Bul+Qu" = q f ,  

subject to U'ER?' ,  U " E R ~ ,  Ru+Ru'+Qut'  = q. 

We can therefore represent ( P o )  as 

(Po) 1 1 minimize p *u +-i-u *Pu +b *u't2uf '  ~ Q u "  

subject to AU 2 a ,  u f  2 0 ,  Ru+Bu'+Qu'~ = q ,  

where the value of uff*Qu" does not depend on the particular choice of 
the vector u f '  satisfying R u  +Bu f+@'f = q but only on u and u f .  This is a 
quadratic programming problem in the usual sense, but in which u" is a 
sort of vector of dummy variables that can be eliminated, if desired. In 
any case it follows that (Po)  has an optimal~olution if its optimal value is 
finite, inasmuch as this property holds for (Po).  

The optimal solutions (C3.3')  to (Po) are characterized by the 
Kuhn-Tucker conditions that involve multiplier vectors i7 for the con- 
straint Ru+Bul+Qu"=q and ? for the constraint Au I a .  These condi- 
tions take the form: 



Because of the final condition we can write the next-to-last condition 
instead as RC+BZ+QT= q .  Note that there is no restriction then on u", 
except that Q S '  = QZ we always tgke 3' = i7 in particular. This is in 
keeping with our observation that (Po) is really just a p rob lez  in u and 
u ' .  We see in fact that the pairs (zL,Z) which are optimal for (Po) are the 
ones which, for some pair (T,?), satisfy the conditions 

Problem (Do) can be understood in the same way. From the formula 
(2.11) for g ( v )  we deduce tha t  

(2.19) vo= f v€Rrn  1 ~ v ' E R ~ ' ,  V " E R ~ ,  with R *v+B *v ' -Pv"=p 1, 
1 (2.20) g ( v )  = maximum of a * v f  ----v "*Pv" subject to  2 

These formulas yield for (Do) the representation 

(80) 1 maximize q *v ----v ~ Q v  +a ~v ' - - 1 ~ ' '  OPV"  subject to 2 2 

where the value of v " *Pv " does not depend on the particular v " satisfy- 
ing R*v+Arv ' -Pv"=p but only o n v  a n d v ' .  This is really a problem i n v  
and v ' ,  and the Kuhn-Tucker conditions characterize r a n d  3, as optimal 
if and only if there exist g a n d  zL' such that (2.18) holds, the same condi- 
tions as before. Since (Do) is a quadratic programming problem in the 
usual sense, i t  has an optimal solution whenever its optimal value is 
bite, and (Do) therefore has this property too. 

Our argument demonstrates that if either (Po) or (Do) has finite 
optimal value, then both problems have optimal solutions. The optimal 
solutions in both cases are  characterized by the existence of auxiliary 
vectors such that (2.18) holds. But (2.18) can also be seen as  the Kuhn- 
Tucker conditions for (zL,v) to  be a saddle point of the Lagrangian (2.8), 
when U and V are given by (2.13). Thus for Z a n d  T t o  be optimal solu- 
tions to  (Po) and (Do) respectively, it is necessary and sufficient that  
( 7 Z q  be a saddle point in (2.18). Following on the remarks a t  the begin- 
ning of the proof, this establishes the theorem. [ 

COROLLARY. Any standard quadratic programming method can in 
principle be used  t o  solve problems o f  the f o r m  (Po) or (Do), in fact b o t h  



s imul taneous ly ,  there b y  de te rmin ing  a saddle point of the c o r r e s p o n d  
i n g  Lagrangian 1 o n  U x V ,  if s u c h  a saddle point  exis ts .  

PROOF. The representations in the proof okthe theorem show more 
specifically that if an algorithm is applied to (Po), the optimal solution 
vectors i i ,ZL' and multiplier vectors r and T which it produces yield 
optimal solutions zL to (Po) and r to (Do), and (zL,v)_ is a saddle point in 
(2.8). The same holds if an  algorithm is applied to (D *), except that then 
r a n d  ? are the optimal solution vectors, whereas r a n d  zL' are the mul- 
tiplier vectors. 0 

THEOREM 2. The stochastic programming problems (P) a n d  (D) are 
representable as quadrat ic  programming problems in the  tradi t ionul  
sense, a l though with po t e n t i d l y  v e r y  h igh  d imens ional i ty .  B o t h  pro b- 
l e m s  have op t ima l  solut ions,  and  

A pair  ( F , q  i s  a saddle poin t  of the Lagrangian L re la t ive  to  X x Z  i f  and  
o n l y  i f  Fis a n  opt imal  so lu t ion  to (P) and  Fis a n  op t ima l  so lu t ion  to ( D ) .  
The set  of s u c h  pairs  (2 ,q  is bounded  

PROOF. We need only observe that the triple L , X ,  2, can be con- 
strued as a special case of the triple 1 ,  U ,  V ,  in Theorem 1. A te rm like 
Euzu*Hwzw can be expressed as z *Qz for certain matrix Q ,  and so forth. 
Our assumption that  the extremal sets ((v) in (1.2) and <,(x) in (1.3) are 
nonempty for all v €Rn, x€X and o€n, guarantees that  every x € X  is 
feasible for (P). and every z €2 is feasible for (D). Therefore we are  in the 
case of Theorem 1 where both problems have feasible solutions. 

As for the boundedness of the set  of saddle points ( F q ,  consider a 
particular pair of optimal solutions z' and z' to (P) and (D). Observe 
that  for every optimal solution Z to (P), (Zt') is a saddle point and 
therefore satisfies 

FE argrnin L(x,F") = ( ( c  - E,T: ) zcy 

(cf. (2.5)). But the se t  on the right is bounded (one of our basic assump- 
tions in $1). Likewise for every optimal solution T to (D),  (?,q is a sad- 
dle point and therefore satisfies 

FE argmax L (?,z), so 2,~<,(z') for all o ~ f l .  
z €2 

(cf. (2.4)). The sets  ( , (p)  are all bounded (again by one of our basic 
assumptions in $I) ,  so T belongs to a certain bounded set. The pairs 
(z.3 thus all belong to a product of bounded sets dependent only on ? 
a n d z ' .  11 

The following pair of results will help to clarify the quadratic pro- 
gramming nature of problems (P) and (D). 



PROPOSITION 1. For the func t ion  $, given by  ( 1 .  I ) ,  i f  the polytope Z ,  
has a representation 

(2.2 1 )  Z,= tz,€Rrn I B: 2,s b,j 

for some vector b,€RS and m a t r i x  B ,€RmXS ( w i t h  s independent  of w), 
t h e n  q, has a n  alternative ezpression of the f o r m  

- - 
subject  to y,€Y,, T,x+W,y, = h,, 

for cer tain  vectors d ,€RS,  & E R ~ ,  and matr ices  E E R ~ ' ~ ,  W,€RqXS, 
and D U ~ R S x S  w i t h  D, s ymme t r i c  and positive semidefinite, and where 

(2.23) Yu= t y&RS  I A u Y u ~ ~ u ~  

for some a , ~ R p  andA ,€RPXS .  

Conzersely, a n y  f unc t i on  $, having a representation (2.22) as just  
described ( w i t h  -$,(x) finite for all x E X )  also has  a representation ( 1 . 1 )  
w i t h  Z ,  of the f o r m  (2.21). 

PROOF. Starting with the representation ( 1 . 1 )  and Z ,  of the form 
(2.21),  view the maximization problem in (1.1)  as the dual problem associ- 
ated with the Lagrangian 

for  u,ER: and z,€Rm. 

The corresponding primal problem, whose optimal value is also equal to 
-$,(x) by Theorem 1 (as long as X E X ,  so that -$,(x) is finite by assurnp- 
tion) is 

rninimize b ,*u, + f  ,(u,) over u,ER:, where 

Using the trick in the proof of Theorem 1, we can reformulate the latter 
as 

1 minimize b,*u, +-?u: .H,uL subject to 

We can then pass to form (2.22) in terms of y ,  = (u , ,u~)  (or by setting 
y ,  = u, after algebraic elimination of uz, if the rank of H ,  is the same 
for all w E R ) .  

Starting with the representation (2.22) and Y ,  of the form (2 .23) ,  on 
the other hand, we can view $,(x) as the optimal value for the primal 
problem associated with the Lagrangian 



for Y,EY, and v,ERQ . 

Then q,(z) (when finite) is also the optimal value in the corresponding 
dual problem 

maximize v,*[h, - F,z] +go(vo) over v , E R ~ ,  where 

As we saw in the proof of Theorem 1, this problem can also be written as 
- - 1 maximize v,*[h, - Tux] +v>a,  - - i - v ~ * D , v ~  subject to 

With z, = (v,,v',,vG), this can  be brought into the form (1.1) with Z, as in 
(2.21). (Alternatively one could take z,=(v,,v',) and eliminate V: alge- 
braically, provided that the rank of D, is independent of o. If the rank of 
W ,  is also independent of o, one could even eliminate u, from the prob- 
lem and just take z, = v', to get a representation (1.1) in fewer variables.) 
n 

PROPOSITIOX 2. The funct ion  9 in (1.4) also has  a ~ e p ~ e s e n t a t i o n  

U E U  satisfying B u  = v  

f o ~  some choice of v e c t o ~ s  b and q and  matr ices  B and Q with Q sym 
metric and positive semidefinite, where U is a convex polyhed~on. 

PROOF. Recall that p(v)  is finite for all v by assumption. Express X 
as [x€Rn  I Ax 2 a ]  for some a€RP and AcRPxn, and consider the Lagran- 
gian 

1 L,(x,ul) = v OX +---x -Cx + u 1 ~ [ a  -Ax] for x c R n  and u ' E R ~ .  2 

The primal problem associated with this Lagrangian is the minimization 
problem in (1.4), whereas the dual problem, which also has rp(v) as  its 
optimal value, is 

maximize a *u' + g (u ' )  over u'ERP,, where 

1 g ( u l )  = inf { z * [ u  - A  *ur ]  + - j ~ . C z j .  
z€Rn 

The reformulation trick in Theorem 1 translates this into 

maximize a *ul - -~u"-cu"  subject to  



We can then get a representation (2.24) in terms of u = ( u t , u " ) .  n 
Propositions I and 2 make possible a more complete description of 

the quadratic programming representation of problems (P) and (D) indi- 
cated in Theorem 2. When ?c/,(x) is expressed in te rms of a recourse sub- 
problem in y ,  as in Proposition I ,  we can identify (P) with the problem 

1 1 (2.25) minimize c * x  +-i-x .Cz +E,[d,*y, +-zyo*Dwyw{ 

subject to  X E X ,  ~ , E Y , :  Tux  + W ,  y ,  = h, for all U E R .  

Similarly, when p is expressed as in Proposition 2 we can pose (D) as 

(2.26) 1 1 maximize q *u ----u 2 *Qu + E, t z ,~h ,  ----z .H,z,j 2 fJ 

subject t o  U E U ,  z,€Z,, and Bu +E,[T: z,j = c.  

In the latter, our assumption that  ~ ( v )  is finite for all v €Rn implies that  
no matter  what the choice of vectors z,EZ,, there does exist a U E U  such 
that the constraint Bu +E,[T: z,j = c is satisfied. 



3. Finite Generation Method 
Our aim is to solve problem (P) by way of (D) according to the follow- 

ing scheme. We replace (D) by a sequence of subproblems 

(D Y, maximize G ( z )  over all z e Z Y c  Z 

for Y = 1,2, ..., where G is the dual objective function in (2.3) and (2.7'). and 
ZV is a polytope of relatively low dimension generated as the convex hull 
of finitely many points in Z .  Obviously ( D  ') is the dual of 

(P ") minimize F '(x ) over all x E X ,  

where 

1 1 = c ox t z x  *Cx + rnax E,Iz,*[h,- Tux] - -2zu*Hu~,J .  
z €2" 

Indeed, (PV) and (DY) are the primal and dual problems that correspond 
to L on XxZY rather than XxZ. In calculating a solution 2 to (DV) we 
obtain also a solution zY to (PY) that can be viewed as an approximately 
optimal solution to (P). From ? and 2 we gain information that deter- 
mines the olytope ZV+' to be used in the next iteration. The new 
polytope ZYP1 is not necessarily "larger" than ZV. 

Problems (PY) and ( D V )  belong to the realm of generalized quadratic 
programming as demarcated in 42. Clearly 

(3.2) F ( x )  LFV(z) for all x ,  

where F is the primal objective function in (2.2) and (2.6), so (PV) can be 
regarded as a "lower envelope approximation" to (P). The feasible sets in 
(PV) and (DV) are the same as in (P) and (D), namely X and Z .  From 
Theorem 1,  therefore, we know that optimal solutions 2 and ? to (PY) 
and (DY) exist and satisfy 

Having determined such a pair (T,?), which is a saddle point of L rela- 
tive to X xZV, we can test whether it is actually a saddle point of L rela- 
tive to XxZ. This amounts to checking the maximum of L ( P , z )  over all 
Z E Z  to see if it occurs at z = Z". If yes, F" and Z" are optimal solutions to 
(P) and (D), and we are done. If no, we obtain from the test an element 

and have 

The crucial feature that makes the test possible is the decomposition in 
(2.4): maximizing L ( T , z )  in z EZ reduces to solving a separate quadratic 



programming problem (perhaps trivial) in z,€Z, for each o€n .  Anyway, 
with such a zV we have 

(3.8) F (x) 4 L (x ,zY) for all x , with equality when x = F". 

We can use this in conjunction with (3.3) in constructing a new lower 
envelope approximation F'+' for F ,  which in primal terms is what is 
involved in constructing a new se t  z"' to replace ZU. More will be said 
about this later. 

Of course the optimality tes t  also furnishes a criterion for termina- 
tion with suboptimal solutions, if desired. Since zY and zY are feasible 
solutions to (P) and (D) with 

we know that for E ,  = F (?') - G (p), F" and are &,-optimal: 

(3.10) IF (Z') - min(P) ( 5 E ,  and I G (F) - max(D) ( S E ,  

Our basic procedure can be summarized now as follows. 

ALGORITHM. 
S t e p  0 (Initialization). Choose the optimali ty test  parameter  2 0  

and the ini t ial  convex polytope z ' c Z.  S e t  v = 1. 
S t e p  1 (Approximate Solution).  Determine a saddle point (?',?) of 

Y Y  L relative to X xZV and the value a, = L (x ,z ). 
S t e p  2 (Direction Search). For each  ~ € 0 ,  determine an optimal 

solution z,V to the problem 

and the optimal value a:. Let z Y  be the e lement  of Z having component  
z,V in Z, , and let 

S t e p  3 (Optimality Test). Let E ,  = a,- a, Then  zY is a n  &,optimal 
solution to (P), 7 i s  a n  &,optimal solution to ( D ) ,  and 

I f  E ,  5 E, terminate .  

S t e p  4 (Polytope MocEification). Choose a n e w  convex polytope ZVC1 
that  contains both 2 and zV, although no t  necessarily all of ZV. Replace - - 
v b y  v+ 1 and retu7-n to S t e p  1 .  

We proceed to cornrnent on these steps in more detail, one by one. 

The most important observation concerns the quadratic program- 
ming nature of the subproblem solved in Step 1. Suppose that Z V  is gen- 
erated from certain elements Z ~ E Z :  



- u  I 
m 

= I C ~ ~ A ~ Z ~  I Ak 2 O p z k G A k = l ] .  

Finding a saddle point (F",P) of L ( g , z )  relative x€.x and z € Z Y  is 
equivalent to finding a saddle point (?,A? of 

(3.15) L ~ ( Z , A )  = L ( x . c ~ ~ A ~ ~ ; )  

relative to x dC and A€LZY, where A' is the unit simplex in R ~ ' ,  

and then setting 

(3.17) = z m w A  k = l  k Z  k. 

But from the definition (2.1) of L ( x  ,z  ) we have 

where 

(3.19) E Y ~ ~ m '  with components fi; = E,I?~,*h,j, 
N 

(3.20) K Y E R ~ + ~ ~  with entries H &  = E y ~ ~ ~ y * H y ~ ~ u j .  

(3.2 1 )  FvERmuxn  with entries F& = E,[?I,*T~; 1 .  
T t  being the ith column of the matrix T U ~ R m X m .  

Problem ( D V )  thus reduces to  a determinist ic  quadratic programming 
problem in which  the c o e n c i e n t s  are cer tain  expectations,  namely 

(EV)  
N 

maximize ~ ( c - T ~ * A ) - ~ A * H " ~ A  over all AEAY 

Here p is the function in (1.4) ,  which has alternakve representations such 
as in Proposition 2 that can  be used to place ( D  ' )  in a more traditional 
quadratic programming format. Regardless of such reformulation, the 
dimensionality of this quadratic programming problem will be relatively 
low as long as m u ,  the  number of elements z{ used in generating Z Y ,  is 
kept modest. 

The translation of ( D Y )  into (Bv) also sheds light on the lower 
envelope function FY in the approximate primal subproblem (PV): 

where 



Clearly .kV(x)  is a lower envelope approximation to the recourse cost 
function 

1 
(3 .24)  . k (x ) :=  max E, [ z , 4 [h ,  - T u x ]  - z z , *H, z , ]  = E,+ , ( z ) .  

z €Z 

Especially worth noting in (3 .23 )  is the case where there are no qua- 
Lratic terms z , * H ~ z , ,  i.e. where H,=O for all o€R and consequently 
H V  = 0 .  Then 

.kV(x)  = max [rir-Fl*zj, 
k =1,  .... mu 

where 7; is the vector in R n  given by the kt" row of the matrix T"" in 
(3 .21 ) :  

In this case .kV is a polyhedral convex envelope representation of 9, the 
pointwise maximum of a collection of d i n e  functions 

N 

l k ( x )  = E l -  T [ c x  for k = l  ,..., m,. 

Our technique then resembles a cutting-plane method, at least as far as 
the function Q is concerned. 

Indeed, if not only H , = O  but C = 0, so that there are no quadratic 
cost terms at all and ( P )  is a purely linear stochastic programming prob- 
lem, we can regard F V  as a ~olyhedral  convex representation of F .  Then 
the subproblems ( P V )  and (D " )  can be solved by linear rather than qua- 
dratic programming algorithms. Furthermore the function L ( x  , zV)  
determined in ( 3 . 8 )  is then a f i e  in z. If we were to take 
2''' = co t Z V , z V f ,  we would get 

md this would truly be a cutting-plane method applied to problem ( P ) .  
It must be remembered, though, that in such a cutting-plane 

approach it would generally be necessary to retain more and more affine 
functions in the polyhedral approximation to F. The dimension of the 
linear programming subproblem to be solved in each iteration would 
become progressively larger. In contrast, by taking advantage of the qua- 
dratic structure even to the extent of introducing it when it is not 
already at hand (as proposed in $5), one can avoid the escalation of 
dimensionality and at the same time get convergence results of a supe- 
rior character. 

Note-that with a nonvanishing quadratic term X*fiVX in (3 .23 )  (the 
matrix H V  being positive semidefinite, of course) the lower envelope 
approximation QV to Q will generall. not be polyhedral but have "rounded 
corners". As a matter of fact, if H V  is nonsingular, then QV is a smooth 
convex function with Lipschitz continuous derivatives. 

In Step 2 of the algorithm, we need to solve a potentially large 
number of quadratic programming problems ( 3 . 1 1 )  in the vectors z , .  
This could be a trouble spot. If the problems are complicated and require 
full application of some quadratic programming routine, the secret to 



success would have to lie in taking advantage of the similarities between 
neighboring problems. Techniques of parametric programming and 
"bunching" might be useful. Not to be overlooked, however, are the situa- 
tions in which each problem (3.11) decomposes further into something 
simpler. Especially important is the case where 

and H, does not involve crossterms between the sets in this product: 

(3.28) H, = diag [Hol,H,e ,..., H,]. 

Then (3.11) reduces to a separate problem over each of the sets 
ZU1, ... ,Z,. If these sets are  actually intervals (bounded or unbounded), 
the separate problems are one-dimensional, and their solutions can be 
given in closed form. Such is indeed what happens when the costs $,(z) 
in (P) are penalties B,(h,-Tux) as in (1.5). (1.6), (I.?), and B,(h,-Tux) is 
a sum of separate terms, one for each real. component of the vector 
h,- Tux. 

The product case (3.27) also raises further possibilities for handling 
the subproblems in Step 1, by the way. We can write 

(3.29) Z = Z1x ... xZ, with Z, = ?JUEnZ,, 

and work with polytopes of the form 

(3.30) Z V  = Z ~ X  ... xZ,Y with Z;cZj, 

for instance. This could be advantageous in holding the dimensionality 
down. If each Z r  is generated as the convex hull of a finite subset of Zj 
consisting of n, elements, we can get away with describing the  points of 
Z Y  by mu parameters h j k .  On the other hand, if ZV is regarded as  the 
convex hull of the product of these finite subsets of Z1, ...,Z,, we would 
need parameters. 

The procedure invoked in Step 4 of the algorithm could be influenced 
by such considerations too. For this reason it has been left open to vari- 
ous possibilities. Two possibilities that immediately come to mind are: 

(3.31) ZVC1 = co l?,zV] (generalized Frank-Wolfe rule) 

and 

(3.32) ZV+l = co lZV,zVj (generalized cutting-plane rule). 

The first of these is adequate for convergence if the matrix C is positive 
definite, as we shall see in $4. I t  is certainIy the simplest but might suffer 
from too much information being thrown away between one iteration of 
Step 1 and the next. It gets its name from the interpretation in terms of 
problem (D) that will underly the proof of Theorem 5. 

The second formula goes to  the opposite extreme. I t  achieves bet ter  
and better representations of the primal objective F, in the sense that  

(3.33) ~ ( z )  2 FY+'(z) ~ r n a x ~ ~ ~ ( z ) , ~ ( z , z ~ ) j  for all z ,  

with F(z7 = F ~ + ~ ( F " , z ~ ) ,  



but this is at  the expense of keeping all information and continually 
enlarging the size of the quadratic programming subproblem. A good 
compromise possibility is 

where 2' is the fixed initial polytope. 
This brings us to the choice of 2' in Step 0, which in determining the 

&st approximate solutions 2 and 2 could have a big effect on the pro- 
gress of the computations. We can, of course, start  with Z1 = 121, where 
z is an element of Z that may be regarded as an estimate for an optimal 
solution to (D). For example, if an initial guess 2 is available for an 
optimal solution to (P), one might take ẑ  to  be a vector constructed by 
calculating an  element ;,€(,(?) for each o. This approach makes sense 
especially in situations where (,(?) is a singleton for each o ~ n ,  so that 2 
is uniquely determined by the estimate 2 . 

Another approach to  the initial 2' requires no guesses or prior infor- 
mation about solutions. A fixed number of elements q , ( k  = l  ,...,PI is 
chosen from each Z,, such as the set of extreme points of Z, augmented 
by some selected internal points. These yield p elements ak of Z, where 
ak has component ak, in 2,. The convex hull of these a k 7 s  can be taken 
as Z1. 

Particularly interesting here is the case where Z, is a polytope 
independent of o: 

(3.35) 2, = co lal ,..., ap 1 c Rm for all WER. 

Then in taking 2' to be the convex hull of the corresponding "constant 
vectors" ak EZ for these points ak cRn, we get a very special form for the 
subproblem in Step 1 (cf. formulas_ (3.19), (3.20) and (3.21) with g i ,  = ak 
for all ~ € 0 ) .  This subproblem (D ') is equivalent to the problem (Dl) 
obtained f rom (D) by restricting attention to the "constant vectors" z in 
Z  (whose component in Z, is the same for all o) and replacing h,, H ,  and 
T, accordingly by their expectations 

This idea could be refined further: we could partition II into subsets 
o1,...,II1, and restrict attention in (D) to  vectors z whose component z, 
was constant in o relative to each of these subsets. Correspondingly in 
(3.36) we would have conditional expectations. The resulting problem 
could again be identified with the (D 1) associated with the choice of a par- 
ticular Z1 cZ, namely the convex hull of the finitely many vectors z of 
the type just mentioned whose components all belong to the set 
lal, . . . , apl. This 2' could be represented economically as  a product 
set ,  and so forth. 

In summary, there are many possibilities for choosing the initial 
polytope Z ' and modifying it iteratively in Step 4. They can be tailored to  
the structure of the problem. Various product representations of Z and 
Z Y  could be helpful in particular. Versions of rules (3.31), (3.32), and 
(3.34), which maintain the product form can be developed. 
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See t he  end of 54 for other comments on forming 2"" f rom 2''. 



4. Convergence Results. - 

Properties of the sequences produced by the finite generation algo- 
rithm in 53 will now be derived. For this purpose we ignore the optimality 
test in Step 3 of the algorithxn, since our interest is centered on what 
happens when the procedure is iterated indefinitely. Unless otherwise 
indicated, our assumptions a re  merely the basic ones in 51. The initial 
polytope Z1 is arbitrary, and ZY+' is not subjected to any requirement 
stricter than the one in Step 4, namely that  ~ " ' 3  [F",zUi. We use the 
supplementary notation 

- 
a = rnin(P) = max(D) , 

- - -  
c y  = a - a,, 

Of course Ildic is a norm on R n  if C is positive definite. If C is only posi- 
tive semidefinite, then l / ~ i ! ~  vanishes on the subspace [z €Rn ( Cx = 01 but 
is positive elsewhere. 

THEOREM 3. The sequences !Pi, I?], and [zVi aTe bounded and 
satisfy 

(4.5) F (Zy) = a , L a l  - - F , + l l c = G  (22). 

F u ~ t h e n n o ~ e  one has  the es t imate  

f o ~  every  optimal solution F to ( P ) ,  where  

(4.7) Z * ( x  -zF')zo ~ O T  every  z EX. 

If E,+O, t h en  every  c l w t e ~ p o i n t  of t?] i s  a n  o p t i m d  solution to ( P ) ,  and 
every c l w t e ~  point of [ZYf is a n  optimal solution to ( D ) .  

PROOF. We have T , = L  (F,?') and a,= L (Z'",zP) by definition, so  
F ( p )  = a ,  by (3.7). Then a , L a l  a, by (3.9). By the sarne token, 
G (7") = and a But also 

~(p")  = rnax G(z )  ZG(z2) 
z E Z Y + ~  

because P ' E Z ~ + ~ .  All the relations in (4.5) are therefore correct. 

Next we verify that  the  sequence [?j  is bounded. Recall that  G is a 
continuous concave function on Z ,  since G is given by (2.?), where p is 
the concave function defined by (1.4); our basic assumption about the 
sets [ ( v )  being bounded implies ;p is finite elsewhere. (As is well known, a 
concave function is continuous a t  a point if i t  is finite on a neighborhood 
of the point [?, Theorem 10.11.) We know from (4.5) that the sequence 
jG(zY) j  is nondecreasing so the boundedness of I?! can be established 
by showing that  the set  [ Z E Z  I G ( Z ) Z G ( ~ ) ~  is bounded. Consider the 
closed concave function 



We wish to show that a certain level is set  lz I g ( z ) l q {  is bounded. But 
the level sets i z  I g ( z ) L u ] ,  U E R  , are  all bounded if merely one of them is 
bounded and nonempty (see [7, Corollary 8.7.11). In the present case we 
known that the level set 

I Z  I g ( z ) Z q  = [set of all optimal solutions to ( D ) ]  

is bounded and nonempty (Theorem 2) .  Therefore the set  
[ Z E Z  I G ( z ) z G ( ~ ) ~  is indeed bounded, and the sequence i?] is bounded 
as claimed. 

We invoke now the fact that 

(4.8) 
*Y i?'~ [ ( c  -E,T, z ,  ) for all v ,  

which is true by (2.5) because (z',P) is a saddle point of L relative to 
X x Z u .  In terms of the finite concave function p we have 

(4.9) [ ( v )  = d p ( v )  for all v e R n .  

Indeed, (1.4) defines ;p as the conjugate of the closed proper concave 
function 

so d p ( v )  consists of the points x which minimize v . Z - ~ ( X )  over R n  (see 
[?, Theorem 23.51). These are the points that make up the set  [ ( v )  in 
(1 .2) .  Thus 

(4.10) *v Z ' ~ d ; o ( v ' )  for all v, where ? = c -,TUTU z,. 

The sequence IT"] is bounded, since 171 is. Moreover the multifunction 
8p is locally bounded: for every T€Rr- there is a d > 0  such that  the set  
y I d v ( v )  I v -TI 4 b j  is bounded (see [?, Corollary 24.5. I ] ) .  I t  follows by a 
simple compactness argument that d(p carries bounded sets  into bounded 
sets: if VCR" is bounded, then y I d p ( v )  1 V E V ]  is bounded. Taking 
V = IVY), we conclude that the sequence {F'j is bounded. 

The argument establishing that  tzuf is bounded is similar. We have 
~ , V E { , ( ? ' ) ,  where is the multifunction defined in (1.3).  Since the 
sequence is now known to be bounded, we need only show that {, is 
locally bounded a t  every F" in order to conclude that  each of the 
sequences 12: 1 is bounded and consequently that ~ z U f  is bounded. 

In terms of the convex function 0, defined in (1.5) we have 

(4.11) co(z)  = a0,(hU-7',z) for all X E X .  

This holds because (1.5) expresses 8, as the conjugate of the closed 
proper convex function 

I 



The vectors z , E ~ ~ , ( u )  are therefore the ones that maximize 
u.z,- f ,(z,) (see [?, Theorem 23.51). Our assumption that (,(I) is 
nonempty and bounded for every z € X  means that aB,(u) is nonempty 
and bounded for every u of the form h, - Tux for some x EX. Every such 
u = h, - Tux therefore belongs to int (dom 8,) (cf. [?, Theorem 23.41). I t  
follows then that 30, is locally bounded a t  u (cf. [?, Corollary 24.5.11). 
The mapping x +h,- Tux is continuous, so this implies (, is locally 
bounded a t  x for every x E X ,  as we needed to prove. 

The argument just given shows also that the convex function 0, is 
continuous h, - Tux for every z EX (since 8, is continuous on int (dom 8,) 
[?, Theorem 10.1]). Therefore F is continuous o n X  by (1.6) and (2.6). We 
observed earlier in the proof that G is also continuous on 2 .  Of course X 
and 2,  being convex polyhedra, are closed sets. Hence if E,-+O, SO that 
F(?')-taand G(Z")+Cc, any cluster points of [TI and 7 of IFj must 
satisfy F ( T )  = iT= G (7) and be optimal solutions to (P) and (D). 

We turn finally to the estimate (4.6). The saddle point condition on 
(zY,Z') entails 

Since X is a closed convex set and L (z ,?') is a differentiable convex func- 
Y Y  tion of x ,  this condition implies that the vector -w'= -VzL (x ,z  ) 

belongs to the normal cone to X a t  ?' (cf. [7, Theorem 2?.4]), which is 
exactly the assertion of (4.7). We have 

- Y Y 1 = a,= w *(x -2 ) +-21/x -ZYlIZ for all x 

from the quadratic nature of L ,  and also 

L(x ,?)5F(x)  for all XEX 

by (2.2). For any optimal solution F to (P), then, we have 

In terms of ,=ZT-c, this can be written as the first inequality in (4.6). 
The rest of (4.6) then follows from (4.?), inasmuch as 
~ , = a , - a , = E , + a , - a c .  0 

Theorem 3 focuses our attention on finding conditions that guarantee 
E,+O. Our first result in this direction makes no additional assumptions 
on the data in the problem and therefore serves as a baseline. I t  relies on 
an increasing sequence of polytopes in Step 4, however. The generalized 
cutting-plane rule in (3.32) is covered as a special case. 

THEOREM 4. ~f z ~ + ~ > Z ~ U  [zY{ in Step 4 of the algorithm, then E,+O. 



PROOF. Let < = l i r n , , ~ Y  and a_ = lirn supvav. (The first limit exists 
- 

because [a,] is nondecreasing in (4.5).)  Since ~ , = a ~ - a ~ L 0  for all u, we 
need only demonstrate that a-5%. The sequences {Fj, {Pj ,  and IzVj,  
are bounded by Theorem 3, so we can extract convergent subsequences 
with a common index set N c )  l , 2 ,  ...j such that 

+ x-, ~y + T ,  z U  - z m ,  av  + a,. 
v€N Y E N  Y E N  Y E N  

Then since 

we have = L (ze,z-) and a m  = L (2-,zm). Our task now is to prove that 

L (2"",zrn) 5 L (x-,z-). -- From the saddle point condition on ( z  , z  ) we have 

L (F",z ) 5 L (F,?) for all Z €2 Y. 

Let 2" = u E I Z v .  Since z ~ c Z ~ + ~ C  . . - we know that for any fixed z € Z m  
the inequality L (F" , z )  5 L (F",?) holds for all v sufficiently high. Taking -- 
the limit as v+-, ~ E N ,  we obtain L (z-,z) 5 L ( z  , z  ). This holds for arbi- 
trary z EZ", so -- L ( Z - , Z ) ~ L ( X  , z  ) for all Z E C ~ Z " .  

But z" is one of the elements of cl Z", since ~ , E Z ~ + '  for all u. Therefore -- L (T,z")  6 L ( z  ,z ) in particular, and the proof is complete. 0 

Our main result comes next. It assures us that when C is positive 
definite, we do not have to keep increasing the size of the polytope Z v  in 
order to have convergence. The number of elements used to generate Z u  
can be kept at whatever level seems adequate in maintaining a robust 
representation of F and G .  

THEOREM 5. Suppose the mat+ C in (P)  i s  positive definite,  Then 
under  the minimal  requirement ~ ~ + ' > ~ ~ , z ~ ]  in S tep  4 of the algorithm, 
one has E,,+O and also ?+< where F i s  the unique optimal solution to 
(PI. 

If in addition there ez is t s  p 1 0  s u c h  that 

(4.13) ~,*T,c '~T: z,Spz,aH,z, for all z,€Rrn, UER, 
(as i s  true in particular if e v e r y  H ,  is positive definite), then  in the est i-  
m a t e  (4.6) one has 

(4.14) 
- 
E , + 1 6 ~ ~ ~  for ~=1,2,  ... 

where the factor T E [ O ,  1 )  i s  g iven by 



Thus  

(4.16) 
- r ,+r6+~STCL~,  for v=1,2 ,..., and p=1,2 ,.... 

- Note that Theorem 5 asserts in (4.14) a linear rate of convergence of 
a, to Zwith modulus T ,  and the estimate (4.6) effectively translates this 
into a linear rate of convergence of ? to F with modulus T ' ~ .  Indeed, 
from (4.6) and (4.16) we have 

( 1  F-2Y'pI 1 5 [ 2 + ~ , ] ~ ~  for v=1,2 ,... and p= 1,2 ,.... 

This is an unusual sort of result, because it applies not just to the tail of 
the sequence fzY]  but right from the beginning. Moreover the value of E ,  

is known in each iteration, and the value of ~ ~ [ 0 , 1 )  can be estimated in 
advance. 

Theorem 5 makes no assertion about the convergence of I?'{ beyond 
the one in Theorem 3. Of course if there is a unique optimal solution T t o  
(D), then by Theorem 3 we have T- twhenever  E,+O, as is the case here. 
In particular (D) has a unique optimal solution if the matrices H, are all 
positive definite. 

The proof of Theorem 5 depends on further analysis of the dual objec- 
tive function G .  Essentially what we must provide is a lower estimate of 
G that ensures that the direction z Y - 7  determined in Step 2 of the algo- 
rithm is always a direction of ascent for G .  

PROPOSITION 3. Let 

(4.17) f Y ( w )  =maxl(w-Z)*x-?)--k(x-?)eC(x-Z'){ for weRn. 
z€x 

Then  f  " is a finite convex func t ion  o n  Rn w i t h  0 = f  " ( 0 )  S f  ,(w) for all 
w, and 

for all Z €2. 

If C i s  positive definite, t hen  

(4.19) f  "(w) 8-i [ ( w - Z ) + S Z ] * C - ~ [ ( W - ~ + S ~  for all s 20.  

so that in particular ( for  s = 1) 

PROOF. First re-express f  in terms of the finite concave function p 
in (1 .4) ,  so as to verify that f  is a finite convex function and that  "max" 
rather than "sup" is appropriate in (4.17): 



Clearly f "(w)20  for all w,  because z=?' is one of the points considered in 
taking the maximum in (4 .17 ) .  Furthermore 

Recalling the elrpansion (4 .12 )  of L ( z , z Y )  around ?' and the fact that zY 
minimizes L ( x  ,zY) over X (since (zY,zY) is a saddle point of L on X x Z V ) ,  
we see that f "(0) = 0 .  

To get the equation in ( 4 .  l a ) ,  from which the two inequalities in (4 .18)  
immediately follow (the first because f "(w)2O and the second by Jensen's 
inequality, because f " is convex), we look at the expansion 

where 

From this we calculate 

L ( ~ Y , Z ) - C  ( z )  = L ( z Y , z )  - rnin L ( x , z )  = m a x l ~  ( z Y , z )  - L ( X  , z ) ]  
z a  z€x 

This establishes ( 4 . 1 8 ) .  

Finally we use property (4 .7 )  in Theorem 1 to estimate for arbitrary 
s 20: 

When C is positive definite, this last supremum equals the quadratic 
expression on the right side of (4.19). 0 

PROOF O F  THEOREM 5. Since ( z"",~")  is a saddle point of L rela- 
tive to X xZ ", we have 

But ZVC1 includes the line segment joining zY and 2". Therefore 

(4 .2  1 )  
- 

Z max G(zY+t  ( 2 " - P ) ) .  
OSt S l  

To see what this implies, we substitute z  = P + t  ( 2 " - 2 )  into the estimate 
(4 .20 )  of Proposition 3 and make use of the fact that 



This yields 

where 

(4.24) a,:= E , I ( Z ; - C ) ~ T C - ~ T  * ( ~ ; - q ) j .  

Combining (4.23) with (4.21), we get 

(4.25) 
- 
a,+12Cr, + o(c,,d,), 

where 

Note that a is a continuous function of ( E , ~ ) E R :  with u ( ~ , b )  = O  if E = 0 ,  
but ~ ( & , 6 ) > 0  if E>O.  The sequence [a,] is nondecreasing and bounded 
above by ?T (cf. (4 .5)) ,  so u(~,,b,)+O. The sequence Id,] is bounded, 
because the sequences IF"] and [ z f  are bounded (Theorem 3) .  From the 
cited properties of o, it follows then that E,+O. This implies z V + F b y  pro- 
perty (4.6) in Theorem 1. 

We can also write (4.25) as 

Under the additional assumption in Theorem 5 that (4.13) holds, we have 

Consider now the quadratic function 
Y Y  q ( t )  = L ( z  , z  + t ( z V - 2 ' ) )  for O S t S l .  
- 

This has q ( 0 )  = L(F",zY) = a,, q ( 1 )  = L ( Z ' , ~ ~ )  = a,, q" -  =-P,, SO q must be 
of the form 

Moreover the maximum of q ( t  ) over OSt S 1 is attained a t  t = 1 ,  since the 
maximum of L ( 2 , ~ )  over z €2 is attained a t  z = z  ". Therefore 

1 ( 1 - t ) G +  t ~ , + - ~ t  ( 1 - t )p ,Sa ,  for OSt 51 ,  

or in other words, 
- t (1-t)P,g2(1-t)(av-a,) = 2 ( 1 - t ) ~ ,  for O5t 51.  

This implies /3,52c,, and then (4 .28)  yields 

(4.29) 6 ,  S 2pa, 

Formula (4.26) now gives us 



Substituting in (4.27) we get 
- - 

(4.30) &,+I 5 - &,~(1 ,2p)  = [ I -~(1 ,2p)]G,  

where 

The factor 1-u(1,2p) is the number T defined in (4.15), and (4.30) is thus 
the desired condition (4.14). 

REMARK. Proposition 3 provides additional information that  could be 
used in the direction search and polytope modification steps in the algo- 
rithm. Inequality (4.10) asserts that  

(4.3 1)  L ( z Y , z ) 2 C ( z ) Z L ( z Y , z ) - E u f  "(T: ( z . - C ) )  

for all z €2 ,  with equality when z =Z". 

The vector z u  maximizes L(Z",z) over all z EZ and thus provides not only 
the needed value L (Z",?) =F(?') but also a clue as  to where we might t ry  
to move next in trying to improve on the current value G ( p )  of G .  A 
further clue can be found by maximizing the right side of (4.31) over Z to 
get a vector 2'. This is possible because the  right side decomeoses into 
separate terms for each w. Indeed, the components Z,V of z V  can be 
determined by 

In view of the form of f U  in (4. I?), this amounts to solving a special qua- 
dratic programming problem for each ~ € 1 2 .  

If ZV is calculated in this way along with z V  in Step 2, it can also be 
incorporated in the new polytope ZV" in Step 4 in order to enrich the 
representation of G .  



5. Adding Strongly Quadratic Terms. 
The theoretical convergence properties of the finite generation algo- 

rithm are markedly superior when the quadratic forms that are involved 
are positive definite. But many problems lack this positive definiteness. 
Stochastic linear programming problems, for instance, have no quadratic 
terms a t  all. Such problems can be handled by a procedure which com- 
bines the finite generation algorithm with an augmented Lagrangian tech- 
nique that introduces the desired property. 

The technique in question was developed by Rockafellar [5] in a gen- 
eral context of minimax problems and variational inequalities. As applied 
to the present situation, it concerns the replacement of the saddle point 
problem for L on X x Z  by a sequence of saddle point problems for aug- 
mented Lagrangians of the form 

- E ( Z ~ - J , ( Z -  on X x Z  for p=1,2. ... 

Here r a n d  H, are fked positive definite matrices, 7 is a penalty parame- 
ter  value that helps to  control the rate of convergence, and (F, , ,zT)  is a 
current "estimate" for a saddle point of L itself on X x Z ,  i.e. for an  
optimal solution pair for problems (P) and (D). 

When the augmenting terms in L ,  w e  expanded and combined with 
those in L , the expression (5.1) turns into 

where 
- 

(5.3) c *  = c + q c .  H * , = H , + ~ H , .  - 
(5.4) c r  = c -qCGP,  hf,= hW-qK,z , fa  

Note that the vectors c [  and hLU giving the linear terms in L p  depend on 
the p t h  solution estimates, but the matrices C ,  and H e ,  giving the qua- 
dratic terms remain fixed as long as the value of q is not varied. Since 
q >0, these matrices are positive definite. Therefore the  saddle point 
problem for L ,  on X x Z  can be solved by the finite generation algorithm 
with an essentially linear rate of convergence (cf. Theorem 5). 

We make use of this as  follows. 

MASTER ALGORITHM. - - 
S t e p  0 (Ini t ial izat ion) .  Fix  the m a t r i c e s  C, H,, and the parameter  

value  q > 0. Choose in i t ia l  poin ts  T,' EX and  € 2 .  S e t  p = 1. 
S t e p  I (Fin i te  Generation Method). Use the finite generat ion  algo- 

rithm to  determine a s a d d l e p o i n t  (<,<) of L ,  o n X x Z .  



S t e p  2 (Update).  S e t  ( ~ + ' ? Y C 1 )  = (2. ,<). Replace p b y  p+1 a n d  
r e t u r n  to S t e p  1 ( w i t h  the s a m e  value  of q). 

The reader will note that Step 1 calls for an exact saddle point of L, ,  
whereas the finite generation method can only be expected to produce an 
approximate one. The theory in [5] on which the following theorem is 
based makes allowances for calculating only an approximate saddle point, 
but work still needs to be done on reconciling the stopping criterion in 
that theory with the possibilities available for the finite generation algo- 
rithm. For such reasons we content ourselves here with deriving from [5] 
only the simpler, qualitative results needed to put the approach in the 
right perspective. 

THEOREM 6. The sequences  IFtj a n d  [T,C"j converge to par t icu lar  
opt imal  soLutions i7 a n d  F to ~ o b l e m s  (P) and  ( D ) ,  respec t ive ly .  I f  F 
a n d  t are the u n i q u e  op t ima l  soLutions to ( P )  a n d  (D), t h e n  there  is a 
n u m b e r  P ( q ) ~ [ 0 , 1 )  s u c h  that (F,,,Tt) converges to  ( F , a  a t  a l i n e a r  ra te  
w i t h  m o d u l u s  P(q). Moreover P(q) + 0 as q + 0. 

PROOF. We shall deduce this from [5, Theorem 51, which is a general 
result about the calculation of a saddle point of a convex-concave func- 
tion on a product of Hilbert spaces. ~ h e H i l b e r t  spaces in this case are 
Rn and ( R ~ ) ~  with different norms: 

The convex-concave function in question is 

' ~ ( z l z )  if zEX and z c Z ,  

if z EX. 

The saddle points of T o n  R " X ( R ~ ) ~  are the same as those of L on XxZ. 
The problem of finding a saddle point of r* on XxZ reduces to the one for 

The cited theorem of [s]  concerns the sequence generated by taking 
( ~ + ~ , q p + ~ )  to be the saddle point of & on Rnx(Rm)',  and this is the 
same as the sequence generated by our "master algorithm". The 
theorem ties in with others in [ S ]  to give the convergence results we have 
claimed, provided that the following property holds when (Zz) is the 
u n i q u e  saddle eoint of L on XxZ: there exist y Z 0 and 6 Z 0 such that the 
saddle points ( z , z )  of the perturbed Lagrangians of the form 

z ( z t y )  = L (z.y) +F*x +E,lli,*z,] 

for various vectors c ER" and E,€Rrn satisfy 

I l (Z ,3  - l l *  5 ~ll(X)Il* when ll(X)Il 5 6. 



Here 
2 ' A  11(z.z)* = [Il.Il:+ llz 11.1 . 

This needed property does hold, because of the quadratic nature of our 
problem. The optimality conditions are all linear, so if they define a 
unique saddle point, the behavior of the saddle point with respect to per- 
turbations will be Lipschitzian. 

We conclude by connecting the choice of the matrices c a n d  Fu in 
(5.1)  with the convergence rate of the finite generation algorithm in Step 
1 of the master algorithm. 

PROPOSITION 4. Suppose  F u n d  Fu are selected so tha t  f o r  a  c e r t a i n  
p> 0. - 
(5 .6)  z,*[T,c-'T:]z, L ~TZ,.H,Z,] for d l  z ,€Rm. 

T h e n  the m a t r i c e s  C,  a n d  H,, in (5.3) have 

(5 .7)  z,*[T,C;'T:]z, 6 ~ / q 2 ) [ z , * ~ , , z , ]  for all z U ~ R m .  

so tha t  when the  f ini te  g e n e r a t i o n  a lgor i thm is applied t o  f ind ing  a  s a d  
dle po in t  of L,, the  convergence  r e s u l t s  in T h e o r e m  3 wil l  be va l id  for  

p = F/q2. 

PROOF. Let us simplify notation by writing A SB for positive definite 
symmetric matrices A and B to mean that B -A is positive semidefinite. 
Since A and B can be diagonalized simultaneously, this relation can be 
interpreted also as a coordinatewise inequality on the corresponding vec- 
t o r s  of eigenvalues. In this notation, our assumption (5 .6 )  is that 
T,C-'T: L P~-,. Since C, = C + q C  we know C, h q C  and therefore 
C;' s ~ - ' F ' .  But also, from H,, = H,+ q F .  we have q F ,  6 H,,, or in 
other words F, 6 q-'H,,. I t  follows that - 

T,c;'T: r l - ' ~ , ~ - ' ~ :  s ll-lsu L 6 - W * ,  

as claimed in (5.7) .  u 
This result reveals a trade-off between the rates of linear conver- 

gence that can be achieved in the finite generation algorithm and in the 
master algorithm. The modulus #?(q) for the latter can be improved by 
making q smaller. But one cannot a t  the same time make p smaller, as 
would be desirable for the finite generation algorithm in the light of 
Theorem 5. 
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