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NONSMOOTHNESS mD QUASIDIFFERENTIABILITk' 

V.F. Demyanov 
L.N. Polyakova 
A.M. Rubinov 

1. Introduction 

This is not the place to go into the motivations and origins 

of nondifferentiability (although these are very important and 

interesting): for the purpose of this paper it is only neces- 

sary to realize that although a nondifferentiable function can 

often be approximated by a differentiable one, this substitution 

is usually unacceptable from an optimization viewpoint since 

some very important properties of the function are lost (see 

Example 2.1 below). We must therefore find some new analytical 

tool to apply to the problem. 

Define a finite-valued function f on an open set R C E . n 

If function f is directionally differentiable, i.e., if the 

following limit exists: 

af (XI 1 
.T = lim- [f(x+ag) - f(x)l g E E n ,  a. (1 1)  

a 4 0  

then 

Many important properties of the function can be described 

using the directional derivative. To solve optimization problems 



we must be able to (i) check necessary conditions for an 

extremum; (ii) find steepest-descent or -ascent directions; 

(iii) construct numerical methods. 

In general, we cannot solve these auxiliary problems for 

an arbitrary function f: we must have some additional infor- 

mation. 

In classical differential calculus it is assumed that 

af (x)/ag can be represented in the form 

where f (x) E En and (arb) is the scalar product of vectors a 

and b . The function f is said to be differentiable at x and 

the vector f1 (x) is called the gradient of f at x . Differen- 

tiable functions form a well-known and important class of func- 

tions. 

The next cases that we shall consider are convex functions 

and maximum functions. It turns out that for these functions 

the directional derivative has the form 

af = max (v,g) , 
ag v ~ a f  (XI 

where af(x) is a convex compact set called the subdifferential 

of f at x . Each of these two classes of functions forms a con- 

vex cone and therefore their calculus is very limited (only two 

operations are allowed: addition, and multiplication by a 

positive number). 



The i m p o r t a n c e  o f  eqn .  ( 1 . 2 )  h a s  l e d  t o  many a t t e m p t s  t o  

e x t e n d  t h e  c o n c e p t  o f  a s u b d i f f e r e n t i a l  t o  o t h e r  classes o f  

n o n d i f f e r e n t i a b l e  f u n c t i o n s  (see, e . g . ,  [ 1 , 1 5 , 1 6 , 1 8 , 2 2 , 2 3 , 2 8 ,  

321 1 .  

One v e r y  n a t u r a l  and  s i m p l e  g e n e r a l i z a t i o n  was s u g g e s t e d  

by t h e  a u t h o r s  o f  t h e  p r e s e n t  p a p e r  i n  1979 [ 7 , 1 3 ] .  W e  s h a l l  

s a y  t h a t  a  f u n c t i o n  f  i s  quasidifferentiabze a t  x  i f  it i s  

d i r e c t i o n a l l y  d i f f e r e n t i a b l e  a t  x  and  i f  t h e r e  e x i s t s  a p a i r  

o f  compact  convex  sets  a f  - (x )  C E and ? f ( x )  c En s u c h  t h a t  
n  

a f  = max ( v , g )  + min (w,g) . 
a g  

( 1 . 3 )  
~ ~ a f  - ( X I  6;f ( X I  

- 
The p a i r  Df ( x )  = [ i f  ( x )  , a f  ( x ) ]  i s  c a l l e d  a quasidifferentiat 

of  f  a t  x  . 
I t  h a s  b e e n  shown t h a t  q u a s i d i f f e r e n t i a b l e  f u n c t i o n s  f o r m  

a  l i n e a r  s p a c e  c l o s e d  w i t h  r e s p e c t  t o  a l l  a l g e b r a i c  o p e r a t i o n s  

and ,  e v e n  more i m p o r t a n t l y ,  t o  t h e  o p e r a t i o n s  o f  t a k i n g  p o i n t -  

w i s e  maxima a n d  minima. T h i s  h a s  l e d  t o  t h e  deve lopmen t  o f  

q u a s i d i f f e r e n t i a l  c a l c u l u s ,  and  many i m p o r t a n t  a n d  i n t e r e s t i n g  

p r o p e r t i e s  o f  t h e s e  f u n c t i o n s  have  b e e n  d i s c o v e r e d  ( i n c l u d i n g  

a c h a i n  r u l e ,  a n  i m p l i c i t  f u n c t i o n  t h e o r e m ,  and  so o n ) .  

One v e r y  i m p o r t a n t  p r o p e r t y  o f  t h e s e  f u n c t i o n s  i s  t h a t  i f  

f  i s  d i r e c t i o n a l l y  d i f f e r e n t i a b l e  and  i t s  d i r e c t i o n a l  d e r i v a t i v e  

a f ( x ) / a g  a t  x  i s  a c o n t i n u o u s  f u n c t i o n  of  d i r e c t i o n  g  ( e v e r y  

d i r e c t i o n a l l y  d i f f e r e n t i a b l e  L i p s c h i t z i a n  f u n c t i o n  h a s  t h i s  

p r o p e r t y ) ,  t h e n  a f ( x ) / a g  c a n  b e  a p p r o x i m a t e d  t o  w i t h i n  a n y  

p r e s c r i b e d  a c c u r a c y  by a  f u n c t i o n  of  f o r m  ( 1 . 3 ) .  



Thus, the quasidifferential is an ideal tool for studying 

the first-order properties of functions. 

A more general approach, involving an extension of quasi- 

differential calculus, has been presented by Rubinov and 

Yagubov [29]. They proved that if af (x)/ag is continuous in 

g then it can be represented in the form 

where U and V are what are known as s tar - shaped  s e t s .  If U 

and V are convex sets then eqn. (1.4) can be rewritten in the 

form (1.3). 

Thus, if f is directionally differentiable it is natural 

to use this construction (the directional derivative) to study 

optimization problems. However, if f is not directionally 

differentiable some other tool must be found. One approach 

is to generalize the notion of the directional derivative (1.1). 

We shall mention only the following two generalizations: 

1. The Hadamard upper  d e r i v a t i v e  of f at x in the direction 

g, defined as 

a,£ (XI 1 - 1 = lim ~ [ f  (x+agl) - f(x)l . a g 9 ' ~  

In the case of a Lipschitzian function this becomes: 

a,f (XI t - 1 
ag 

= lim T[f (x+ag) - f (x) 1 . 
a-+o 



2. The Clarke  upper  d e r i v a t i v e  o f  f  a t  x i n  t h e  d i r e c t i o n  g  , 

d e f i n e d  a s  

Other  g e n e r a l i z a t i o n s  and e x t e n s i o n s  a r e  g i v e n  i n  [ 1 8 , 2 2 , 2 8 ] .  

Equa t ion  (1 .5 )  i s  a  n a t u r a l  g e n e r a l i z a t i o n  of (1 .1 )  a n d ,  i n  t h e  

c a s e  of a  d i r e c t i o n a l l y  d i f f e r e n t i a b l e  f u n c t i o n ,  t h e  Hadamard 

upper  d e r i v a t i v e  (1 .5 )  c o i n c i d e s  w i t h  t h e  d i r e c t i o n a l  d e r i v a t i v e  

( 1 . 1 ) .  However, t h i s  i s  n o t  t h e  c a s e  f o r  t h e  C l a r k e  upper  

d e r i v a t i v e  ( 1 . 6 ) .  The r e a s o n  f o r  t h i s  i s  t h a t  ( 1 . 6 )  d e s c r i b e s  

n o t  t h e  l o c a l  p r o p e r t i e s  of  f  a t  x  b u t  some "cumula t ive"  pro-  

p e r t i e s  of  f  i n  a  neighborhood of x  . I t  seems t o  t h e  a u t h o r s  

t h a t  f o r  o p t i m i z a t i o n  p u r p o s e s  it i s  b e t t e r  t o  u s e  t h e  Hadamard 

d e r i v a t i v e  (and t h i s  i d e a  h a s  been e x p l o i t e d  by B.N. Pschen ichny i  

1231 . 
The Hadamard and Cla rke  upper  d e r i v a t i v e s  a r e  used  t o  s t u d y  

m i n i m i z a t i o n  problems:  f o r  max imiza t ion  problems it i s  neces-  

s a r y  t o  invoke  t h e  Hadamard and C l a r k e  lower d e r i v a t i v e s .  These  
- 

a r e  d e f i n e d  a n a l o g o u s l y  t o  ( 1  . 5 )  and ( 1  .6 )  w i t h  t h e  o p e r a t i o n  l i m  

r e p l a c e d b y l i m .  - W e  s h a l l d i s c u s s  b o t h  t h e s e  g e n e r a l i z a t i o n s l a t e r i n  

t n e p a p e r :  f o r  now, n o t e  o n l y  t h a t  i f  t h e  Hadamard upper d e r i v a t i l - e  

i s  c o n t i n u o u s  (which i s  a lways  t h e  c a s e  i f  f  i s  L i p s c h i t z i a n ) ,  

t h e n  it c a n  be approximated by a  f u n c t i o n  o f  t h e  form ( 1 . 3 ) ,  s o  

t h a t  q u a s i d i f f e r e n t i a l  c a l c u l u s  c a n  be  used  h e r e  a s  w e l l .  

I n  S e c t i o n  2  w e  d i s c u s s  d i r e c t i o n a l  d i f f e r e n t i a b i l i t y .  

S e c t i o n  3  i s  concerned w i t h  convex f u n c t i o n s  and maximum func-  

t i o n s ,  a s  w e l l  a s  w i t h  t h e  C l a r k e  s u b d i f f e r e n t i a l  and Pschen ichny i  



u p p e r  convex  and lower  c o n c a v e  a p p r o x i m a t i o n s .  Q u a s i d i f -  

f e r e n t i a b l e  f u n c t i o n s  a r e  t r e a t e d  i n  S e c t i o n  4 .  

T h i s  s h o u l d  b e  s e e n  a s  a  s u r v e y  p a p e r :  we hope t h a t  it 

w i l l  p r o v i d e  a  g e n e r a l  i n t r o d u c t i o n  t o  t h e  s u b j e c t  o f  t h i s  

S t u d y  and  e n a b l e  r e a d e r s  t o  make u s e  o f  t h e  r e s u l t s  i n  t h e i r  

own r e s e a r c h .  

2 .  D i r e c t i o n a l  d i f f e r e n t f a b i l i t y  

L e t  S  C En b e  a n  open  set  and  f  b e  d e f i n e d  and f i n i t e -  

v a l u e d  on S  . F i x  x  € S and g  € En . The f u n c t i o n  f  i s  s a i d  

t o  b e  differentiable a t  x  i n  t h e  d i r e c t i o n  g  i f  t h e  f o l l o w i n g  

f i n i t e  l i m i t  e x i s t s :  

( I t  i s  n a t u r a l l y  assumed t h a t  x+ag E S ; s i n c e  S i s  open  t h i s  

i s  t h e  c a s e  f o r  a l l  a E [O,ao ( g )  ] , where  a. ( g )  > 0 )  . The 

l i m i t  ( 2 .1  ) i s  c a l l e d  t h e  ( f i r s t - o r d e r )  directional derivative 

o f  f  a t  x  i n  t h e  d i r e c t i o n  g  . 
I f  f  i s  d i f f e r e n t i a b l e  i n  e v e r y  d i r e c t i o n  g  E En it i s  s a i d  

t o  b e  directionally differentiable a t  x  . 
I f  f  i s  d i r e c t i o n a l l y  d i f f e r e n t i a b l e  a t  x  and L i p s c h i t z i a n  

i n  some ne ighborhood  o f  x  , t h e n  

1  l i m  - [ f  (x+ag ( a )  ) - f  ( x )  ] = a f  ( X I  
I a ag  a-+O 

i . e . ,  i n  t h i s  c a s e  it i s  s u f f i c i e n t  t o  c o n s i d e r  o n l y  " l i n e "  

d i r e c t i o n s .  



I t  i s  c l e a r  from ( 2 . 1 )  t h a t  i f  f  i s  d i r e c t i o n a l l y  d i f -  

f e r e n t i a b l e  t h e n  

i . e . ,  t h e  d i r e c t i o n a l  d e r i v a t i v e  p r o v i d e s  a  f i r s t - o r d e r  ap- 

p r o x i m a t i o n  of  f  i n  a  neighborhood of  x  . 
L e t  f  be  d i r e c t i o n a l l y  d i f f e r e n t i a b l e  a t  x  , x E  S  . A 

d i r e c t i o n  g ( x )  i s  known a s  a  s t e e p e s t - d e s c e n t  d i r e c t i o n  o f  f  

a t  x  i f  

where Sn = { x  E En 1 11gll=1] . 
A d i r e c t i o n  g f ( x )  i s  c a l l e d  a  s t e e p e s t - a s c e n t  d i r e c t i o n  

o f  f  a t  x  i f  

D i r e c t i o n s  of s t e e p e s t  d e s c e n t  o r  a s c e n t  need n o t  neces-  

s a r i l y  e x i s t  and i f  t h e y  d o ,  t h e y  a r e  n o t  n e c e s s a r i l y  un ique .  

'i: 
I t  i s  c l e a r  t h a t  f o r  a  p o i n t  x  €En t o  be a  minimum p o i n t  

of  f  it i s  n e c e s s a r y  t h a t  

An ana logous  n e c e s s a r y  c o n d i t i o n  f o r  a  maximum i s  



However, t h e s e  n e c e s s a r y  c o n d i t i o n s  a r e  i n  g e n e r a l  d i f f i c u l t  

t o  v e r i f y ;  t h e y  a r e  a l s o  t r i v i a l  r e f o r m u l a t i o n s  o f  t h e  de- 

f i n i t i o n s  of a  minimum and a  maximum. We t h e r e f o r e  have t o  make 

u se  of c e r t a i n  s p e c i f i c  p r o p e r t i e s  o f  t h e  f u n c t i o n  under  con- 

s i d e r a t i o n .  

One v e r y  impor t an t  c l a s s  i s  t h a t  of  d i f f e r e n t i a b l e  func-  

t i o n s .  I n  t h i s  c a s e  

where f '  ( x )  i s  t h e  g r a d i e n t  of f  a t  x  . 
Applying t h e  concep to f  a g r a d i e n t ,  f o r  example, t o  t h e  

o p t i m i z a t i o n  problem, it i s  p o s s i b l e  t o :  

1 .  Compute t h e  d i r e c t i o n a l  d e r i v a t i v e .  

2. Der ive  t h e  f o l l o w i n g  nece s sa ry  c o n d i t i o n  f o r  a  minimum o r  

a  maximum: f o r  a  d i f f e r e n t i a b l e  f u n c t i o n  f  t o  a t t a i n  i t s  .. ?. 

l o c a l  minimum ( o r  maximum) v a l u e  a t  x  E S it i s  neces sa ry  

t h a t  

I,. .,- 
The p o i n t  x  a t  which c o n d i t i o n  (2 .3 )  i s  s a t i s f i e d  i s  c a l l e d  

a  s t a t i o n a r y  p o i n t  o f  f  . 
3 .  Find d i r e c t i o n s  o f  s t e e p e s t  d e s c e n t  and a s c e n t  a s  f o l l ows :  

If f '  (x ) f 0 t h e n  t h e  d i r e c t i o n  
0 



i s  t h e  d i r e c t i o n  o f  s t e e p e s t  d e s c e n t  of  f  a t  xo  , and t h e  

d i r e c t i o n  

V 
g '  (x,) = 

I f '  ( x 0 )  11 

i s  t h e  d i r e c t i o n  of s t e e p e s t  a s c e n t  of f  a t  xo  . I n  t h i s  

c a s e  t h e  d i r e c t i o n s  of s t e e p e s t  d e s c e n t  and a s c e n t  both  

e x i s t  and a r e  u n i q u e .  

4 .  C o n s t r u c t  n u m e r i c a l  methods f o r  f i n d i n g  a n  extremum. 

The c o n c e p t  of  a  g r a d i e n t  (a d e r i v a t i v e  i n  t h e  one-dimensional  

c a s e )  has  had a  profound impact  on t h e  development  of  s c i e n c e .  

I t  i s  i m p o s s i b l e  t o  o v e r e s t i m a t e  i t s  impor tance  and i n f l u e n c e .  

From be ing  a n  a r t ,  mathemat ics  became a  t e c h n i c a l  s c i e n c e .  

However, d i f f e r e n t i a l  c a l c u l u s  i s  o n l y  a p p l i c a b l e  i f  t h e  

f u n c t i o n s  s t u d i e d  a r e  smooth ( i . e . ,  d i f f e r e n t i a b l e ) .  For  most 

p r a c t i c a l  problems t a c k l e d  i n  t h e  p a s t  (and f o r  many p r e s e n t l y  

under  s t u d y )  it h a s  been s u f f i c i e n t  t o  c o n s i d e r  o n l y  smooth 

f u n c t i o n s .  N e v e r t h e l e s s ,  a n i n c r e a s i n g  number of problems 

a r i s i n g  i n  e n g i n e e r i n g  and t echno logy  a r e  of  a n  e s s e n t i a l l y  

non-smoothnature .  There  a r e  two v e r y  p o p u l a r  ways t o  a v o i d  

n o n d i f f e r e n t i a b i l i t y .  F i r s t ,  one t r i e s  t o  r e p l a c e  a  non-smooth 

problem by a  smooth one.  For  example, t h e  problem of  minimizing 

t h e  f u n c t i o n  

f ( x )  = max 4 .  ( x )  , 
iE1 

1 



where the $Iils are smooth non-negative functions, I=l:N and 

x E E~ , is often replaced by the minimization of 

where the ai are positive coefficients. The function F is 

smooth but it now describes quite a different problem. 

The second possibility is to consider the function 

instead of f . It is well-known that F x - f x x . 
p+= 

Note that in many cases the computational process by which 

F (x) is minimized becomes unstable. Some very important pro- 
P 
perties of the original function can thus be lost in the pur- 

suit of smoothness. 

We can illustrate this using a very simple example. 

Example 2.1. Let x=(x('), x(~)) E E2 : f (x)=lx(') 1 - x (2) 1 I 

xo=(O,O) . The function f is not differentiable at points 

where x(')=0 or (1) (2)) Take a direction g = (g ,g 

The function f is directionally differentiable with directional 

derivative 

af (x,) 1 
lim -[f(xo+ag) - f(xo)] = ig(') 1 - lg (2) 1 

ag a-+O a 

It is clear that there are two steepest-descent directions of 

f at xo : gl=(O, 1) and g;=(O,-1) . There are also two steepest- 

ascent directions: g2= (1.0) , g;= (-1,O) . 



Let us try to smooth the function f . Take E > 0 and 

consider the following functions: 

It is clear that 

Find the gradients of these functions at x - 
0 - 



We can then make the following deductions: 

For f l E  : xO is a stationary point. 

For f2€ : the steepest-descent direction at x is g 3 = ( ~ # - ~  5 a )  0 

42- AT 
and the steepest-ascent direction is g;=(- - -1 2 '  2 

For f3€ : the steepest-descent direction at xo is g4=(0,-1) 

and the steepest-ascent direction is gh=(0,1) . 
Thus, all three smoothing functions provide incomplete or 

even misleading information about stationarity or directions 

of steepest descent and ascent. The reason is that these 

smoothing functions are zeroth-order approximations while 

steepest-ascent and -descent directions reflect first-order 

properties of the function. 

Since it appears that we cannot avoid nondifferentiability, 

we should rather study the properties of special classes of 

non-smooth functions with the aim of developing analytical tools 

to handle these problems. 

3. The subdifferential and its generalizations 

3.1. Maximum functions. Let 

where @(x,y) is continuous in x and y on S x G and continuously 

differentiable in x on S ; G is a compact set. 

The function f described above is not necessarily continuously 

differentiable. However, it is directionally differentiable on 

S and 



where R ( x ) = { Y  E G 1 $ ( x r y ) = f ( x ) I  . 
The set R ( x )  i s  c l o s e d  and bounded. W e  c a n  rewrite ( 1 . 2 )  

i n  t h e  form 

a f  = max ( v , g )  
ag  6 a f  ( X I  

where 

I t  i s  n o t  d i f f i c u l t  t o  see t h a t  t h e  se t  a f ( x )  d e s c r i b e d  by 

(3 .4 )  can  be  used f o r  s e v e r a l  purposes  [2,6] : 

1 .  To compute t h e  d i r e c t i o n a l  d e r i v a t i v e  (see ( 3 . 3 )  ) .  

2 .  To d e r i v e  t h e  f o l l o w i n g  n e c e s s a r y  c o n d i t i o n  f o r  a n  un- 
* 

c o n s t r a i n e d  minimum: f o r  x  E S t o  b e  a  l o c a l  minimum 

p o i n t  of  f  d e f i n e d  by ( 3 . 1 )  it i s  n e c e s s a r y  t h a t  

* 
A p o i n t  x  E S a t  which ( 3 . 5 )  i s  s a t i s f i e d  i s  c a l l e d  a  

s t a t i o n a r y  p o i n t  of  f  ( n o t e  t h a t  S i s  a n  open s e t ) .  

3. I f  xO i s  n o t  a  s t a t i o n a r y  p o i n t  t h e n  t h e  d i r e c t i o n  



where v ( x o )  E af  ( x 0 )  t I v ( x 0 )  = min Iv! , i s  a  s t e e p e s t -  
E a f  ( x o )  

d e s c e n t  d i r e c t i o n  of f  a t  x  0  T h i s  d i r e c t i o n  i s  un ique .  

I f  w e  f i n d  v l ( x O )  E a f ( x 0 )  such t h a t  I v l ( x O ) ! =  max bvb , 
~ E a f  (x,) 

v1  (x0)  
and i f  nvl ( x o )  1 > 0  , t h e n  t h e  d i r e c t i o n  g l  ( x 0 )  = 

I v l  ( x 0 )  I 

i s  a  s t e e p e s t - a s c e n t  d i r e c t i o n  of f  a t  xo . Note t h a t  t h i s  

d i r e c t i o n  i s  n o t  n e c e s s a r i l y  un ique .  

The se t  a f  ( x )  can  a l s o  be used  t o  c o n s t r u c t  n u m e r i c a l  

methods f o r  minimizing f  on E  or on a  bounded set  (see, e . g . ,  n  

3.2.  Convex functions. L e t  S C En be a  convex open set  and 

f  be a  convex f u n c t i o n  d e f i n e d  on S , i . e . ,  

Any f i n i t e - v a l u e d  convex f u n c t i o n  i s  n e c e s s a r i l y  c o n t i n u o u s  and 

d i r e c t i o n a l l y  d i f f e r e n t i a b l e  on S , and 

where 

The se t  a f  ( x )  i s  non-empty, convex and compact,  and i s  c a l l e d  

t h e  subdifferential of  f  a t  x  . The s u b d i f f e r e n t i a l  p l a y s  

e x a c t l y  t h e  same r o l e  a s  t h e  se t  af  d e f i n e d  by ( 3 . 4 )  f o r  a  



maximum function (except that condition (3.5) in the convex 

case is sufficient as wellas necessary). For this reason 

we shall refer to the set af (x) defined by (3.4) as the sub- 

differential of the maximum function f described by (3.1). 

Note that if + is also convex in x for any y E G then the set 

af (x) defined by (3.4) coincides with the set af (x) defined by 

(3.7) (assuming that f is a maximum function of form (3.1) ) . 
Convex functions have been studied and used very widely: 

their fundamental properties were discovered and exploited 

by Fenchel [ I  41 , Moreau [21] , and Rockafellar [27] . 
Thus we can define the subdifferential mapping af for two 

very important classes of nondifferentiable functions. We 

may view the concept of a subdifferential as a generalization 

of the concept of a gradient (for continuously differentiable 

functions). If f is differentiable at x (where f is either a 

maximum function or a convex one) , then af (x) = If ' (x) ) . 
The properties of convex and maximum functions (and es- 

pecially eqns. (3.3) and (3.6)) seem to have had a mesmerizing 

effect on many mathematicians. They have tried to generalize 

the concept of a subdifferential to other classes of nondif- 

ferentiable functions, while trying to somehow preserve eqn. 

(3.3) [1 ,15 ,16 ,17,18,22,23,28,32] .  

We shall consider here only two of these generalizations 

which are particularly relevant to the subject of this Study. 

3.3. The Clarke subdifferential. Let a function f be Lip- 

schitzian on S . By T(f) we shall denote the subset of S on 

which f is differentiable. It is well-known that Lipschitzian 

functions are differentiable almost everywhere. 



For  x E R , c o n s i d e r  t h e  set 

where 

The set  aShf  (x )  was i n t r o d u c e d  by Shor  i n  [31] and t h e  set  aClf (x )  

by C l a r k e  i n  [I]. The l a t t e r  set w i l l  be  r e f e r r e d  t o  h e r e  a s  

t h e  CZarke s u b d i f f e r e n t i a l  of  f  a t  x . I t  h a s  been shown t h a t  

a f  (x)  i s  a  non-empty convex compact se t .  
C 1  

C l a r k e  a l s o  i n t r o d u c e d t h e C Z a r k e  upper  d e r i v a t i v e  of  f  a t  

x  i n  t h e  d i r e c t i o n  g  E En : 

aclf  ( X I  t - 1 
= l i m  - [ f ( x l + c i g )  - f ( x l ) l  . 

ag  xl-x a 

The most i m p o r t a n t  r e s u l t  r e l a t e d  t o  t h e  C l a r k e  upper  d e r i v a t i v e  

i s  t h e  f o l l o w i n g :  

aclf ( X I  t 
- 

ag 
- max ( v , g ) .  

6 a C l f  ( X I  

* 
I t  i s  p o s s i b l e  t o  show t h a t  f o r  a  p o i n t  x  E S  t o  be  a  minimum 

p o i n t  of f  it i s  n e c e s s a r y  t h a t  



* 
W e  s h a l l  c a l l  any p o i n t  x a t  which (3 .10)  i s  s a t i s f i e d  a  

C l a r k e  s t a t i o n a r y  p o i n t .  I f  xo  i s  n o t  such a  s t a t i o n a r y  p o i n t  

t h e n  t h e  d i r e c t i o n  

where 

i s  a  d i r e c t i o n  of d e s c e n t  o f  f  a t  xo  ( b u t  n o t  n e c e s s a r i l y  a  

d i r e c t i o n  of s t e e p e s t  d e s c e n t ) .  

There  a r e  a l s o  some v e r y  i n t e r e s t i n g  numer ica l  a l g o r i t h m s  

f o r  minimizing a  L i p s c h i t z i a n  f u n c t i o n  f  based on t h e  C l a r k e  

s u b d i f  f e r e n t i a l  [ I  91 . 
L e t  

aclf (XI 1 1  

ag 
E - l i m  - [ f ( x l + a g )  - f ( x ' ) ]  . 

ff x'-x 

T h i s  v a l u e  i s  c a l l e d  t h e  C l a r k e  l o w e r  d e r i v a t i v e  of f a t  x  i n  

t h e  d i r e c t i o n  g  . I t  i s  p o s s i b l e  t o  show t h a t  

% *  
and t h a t  f o r  x  t o  be a  maximum p o i n t  of  f  it i s  n e c e s s a r y  

* * 
t h a t  (3 .10)  be s a t i s f i e d  a t  x  , i . e . ,  t h e  n e c e s s a r y  c o n d i t i o n s  

f o r  a  minimum and a  maximum c o i n c i d e .  



Thus,  t h e  r o l e  p layed  by t h e  C l a r k e  s u b d i f f e r e n t i a l  w i t h  res- 

p e c t  t o  L i p s c h i t z i a n  f u n c t i o n s i s  ana logous  t o  t h a t  p layed  by 

t h e  s u b d i f f e r e n t i a l  f o r  convex and maximum f u n c t i o n s .  

These r e s u l t s  a r e  v e r y  a t t r a c t i v e  from t h e  a e s t h e t i c  p o i n t  

of  view. However, t h i s  approach  n e v e r t h e l e s s  h a s  some de-  

f i c i e n c i e s  from t h e  o p t i m i z a t i o n  s t a n d p o i n t ,  t h e  main r e a s o n  

f o r  which b e i n g  t h e  f a c t  t h a t  t h e  C l a r k e  upper  ( lower )  d i r e c -  

t i o n a l  d e r i v a t i v e  does  n o t  n e c e s s a r i l y  c o i n c i d e  w i t h  t h e  

d i r e c t i o n a l  d e r i v a t i v e  ( i f  t h e  l a t t e r  e x i s t s ) .  

L e t  u s  c o n s i d e r  once a g a i n  t h e  f u n c t i o n  f  d e s c r i b e d  i n  

Example 2 . 1  : 

It  i s  n o t  d i f f i c u l t  t o  check t h a t  

i . e . ,  0  E a C l f ( x 0 )  , where ( x 0 )  i s  a  C l a r k e  s t a t i o n a r y  p o i n t  

b u t  i s  n e i t h e r  a  minimum n o r  a  maximum o f  f  . 
The C l a r k e  s u b d i f f e r e n t i a l  r e f l e c t s  some "cumula t ive"  

p r o p e r t i e s  of  t h e  f u n c t i o n  i n  a  neighborhood of a  p o i n t .  For 

example,  i f  

t h e n  t h e  d i r e c t i o n  g  i s  n o t  o n l y  a  d e s c e n t  d i r e c t i o n  of  f  a t  

x  : it i s  a l s o  a  d e s c e n t  d i r e c t i o n  of f  a t  e v e r y  x '  i n  some 

neighborhood of  x  . 



The C l a r k e  s u b d i f f e r e n t i a l  e n a b l e s  u s  t o  d i s c o v e r  some 

v e r y  i m p o r t a n t  p r o p e r t i e s  o f  t h e  f u n c t i o n .  However, t h e  C l a r k e  

d i r e c t i o n a l  d e r i v a t i v e s  (upper  and lower )  d e f i n e d  by (3 .8 )  and 

(3 .11)  a r e  o n l y  v e r y  rough approx imat ions  of t h e  d i r e c t i o n a l  

d e r i v a t i v e  ( i f  it e x i s t s ) .  

I n  o u r  o p i n i o n  t h e  C l a r k e  s u b d i f f e r e n t i a l  i s  n o t  an  ap- 

p r o p r i a t e  t o o l  f o r  s o l v i n g  problems where d i r e c t i o n a l  d e r i v a t i v e s  

are used  ( s u c h  as ,  f o r  example,  o p t i m i z a t i o n  p r o b l e m s ) .  Never- 

t h e l e s s ,  the c o n c e p t  of  t h e  C l a r k e  s u b d i f f e r e n t i a l  i s  v e r y  

i m p o r t a n t  and c a n  be  v e r y  power fu l  i n  o t h e r  areas of  non-smooth 

a n a l y s i s .  

Note a l s o  t h a t  t h e  c a l c u l u s  based  on t h e  C l a r k e  s u b d i f -  

f e r e n t i a l  i s  i n c o m p l e t e  ( s i n c e  t h e  main r e l a t i o n s  a r e  f o r -  

mula ted  as i n c l u s i o n s ,  n o t  e q u a l i t i e s )  and t h i s  makes it un- 

s u i t a b l e  f o r  c o m p u t a t i o n a l  u s e .  

3 .4 .  The Pschen ichny i  upper convex  and lower concave ap- 

p r o x i m e t i o n s .  Cons ide r  f i r s t  t h e  Hadamard upper  d e r i v a t i v e  

- 1 Fx (g )  = l i m  ;; [ f  (x+ag) - f  ( x )  ] , 
a-+o 

where f  is a L i p s c h i t z i a n  f u n c t i o n  and x  i s  f i x e d .  I n  t h e  

case where f  i s  d i r e c t i o n a l l y  d i f f e r e n t i a b l e ,  F x ( g )  c o i n c i d e s  

w i t h  i t s  d i r e c t i o n a l  d e r i v a t i v e .  

The f u n c t i o n  F  ( g )  p r o v i d e s  a b e t t e r  l o c a l  a p p r o x i m a t i o n  
X 

t h a n  t h e  C l a r k e  upper  d i r e c t i o n a l  d e r i v a t i v e .  However, F x ( g )  

i s  n o t  a convex f u n c t i o n  and t h e r e f o r e  it c a n n o t  be  approximated  

by a  maximum f u n c t i o n  of  l i n e a r  f u n c t i o n s .  P s c h e n i c h n y i  [23] 

s u g g e s t e d  t h a t  it s h o u l d  be approximated  by a f a m i l y  o f  convex 

f u n c t i o n s .  



Let f be Lipschitzian on S and directionally differentiable 

at a fixed point x E S . Note that the directional derivative 

af (x)/ag E f (g) is both continuous in g (because f is Lip- 
X 

schitzian) and positively homogeneous, i.e., 

A function p is said to be an upper convex approximation 

(u.c.a.) of f at x if p is sublinear (i.e., convex and positively 

homogeneous) and if p (g) 2 f;(g) g E En . If p is an 

u.c.a. of f at x' then 

where 

Since p is sublinear there exists a unique convex compact set 

ap C E such that p(g) = max (vtg) 
n 

fia_p 

A function q is said to be a lower concave approximation 

l c a  of f at x if q is superlinear (i.e., concave and 

positively homogeneous) and if q (g) I f ' (g) g E E . Since x n 

q is superlinear there exists a unique convex compact set 
- 
2q E En such that q(g) = min (w,g) . 

68s 
Note that an upper convex approximation is not necessarily 

unique, and therefore a single u.c.a. cannot provide a satis- 

factory approximation of the function. 



The n o t i o n  of a n  e x h a u s t i v e  f a m i l y  of upper  convex ap- 

p r o x i m a t i o n s  was i n t r o d u c e d  i n  [ a ] ,  where it was d e f i n e d  a s  

f o l l o w s :  

L e t  A  be a n  a r b i t r a r y  se t .  A f a m i l y  { p X ( h  E A )  , where 

pX i s  a n  u . c . a .  of f a t  x  , i s  c a l l e d  a n  exhaustive family of 

u . c . a t s  f o r  f  a t  x  i f  

Analogously ,  a  f a m i l y  { q X l h  E A )  , where q X  i s  a  1 . c . a .  of  

f  a t  x  , i s  c a l l e d  an  e x h a u s t i v e  f a m i l y  of lower concave  ap-  

p r o x i m a t i o n s  f o r  f  a t  x  i f  

f  (x+ag) = f ( x )  + a  SUP qh ( 9 )  + O x I g  ( a )  V g E E  n  
XEA 

The e x i s t e n c e  of a n  e x h a u s t i v e  f a m i l y  of u . c . a . ' s  ( o r  

1 . c . a . ' ~ )  i m p l i e s  t h a t  f ; (g)  may be  r e p r e s e n t e d  i n  t h e  e q u i -  

v a l e n t  forms 

= i n £  max ( v , g )  = (3 .15)  

(of  c o u r s e ,  A i s  n o t  t h e  same f o r  a  f a m i l y  of  u . c . a . ' s  and 

t h a t  o f  1 . c . a .  I s ) .  



It is possible to show that exhaustive families of u.c.a.'s 

and 1.c.a.'~ exist for every directionally differentiable func- 

tion whose directional derivative is continuous as a function 

of direction (see [8] for an illustration of the construction 

of a family of 1.c.a.'~). 

The concepts of upper convex approximation and lower con- 

cave approximation can be applied with some success to the 

solution of extremal problems. The following properties are of 
* 

particular use: if x is a minimum point of f on S (recall 

that S is an open set) then for every u.c.a. p(g) it is neces- 

sary that 0 E ap . 
If (pA ( A  E A) is an exhaustive family of u.c.a.'s of f at 

* 
x then we have the following necessary condition for a minimum: 

If (p  I X  E A) is an exhaustive family of u.c.a.'s of f at X 

Xo and (3.16) is not satisfied, find 

sup min llvll = II II . 
XEA e a p X  - vAo 

The direction g (xo) = - VX 0 is then a direction of steepest 
IlvX I1 

0 

descent of f at xo . 
Thus, if we have an exhaustive family of upper convex ap- 

proximations we can: 

1. Compute the directional derivative (see (3.14)). 

2. State a necessary condition for a minimum (see (3.16)). 

3. Find a steepest-descent direction. 



Analogous results can be obtained for maximization problems 

by using an exhaustive family of 1.c.a.'~. 

Thus, the essence of this approach is to reduce the op- 

timization problem to one of constructing the required families 

of u.c.a.'s (or 1.c.a.'~). 

In what follows we describe a class of functions for which 

families of upper convex approximations and lower concave ap- 

proximations can be constructed with relative ease. 

4. Quasidifferentiable functions 

4.1. Definitions and properties. Let f be a finite-valued 

function defined on an open set S C E . The function f is n 

said to be quasidifferentiable at x E S if it is directionally 

differentiable at x and if there exist convex compact sets 

af (x) C E and sf (x) C En such that - n 

af cx) = f;(g) = max (v,g) + min (w,g) g E E  . (4.1) 
ag 6 a f  (XI (XI n - 

- 
The pair of sets Df (x) = [af (x) , af (x) 1 is called a quasidif- 

ferential of f at x ; sets - af (x) and af (x) are described as a 
subdifferential and a superdifferential, respectively, of f at 

x . It is clear that a quasidifferential at a point is not 

unique. 

If the set of quasidifferentials of f at x contains an 

element of type Df (x) = [if (x) ,0] , then the function f is said 

to be subdifferentiable at x . If there exists a quasidif- 

ferential of the form Df (x) = [0,Sf (x) ] , then this function is 

said to be superdifferentiable at point x . 



Some examples of quasidifferentiable functions are given 

below. 

1. If f is continuously differentiable on S then it is quasi- 

differentiable at every point x E S  , and the pair of sets 

Df (x) = [f (x) ,O] (where f (x) is the gradient of f at x) is a 

quasidifferential of f at x . It is clear that the pair 

Df (x) = [0 ,fl (x) ] is also a quasidifferential of f at x . Thus, 

if a function f is smooth at x it is also both subdifferentiable 

and superdifferentiable at x . 
2. From (3.4) and (3.6) it is clear that both maximum functions 

(defined by (3.1)) and convex functions are quasidifferentiable 

at x E S , and that Df (x) = [af - (x) ,O] , where - af (x) =af (x) (defined 
by (3.4) or (3.7), respectively) is a quasidifferential of f 

at x . In other words, both maximum functions and convex func- 

tions are subdif ferentiable. 

3. In a similar way it can be seen that if f is concave on a 

convex open set S (i.e., f =-f is convex), then f is quasi- 1 

differentiable on S , with quasidifferential Df (x)= [0,af (x) ] . 
- 

Here af(x)=[w E Enlf(z)-f(x) < (w,z-x) k/ z E En} is the super- 
differential of the concave function f at x . 

Let D=[A.B] be a pair of sets, where A C En , B C En . We 

define multiplication by a real number X as follows: 

Let D1=[A1 ,B1] , D2= [A2,B21 , where A1 , A2, B1 , B2 C E . We 
n 

define addition of sets in the following way: 



where A=A1+A , B=B1+B2 . It follows from (4.1-4.3) that 
2 

1. If functions fl,...,fN are quasidifferentiable at x then the 
N 

function f = Z cifi (where ci E E ) is also quasidifferentiable 
i=l 1 

at x and 

2. If functions fl and f2 are quasidifferentiable at x then 

the function f=fl-f is also quasidifferentiable at x and 2 

3. If functions fl and f2 are continuous and quasidifferentiable 

at a point x and f (x)#O then the function f=fl/f2 isquasidif- 2 

ferentiable at x and 

Df (x) = 2' [f2(x)Dfl(x) - fl(x)Df2(x)l . (4.6) 
f, (x) 

It is clear that (4.4)-(4.6) represent generalizations of 

well-known relations from classical differential calculus. 

However, quasidifferentiable functions also have the following 

very important additional properties (see [7,8,291): 

4. Let functions fi , iEI=l:N , be quasidifferentiable at 

x E S . Then the function 

f (x) = max f (x) 
iE1 



is quasidifferentiable at x and Df (x)= [af - (x) , af (x) 1 , where 

af (XI = cof?fk(x) - z ;fi (XI Ik E R(X) 1 - 
iER (x) 

- - 
afcx) = z a f k W  

kER (x) 

R(X) = fi E I(fi(x) = f (x) } . 

5. If functions fi , iEI=l:N , are quasidifferentiable at x E S  

then the function f (x) = min fi (x) is quasidifferentiable at x 
iEI 

- 
and ~f (x)=[af - (x )  , af (x) 1 , where 

Thus, the class of quasidifferentiable functions is a linear 

space closed with respect to all algebraic operations and, even 

more importantly, to the operations of taking pointwise maxima 

and minima. 

4 . 2 .  Necessary c o n d i t i o n s  for  an u n c o n s t r a i n e d  ex t remzn .  It 

is easy to state necessary conditions for extrema of quasidif- 

ferentiable functions. We shall limit ourselves to consideratioc 

of the unconstrained case; other cases are discussed in detail 

in [5,25]. 



Let f be quasidifferentiable on En . 
* 

Theorem 4.1 (see [24]). For a  p o i n t  x E E~ t o  be a  minimum 

p o i n t  o f  f o n  En i t  i s  n e c e s s a r y  t h a t  

* * 
Theorem 4.2. For a  p o i n t  x E En t o  be  a  maximum p o i n t  o f  f 

on  En it i s  n e c e s s a r y  t h a t  

* 
A point x E E at which condition (4.9) is satisfied is n 

called an i n f - s t a t i o n a r y  p o i n t  of function f on En . A point 
* *  

x E E  at which condition (4.10) is satisfied is called a n 

s u p - s t a t i o n a r y  p o i n t  of f on E . n 

Assume that xo is not an inf-stationary point (i.e., con- 

dition (4.9) does not hold) . Find w €sf (x ) and voEaf (xo) 0 0 

such that 

max min Ilv+wll = min Ilv+w II=Ilv +w II . 
65 (x,) ~ ~ a f  (x0) (xo o o o 

It turns out that the direction g = - vo+Wo 
0 is a steepest- 

IIv +w I1 
0 0 

descent direction of f at the point xo . This direction may not 

be unique. 

Analogously, if a point xo is not a sup-stationary point of 

f on En then we find vl E af(xo) - and wl E af(x ) such that 
0 



v +w 
The direction g = 1 

' is a steepest-ascent direction of 
Ivl+wl 

f at xo . 
The problem of verifying the necessary conditions for a 

minimum is thus reduced to tnat of finding the Hausdorff devia- 
- 

tion of the set -af(x ) from the set af (x0) . Similarly, the 
0 

verification of the necessary conditions for a maximum is equi- 

valent to finding the Hausdorff deviation of the set cf (xo) 
- 

from the set -af(x0) . If the necessary condition for a maximum 

or for a minimum holds at a point xo , then the corresponding 

Hausdorff deviation is zero. Otherwise the deviation is 

positive and its absolute value is equal to the rate of steepest 

ascent (or descent) at point xo . 
Thus the concept of a quasidifferential is an extension of 

the idea of a gradient. The main formulae ofquasidifferential 

calculus represent generalizations of relations from classical 

differential calculus (see (4.4) - (4.6)). A new and important 

additional operation is allowed in quasidifferential calculus-- 

that of taking pointwise maxima or minima. This brings 

into play a host of new nondifferentiable functions obtained by 

combining ordinary "differentiable operations" with the taking 

of pointwise maxima and minima. A chain rule for quasidifferen- 

tiable functions has been discovered and was proved in [8-101 , 

while implicit function and inverse theorems were established 

in [ 3 , 9 ] .  The relation between the quasidifferential and the 

Clarke subdifferential has also been studied (see [4]): it 

appears that for a rather wide class of quasidifferentiable 

functions there exists a very simple relationship between the 

Clarke subdifferential and the quasidifferential. 



The n e x t  s t e p  i s  t o  deve lop  numer ica l  methods f o r  f i n d i n g  

ext reme p o i n t s  of  q u a s i d i f f e r e n t i a b l e  f u n c t i o n s .  F i r s t  of  a l l ,  

w e  s h o u l d  r e c o g n i z e  t h a t  t h e r e  may be  s e v e r a l  d i r e c t i o n s  o f  

s t e e p e s t  d e s c e n t  ( o r  a s c e n t ,  i f  w e  a r e  l o o k i n g  f o r  a  maximum). 

Th i s  p r o p e r t y  r e q u i r e s  a  new approach  t o  t h e  c o n s t r u c t i o n  o f  

a l g o r i t h m s .  I n  t h e  convex c a s e ,  f o r  example ,  t h e  g r e a t e s t  d i f -  

f e r e n c e s  between many a l g o r i t h m s  l i e  i n  (i) t h e  r u l e  used  t o  

f i n d  a  d e s c e n t  d i r e c t i o n  and (ii) t h e  s t e p - s i z e  r u l e .  I n  t h e  

q u a s i d i f f e r e n t i a b l e  c a s e ,  however, it i s  n e c e s s a r y  t o  c o n s i d e r  

s e v e r a l  d i r e c t i o n s  a t  e a c h  s t e p .  Some promis ing  r e s u l t s  i n  t h i s  

a r e a  a r e  g i v e n  i n  [12 ,26]  . 

4.3. T h e  place and role of quasidifferentiable functions in 

non-smooth optimization. I t  f o l l o w s  from ( 4 . 1 )  t h a t  

a f ( x )  = f;(g) = min [ max (v+w,g) l  
a g  * i f ( x )  V E ~ ~ ( X )  - 

I t  i s  c l e a r  t h a t  f o r  e v e r y  wfaf ( x )  t h e  f u n c t i o n  

p,(g) = max ( v , g )  
vf Lw+af ( X I  I 

i s  an upper  convex approx imat ion  of f  a t  x  and t h e  set  of func-  

t i o n s  ( P w 1 6 a f  ( X I  1 i s  a n  e x h a u s t i v e  f a m i l y  of upper  convex ap- 

p r o x i m a t i o n s  o f  f  a t  x  . 
Analogous ly ,  f o r  e v e r y  v f a f ( x )  - t h e  f u n c t i o n  



is a lower concave approximation of f at x and the set of 

functions {qvlvEif(x)} represents an exhaustive family of lower 

concave approximations of f at x . 
Thus quasidifferentiable functions represent one class of 

functions for which it is possible to construct exhaustive 

families of upper convex and lower concave approximations. 

Note that the most important properties for optimization 

purposes are those of the directional derivative, because they 

can be used to check necessary conditions for an extremum and 

to find directions of steepest descent or ascent. If the 

directional derivative f'(g) is a continuous function (as is 
X 

always the case for a Lipschitzian, directionally differentiable 

function), then f;(g) can be approximated by the difference of 

two convex, positively homogeneous functions. This means that 

the function f can be approximated to within any given accuracy 

(of fi(g)) by a quasidifferentiable function, thus ensuring 

that properties of f which are important from the computational 

standpoint (e.g., the number of steepest-descent and -ascent 

directions, etc.) can be derived. The quasidifferential there- 

fore seems to be quite adequate for studying the first-order 

properties of the function. 

Of course, there are many functions which are not quasidif- 

ferentiable (see, e.g. , [I 1 1  ) , but for the purposes outlined 

above it is sufficient to consider only those which are. 

The main problem is how to approximate f'(g) by a quasi- 
X 

differentiable function, and this is discussed in some detail 

in papers by Rubinov and Yagubov [29], Shapiro [ 3 0 1  and Melzer 

[201 



Concluding remarks 

This paper. considers only the finite-dimensional case, 

although most of the results can be extended to infinite- 

dimensional spaces (see, e. g. , [9] ) . 
Second-order approximation problems seem to present an 

important and promising area of research, but at present only 

a few results have been obtained in this field. 
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