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PREFACE 

Recent attempts to applysthe results of martingale theory in proba- 
bility theory have shown that i t  is first necessary to interpret this 
abstract mathematical theory in more conventional terms. One example 
of this is the need to obtain a representation of the dual predictable pro- 
jec tions (compensators) used in martingale theory in terms of probabil- 
ity distributions. However, up to now a representation of this type has 
been derived only for one special case. 

In this paper, the author gives probabilistic representations of the 
dual predictable projection of integer-valued random measures that 
correspond t o  jumps in a semimartingale with respect to the a-algebras 
generated by this process. The results are of practical importance 
because such dual predictable projections are usually interpreted as ran- 
dom intensities or hazard rates related to jumps in trajectories: applica- 
tions are found in such fields as mathematical demography and risk 
analysis. 

ANDRZEJ WIERZBICKI 
Chairman 
System and Decision Sciences 
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The development of the martingale approach in the theory of random 

processes has made i t  possible to  formalize and then generalize many of the 

intuitive notions commonly used in applied fields. One of these is concerned 

with the concepts of hazard and hazard rate. 

The t e rm hazard rate is usually associated with the probability of 

occurrence of some unexpedted event or series of such events. This notion, 

which is popular in  risk analysis, corresponds to the idea of a compensator or 

d d  predictable projection in martingale theory [1,2.3,4,5,6,7.8,9.10 1. Many 

important results from this theory are formulated in terms of compensators: 

these include convergence of the parameter estimators and conditions for 

absolute continuity and singularity of the probabilistic measures [ 5 ,6 ] .  

Probabilistic representation of the compensators provides a bridge 

between theory and applications. This paper is concerned with a generalization 

of Jacod's important result [I] in this area. 

2. BASIC NOTATION AND DEFINITIONS 

bet ( Q , H . H , P )  be a probabilistic space, where H = (H~)~,,, is some non- 

decreasing rightcontinuous family of a-algebras, H = H,, and a-algebra Ho is 

completed by F z e r o  se ts  from H. 

A real-valued random process q ,  t 2 0 ,  is said to be H-adapted if for any 

u r 0 random variable Y,, is &-measurable. 

A non-negative random variable T is called the H-stopping time if the indi- 

cator process 7 = I ( T 6  t ) ,  t  r 0 ,  is H-adapted. We will use the notation TAS t o  

describe the stopping time T = min (1,s). 



For any H-stopping time T there exists a o-algebra HT in f2, generated by 

events Afrom H such that for any t r 0 we have A n tTS t E Ht. 

The H-adapted process mt is called an H-marfingale if E ] mt I S m for any 

t r O a n d E ( m t ( H u ) = m u  f o r a n y t S u r 0 .  

A real-valued H-adapted process is a local H-martingale if there exists a 

sequence of H-stopping times (Tn)n,O such that lim Tn = m and for any n r 0 
n +- 

the processes m t A q .  t > 0, are uniformly integrable martingales. 

A real-valued process Yt is Kwell-memu~able if the mapping (o. t)  -B Yt is 

measurable with respect to the a-algebra W(H) in fl x (0,m) generated by all H- 

adapted, right-continuous processes. 

A real-valued process Yt is H-predictable if the mapping (o , t )  -B q ( o )  is 

measurable with respect to the  a-algebra n(H) in Q x (0,m) generated by all H- 

adapted, left-continuous processes. 

A stopping time T is said to be H-predictable if t he  process 

5 = I(T s t) ,  t > 0, is H-predictable. 

The H-adapted process Yt ,  t r 0, is an H-semimartingale if it may be 

represented in the form: 

where 4 , t 2 0 ,  is a locally integrable variation process and Mt is an H-adapted 

local martingale. 

We shall let  ( E ~  B ( E ~ ) )  denote the measurable space such that  EA = EuA , 

where A is some auxiliary point, B(EA) = B(E) y [A{, E is Lusin space and B(E) 

is the  Borelian u-algebra on E. 

We will use the term random meusure to describe the  non-negative transi- 

tion measure t7(o;dt.&) from ( f l , ~ )  over (0,m) x Ek 

Let n ( ~ )  denote the o-algebra in Q x (0,-) x E defined by: 

A random measure 7) is called H-predictable if for each non-negative n ( ~ ) -  

measurable function X the process (TX)~ (o) , t r 0, defined by 



is H-predictable. 

Hereafter we will omit the symbol o for simplicity. 

We will also use the  notation GvF to describe the a-algebra in Q generated 

by sets from a-algebras G and F. 

3. J A W S  -ATION RESULT 

Jacod's formula for the random intensity function deals with the .case  in 

which environmental factors are random variables and consequently do not 

change over time. The general process whose intensity is of interest is a 

sequence of random times and random variables called a multivariate point 

process. 

Some additional formal constructions will be useful in deriving the  

representation of the random intensity in this particular case. 

3.1. Multivariate point processes 

According to [I], a multivariate point process is a sequence (Tn,&),,,, 

where the Tn a re  H-stopping times and the Z, are  HTn-measurable random vari- 

ables with values in ( E ~ , B ( E ~ ) ) .  Note that Z, = A if and only if Tn = m ,  and that  

the stopping times Tn have the following properties : 

(ii) Tn > Tn , if Tn < - , 
(iii) Tn+] =T,, if Tn = . 

I t  follows from these assumptions that  sequence (Tn)n,O has a unique 

accumulation point T, = lim Tn C -. We will assume that  T, = m , To = 0. 
n* 

A sequence of stopping times (Tn)n,O satisfying conditions (i)--(iii) is 

called a univariate point process or simple point process. Any arbitrary 

discrete-time random process is naturally also a multivariate point process. 

A multivariate point process is uniquely characterized by the integer- 

valued random measure /I on (0.m) x E defined by the equality: 



In the rest of this paper we shall use p to denote the integer-valued random 

measure generated by some multivariate point process (T,,%),,~. 

3.2. Daal predictable projections of intege~valued random masures 

We shall d e h e  H/' as a a-algebra in Q generated by the multivariate point 

process or, equivalently, by the integer-valued random measure p up to  time t:  

and let Ho be some fixed a-algebra in Q. Denote by H# the non-decreasing fam- 

ily of a-algebras 

where 

are a-algebras in Q generated by the union of and Hf. t 1 0. The family 

is known to be right-continuous [2 1. 
According to  [I], there is one and only one (up to  a modification on a P- 

null set) H#-predictable random measure vo on ( 0 , ~ )  x E such that  for each 

non-negative n(H#)-measurable function X we have 

Measure vo is called the dual *-predictable projection of I t  turns out tha t  

one can choose a version of vo which Pa.s .  satisfles the inequality: 

We shall use the  following equivalent formulation of the above result in this 

paper: 

The random measure vo is characterized by (2) and 

(i) the process v0((0,t], I'). t a 0 .  is Hg-predictable for any r E B(E) 
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1. INTRODUCTION 

The development of the martingale approach in the theory of random 

processes has made i t  possible to formalize and then generalize many of the 

intuitive notions commonly used in applied fields. One of these is concerned 

with the  concepts of hazard and hazard rate .  

The term h a z w d  rate  is usually associated with the probability of 

occurrence of some unexpedted event or series of such events. This notion, 

which is popular in risk analysis, corresponds to the idea of a compensator or 

d d  predictable projection in martingale theory [I, 2,3,4,5,6,7,8,9,  10 1. Many 

important results from this theory are formulated in terms of compensators: 

these include convergence of the parameter estimators and conditions for 

absolute continuity and singularity of the probabilistic measures [5,6]. 

Probabilistic representation of the compensators provides a bridge 

between theory and applications. This paper is concerned with a generalization 

of Jacod's important result [I] in this area. 

2. BASIC NOTATION AND DEFlMTIONS 

bet (O,H,&P) be a probabilistic space, where H = is some non- 

decreasing right-continuous family of a-algebras, H = H,, and a-algebra Ho is 

completed by P-zero sets from H. 

A real-valued random process 5 ,  t 2 0, is said to be H-adapted if for any 

u t 0 random variable Y, is %-measurable. 

A non-negative random variable T is called the H-stopping t ime if the indi- 

cator process 5 = 1(T s t ) ,  t 2 0, is H-zdapted. We will use the notation TAS to 

describe the stopping time T = min (T,S). 



For any H-stopping time T there exists a u-algebra HT in R,  generated by 

events A from H such that  for any t r 0 we have A r\ [T 5 t j E Ht . 

The H-adapted process mt is called an H-martingale if E lmt I S m for any 

t r 0 and E(mt I H,) = mu for any t r u 2 0. 

A real-valued H-adapted process is a local H-martingale if there exists a 

sequence of H-stopping times (Tn)nso such that lim Tn = m and for any n r 0 
n +- 

the processes m t ~ l f , ,  t 2 0, are uniformly integrable martingales. 

A real-valued process Yt is H-well-measu~able if the  mapping ( a t )  -r 5 is 

measurable with respect to the  o-algebra w(H) in R x (0,-) generated by all H- 

adapted, right-continuous processes. 

A real-valued process Yt is H-predictable if the mapping (o , t  ) -, &(w) is 

measurable with respect to the  o-algebra n(H) in h2 x (0,m) generated by all H- 

adapted, left-continuous processes. 

A stopping time T is said to be Hpredictable if t h e  process 

Yt = I(T 5 t ) ,  t 2 0, is H-predictable. 

The H-adapted process Yf , t r 0, is an H-semimartingale if i t  may be 

represented in the form: 

where 4 ,  t 2 0, is a locally integrable variation process and Mt is an H-adapted 

local martingale. 

We shall let (EA, B(EA)) denote the measurable space such that  EA = EVA, 

where A is some auxiliary point, B(EA) = B(E) u [A], E is Lusin space and B(E) 

is the Borelian a-algebra on E. 

We will use the term random measure to describe the non-negative transi- 

tion measure rl(w;dt,dz) from (R,H) over ( 0 , ~ )  x EA. 

Let n ( ~ )  denote the o-algebra in n x (0,m) x E defined by: 

A random measure 17 is called H-predictable if for each non-negative n ( ~ ) -  

measurable function X the  process (9at (w). t r 0, defined by 



is H-predictable. 

Hereafter we will omit the symbol GI for simplicity. 

We will also use the  notation GvF to describe the a-algebra in R generated 

by sets from a-algebras G and F. 

3. JACOD'S REPRESEXTATION RESULT 

Jacod's formula for the random intensity function deals with the.case in 

which environmental factors are random variables and consequently do not 

change over time. The general process whose intensity is of interest is a 

sequence of random times and random variables called a multivariate point 

process. 

Some additional formal constructions will be useful in deriving the  

representation of the random intensity in this particular case. 

3.1. Multivariate point processes 

According to [I], a multivariate point process is a sequence (Tn.G)n,O, 

where the T, are H-stopping times and the 2& are Hm-measurable random vari- 

ables with values in (EA,B(EA)). Note that Z, = A if and only if Tn = m, and tha t  

the stopping times T, have the following properties : 

(ii) Tn > T, , if Tn < = , 

(iii) Tn = Tn, if Tn = = 

I t  follows from these assumptions that  sequence (Tn)n,o has a unique 

accumulation point T, = lim Tn < m. We will assume that  T, = , To = 0. 
n- 

A sequence of stopping times (T,)n,O satisfying conditions (i)-(iii) is 

called a univariate point process or simple point process. Any arbitrary 

discrete-time random process is naturally also a multivariate point process. 

A multivariate point process is uniquely characterized by the integer- 

valued random measure p on ( 0 , ~ )  x E defined by the equality: 



In the  rest  of this  paper we shall use 1 to denote t h e  integer-valued random 

measure generated by some multivariate point process (T,.%),,~. 

3.2. Dual predictable projections of integer-valued random measures 

We shall define Hf as  a a-algebra in R generated by the  multivariate point 

process or,  equivalently, by the in teger-valued random measure p u p  t o  t ime t : 

H/ = u ~ ~ ( ( o . u ] ,  r ) ,  u s t ,  r E B(E)J 

and le t  go be some fixed a-algebra in R. Denote by % t he  non-decreasing fam- 

ily of a-alg e bras 

where 

a re  a-algebras in R generated by the  union of hTo and HP, f 2 0. The family 

is known to be right-continuous [2 1. 
According t o  [I], t he re  is one and only one (up t o  a modification on a P- 

null set)  %-predictable random measure  vo on (0,m) x E such tha t  for each 

non-negative PI(%)-measurable function X we have 

Measure vo is called the  dual w-predic tab le  projection of 1t t u rns  out t h a t  

one can choose a version of vo which P-a.s. satisfies the inequality: 

We shall use  t h e  following equivalent formulation of the above resul t  in th is  

paper: 

The random measure  vo is character ized by (2) and 

(i) the  process vo((O,t], r ) ,  t 1 0 ,  is Hg-predictable for any r E B ( E )  



(ii) the process (p((0,t], r) - v0((0,t], r)), t 2 0, is an %-adapted local mar- 

tingale. 

Dual predictable projections of integer-valued random measures may be 

interpreted as generalized cumulative random intensity functions. 

Remark Notice here that a-algebra Ho is not necessarily formed by events 

independent of H t .  For instance, go could be the a-algebra in R corresponding 

to the past history of some random process up to time 0. We shall consider the 

a-algebra Ho generated by a Wiener process up to time m. 

3.3. Probabilistic representation of random intensity functions 

In some senses, Jacod's representation of dual H#-predictable projections 

serves as a bridge between the abstract theory of random processes with jumps 

currently developing in the framework of the martingale approach, and the 

wide range of applications based largely on the knowledge of probabilistic distri- 

bution fu~ct ions .  

In order to express Jacod's result, we have to define regular versions of the 

HbfTn -conditional probabilities of events [T,,l s uj n f & , l ~  rj, 2 u j, 

where u 2 0 , E B (E) and n = 1,2, ... . This may be done using equalities 

I t  should be emphasized once again that in this part of the paper we are consid- 

ering the  case in which additional information about events and variables 

influencing the multivariate point process perceived by the statistician 

(observer) does not change over time. 

The following theorem was proved in [I]. 

Theorem 1. 7he following is a representation of a dual %-predictable projec- 

tian vo of r n e m r e  p: 

Corollary. Notice that  if the u-algebra % does not provide the observer with 

any information about the  events, and if all he has a t  time t is information 



about events from the  history Hf, the hazard rate coincides with the  dual I$'- 

predictable projection v of the measure p and the formula for v is a simple 

corollary of equation (3): 

In the case of a pure point process (a sequence of random times T,), the  

formula for the dual WL-predictable compsnsator A(t ) becomes: 

where the a-algebras fl, t r 0, are generated by the  values of the  point pro- 

cess (T,),,~ or, equivalently, by the values of the counting process Nu, u r 0, 

up to time t .  

Equations (3') and (3") produce h o w n  results when applied to well-studied 

processes. Thus, for a Poisson process with deterministic local intensity func- 

tion X(t), the dual predictable projection A(t) defined by equation (3") coin- 

cides with the cumulative hazard rate and is given by the  equality 

For a 6nite-state. continuous-time, Markov process Ct , t 2 0, with states 

11,2 ...., Nj and intensities )4,(t), i ,j  = (1,2 ,..., N), t s 0 , equation (3') gives the  

dual predictable projection in the form: 

Now assume that  the observer has some additional information about the 

intensity function, for instance, t h a t  he  knows the value of some random vari- 

able Z which influences the frequency of the  jumps. This means that  he is deal- 

ing with the history H g t  as  determined by the equality (I) ,  where u-algebra & 
coincides with the u-algebra U(Z) generated by random variable Z in R . In this 

case the observer needs to  use the dual w-predictable projection of p as a ran- 

dom intensity function. Thus, in the case of a double stochastic Poisson pro- 

cess Nt , t 2 0, with random intensity function ZX(t) . t 2 0 (where Z is some 



positive random variable), it is necessary to use eqn. (3) which gives the  follow- 

ing dual %-predictable projection of Nt , t 2 0: 

Note t h a t  if two observers have different information about the processes 

occurring in some real system (for example, if one of t h e m  knows the  value of 

the variable Z and the  other  does not), they will use different hazard ra tes  t o  

est imate t h e  probability of change. In the  case of continuously distributed 

jump-times in a double stochastic Poisson process, the  relation between t h e  two 

intensities (derived from a comparison between eqns. (3") and (3')) may be 

represented a s  follows: 

where h ( t )  is the ~ ~ - ~ r e d i c t a b l e  local hazard rate.  This is related t o  the  dual 

~ ~ - ~ r e d i c t a b l e  projection x(t ) of Nt by the  equality: 

We shal l  now prove the relation between x( t )  and h(t).  Consider the  

integral ~ , ( t )  defined by the  equality: 

which is taken from t h e  right-hand side of eqn. (3"). Let cpp(u) be t h e  density 

function of conditional distribution P(Tp+l s u I HF ). Note tha t  the  following 
P 

equality holds: 

where f ( z )  is the  density distribution function of random variable Z. Using 

this equality and noting tha t  for Tp l u 



we have 

Since 

we can derive the formula for the A ( t )  From eqn. (3"). 

Remark. Equation (4) shows that to calculate intensity functions A(t) or h(t)  it 

is first necessary to calculate the HF-conditional mathematical expectation. 

This problem can be overcome by using an approach based on filtering of the 

jumping processes (see, f0.r instance, [ l l ,  121). In the simplest life-cycle 

models, which are characterized only by stopping time T (time of death) and 

are widely used in reliability and demographic analysis, the  random intensity 

describes differences in susceptibility to death or failure [13]. Notice that in 

the case of life-cycle processes, equation (3") gives the following relation 

between the H-adapted compensator A(t) and the local intensity function X(t): 

Recall that. from the definition of the compensator, the process 

is an H-adapted martingale. 

4. GENERAL F'OKMULA MIR REPRESENTATION OF FtANDOM INTENSITY 

In spite of the  fact that  dual predictable projections exist for a wide class 

of families of a-algebras, probabilistic representations are known only for a- 

algebras with structure (3). However, in practical situations u-algebras often 

have a more general structure. In particular, new information may be gen- 

erated not only by the multivariant point process but also by some additional 

process q t .  In this case the u-algebras describing the observation history have 

the form Ht = H t v v H t ,  where a-algebras H t  are generated by some process 77: 

which is observed simultaneously with the  multivariate point process 

( )  Detailed probabilistic characterization of dual predictable 



projections is often useful when applying the results of the general theory of 

random processes in practice. 

In this section we will give the  probabilistic representation of the  dual 

predictable projection of integer-valued random measures corresponding to the  

jumps of the semimartingale with respect t o  the family of o-algebras generated 

by this process. 

4.1. Generation of jumps 

Let random process 4 ,  t 2 0, defined on probability space (R,H,H,P) be H- 

adapted, take values in F@ and have right-continuous, left-limited sampling 

paths. Denote by IF the  family of o-algebras 

and  assume tha t  H;; is completed by the  se ts  from Hf = Hf, with a P-probability 

of zero. Assume also tha t  process 4 may be represented a s  follows: 

where 4 and B, are F - a d a p t e d  matr ices  of appropriate dimensions. matrix B, 

i s  non-singular for any u 2 0, E = ~ - 101, and w, is an  H-adapted, k- 

dimensional Wiener process independent of Xo. 

Note that ,  in general, t he  dimension of 4 may be greater  than  tha t  of the  

jumping changes. This can  mean, for instance, t ha t  we are  also considering 

situations with two-component processes of which one is pure jumping and t h e  

o ther  is continuous. 

I t  follows from (3) t h a t  the  measure p is IF-adapted and tha t  

Let fl  denote t h e  dual IF-predictable projection of integer-valued random 

measure y Our main aim is t o  derive t h e  probabilistic representation of meas- 

ure  #. 



4.2. The form of the hazard rate 

The main resul t  of this subsection is formulated in terms of auxiliary 

processes defined by the  equalities: 

where A ,  B, w ,  p have been defined previously. Introducing the measures pn 

defined by the equalities 

eqn. ( 8 )  may be rewritten a s  follows: 

Notice tha t  measure & may be considered as  a measure of the jumps of t he  

process IS, , t r 0. 

Introduce a-algebras I$' and H? such that: 

and define the  regular versions of t he  conditional probabilities of events 

using the equalities 

The next assertion is the  main result  of this paper. 

Theorem 2. Assume that  coefficients A and B aTe such thut a strong solut ion o j  

equation (3) e z i s t s  and is unique .  Then w e  have the jollowing ~ e p r e s e n t a t i o n  o j  

the dud ) fZ-ped ic tab le  projection 9 o j  i d e g e ~ - v d U @ d  TtZndom measuTe p: 



This theorem is proved in the  Appendix. 

Sometimes i t  is more convenient to  use another form of representation for 

17, transforming the  conditional probabilities on the  right-hand side of (7). For 

this purpose we introduce t h e  function F (u, I?), making use of the equality 

where P(2&+, E I ' (H t+I - )  is  the regular version of the  Hc+l--conditional pro- 

bability of event € I'j. The dual p-predic table  projection v2 of measure p 

may then  be represented i n  te rms of this function as follows: 

5.1. Conditional Gaussian property 

Let p r o c e s s ~ ( t ) .  t 20, satisfy the linear stochastic differential equation 

where Yo is a Gaussian random variable with mean m,, and variance yo, w ( t )  is 

an H-adapted Wiener process, H = (Ht)t20 is  some non-decreasing, right- 

continuous family of o-algebras, and Ho is completed by F z e r o  se ts  from 

H = H,. Denote by I$' the  family of a-algebras in R generated by the  values of 

the random process Y(u), i.e., 

Assume that  process ~ ( t )  determines the  random ra te  of occurrence of some 

unexpected event  characterized by t h e  random time T. through the  equality: 



Notice that process ~ ( u )  = ? ( u ) ,  u 2 0,  may be interpreted as the frailty 

of an individual changing stochastically over time. Using the terminology of 

martingale theory one can say that the process 

is an W-predictable compensator of the life-cycle process 4 = 1(T < f ) ,  t r 0. 

This means that  the  process Mt = I ( T  < t )  - ~ ( t ) ,  t r 0 is an @-adapted mar- 

tingale. Associating the stopping time T with the time of death, we may 

describe the process y 2 ( f ) ,  t  r 0, as the age-specific mortality rate for an indi- 

vidual with history flo = f ~ ( u ) j ,  0 I u I t .  

Letting x ( t ) ,  t 2 0, denote the observed age-specific mortality rate we 

h a v e i ( t ) = h ( t ) a t ) ,  t 1 0 , w h e r e Z ( t ) = ~ t ~ ~ ( t ) I ~ > t j  [13]. 

In order to calculate the observed mortality ra te  x ( t ) ,  t 2 0 ,  i t  is neces- 

sary first to calculate the second moment of the conditional distribution of the 

Y ( U )  given the  event I T r  0 j .  I t  turns out that this moment may be calculated 

quite easily using t h e  result of the Following theorem. 

Theorem 3. A s s u m e  t h a t  procsss  ~ ( t )  a n d  s topping t i m e  T are re la ted  t h ~ o u g h  

eqns.  ( 8 )  and  ( 9 ) .  T h e n  the  condit ional  d is t r ibut ion  of  ~ ( t  ) g i v e n  IT r t j is Gam- 

sian. 2he p a r a m e t e ~ s  of  this dis tr ibut ion ,  i .e  . , the  m e a n  mt a n d  the  var iance  yt , 

are g i v e n  b y  the  fol lowing equat ions:  

7hs f o w n u t a  for  x(t ) is t h e n  h( t  ) = h( l  ) (mt2 + y t )  . 

This theorem may  be proved in a similar way as the conditional Gaussian 

property for processes governed by stochastic differential equations of the 

diffusion type (see [14]). 



6. APPENDIX PROOF OF THEOKEM 2 

The proof uses representation ( 3 )  for vo. I t  tu rns  out that if the  u-algebra 

Ho in eqn. (1) is of a particular form (which will be specified later) then t h e  

H t %  - conditional probabilities of events ITp+l S u jnI25, E rj and fTp+l 2 u 

r i l l  P-a.s. coincide with the  *-conditional probabilities of these events on the  

integration intervals in  (7). Representation of measure vo through @- 
conditional probabilities makes it easier t o  prove its Hz-predictability property. 

I t  is  then easy to check t h a t  the process 

is an Hz-adapted martingale for any I' E B(E). The fact t ha t  IF is unique shows 

tha t  IF and vo coincide P-a.s. Representation (7) i s  derived from (3) through 

substitution of the conditional probabilities. Several auxiliary results will be 

useful in  the  proof of Theorem 2: these are derived in the following subsections. 

8.1. Auxiliary a-algebras 

Introduce t h e  auxiliary right-continuous families of o-algebras 

W, W, Wlp, c, w8p and p, where 

where H is some o-algebra in R and o-algebras and Hf are completed by P- 

zero se t s  from a-algebras I?"' and Hp, respectively. 

Recall also tha t  family IF is defined a s  follows: 



6.2. Existence of HZ -predictable projections 

We shall now establish that  dual Hz-predictable projections exist and are 

unique. 

Lemma 1. m e  dual Hz-predictable project ions vZ of the in teger-valued r a n d o m  

m e m e  p ez i s t  and are un ique .  

Proof. Note that the sets [0] E IT,, .T, E belong to and have measure 

less than or equal to 1. This means that  measure M p  is a-finite on 

((n ( O . t ]  E), W). From [I] , this implies that  the lemma is true. 

6.3. Characterization of P IF-stopping times 

For any t 2 0 let 

The next assertion is a generalization of Lemma 3.2 in Jacod's paper [I]. 

Lemrna2. Let T be the P I P - s t o p p i n g  t i m e .  For a n y n  r 0 there e z i s t s  a r a n d o m  

variable 3' s u c h  thd  indicator  I(SL r u )  is <,-measurable for  any u 2 0 and 

the Jollowing equality holds:  

Proof. It follows from the definition of the u-algebra that  the following fami- 

lies of sets coincide: 

Ht- n ITn < u s Tn+,] = H t  n tTn < u s Tn+,j 

and consequently the families of sets  

( W H P - )  n tTn < U  <Tn+,j = =vHffn n iTn < u s T n + l j  

also coincide. Take the  set  tT < uj from qvq-, and find the set  D, from 

W H Y n  such that 



Note that for r < u we now have 

[(Dr n l T n  < r j )  U(D, n I T n  < uj)ln! T, < u I Tn+,j = D,  IT, < u I T,+,j . 

Define SL by the equalities 

where the r are rational numbers. We then obtain 

I T < u I n ! T n  < u  s T n + l j  = IF < u I n I T ,  < U  <Tn+li 

thus completing the  proof of Lemma 2. 

8.4. Representation of martingales 

The following result plays a fundamental role in the analysis of the predic- 

tability property. 

Lemma 9. Let & be a right-continuous,  le f t - l imi ted,  square-integrable, 

p - m a r t i n g a l e  process. Then an *-adapted process f (u .w) ,  u > 0, exis ts  s u c h  

that  

and 

The proof of this lemma is similar to that of Theorem 5.5 in 1141. The following 

well-known result is  important in the proof of some auxiliary assertions. 

kmma 4. Let L be some  vector  space of bounded real funct ions  defined o n  R. 

Assume tha t  it contains t he  constant  1, is closed wifh respect to  u n i f o r m  con- 

vergence,  and is a h  that for a n y  un i f o rmly  bounded increasing sequence of 

non-negat ive  funct ions  I,, n 2 0, f ,  E L, the func t ion  I = lirn also belongs 
n +- 

to  L Let Q be a subset  of L which is closed with respect to multiplication.  l b n  



the space I, contains al l  bounded functions, measured with respect to the u- 

algebra H generated by the elements of Q.  

Remark  This result  is known as the monotonic class theorem, and is proved in 

[15] . The theorem is also t rue  if 

(a) L is closed with respect to  monotonic and uniform convergence and 

(b) Q is the algebra and 1 E Q 

or 

(a') L is a set of functions closed with respect to  monotonic convergence to the 

bounded function and 

(b') Q is a vector space closed with respe'ct to operation A (maximum of two 

functions) and 1 E Q. 

8.6. Predictability of H,W-weU-measurable processes 

It  turns out t ha t  H,w-well-measurable processes have the  following remark- 

able property: 

~emrna 5. Let be an arbifrary H,w-well-measurable process. m e n  process 

F I f T n  < t j .is Kw-predictable. 

Proof. Let T be a n  arbi t rary H,w-stopping time, and  denote by h( t )  t h e  dual Qw- 

predictable projection of non-decreasing process I(TS t ) .  From t h e  definition 

of h ( t )  the  process & = I(T S t )  - ~ ( t )  is an sw-martingale.  

Now consider the  process v, = W ~ n + u  - w and define Sv = ( q , t ) t s O ,  G' 
w h e r e X t t  = u f v , , u ~ t j v ~ ~ ,  . 

Observe tha t  GBt = x,Tn+t and consequently tha t  family %v coincides 

with family knnW = (qaT +t)taO. I t  is  not  difficult to  check tha t  v, is a Wiener 
n 

process with respect to  sv and  tha t  qn = qn+t i s  an  snlw-martingale process. 

From Lemma 3 we have t h e  following representation of q: 

or, i n  te rms of q, 



Taking Tn +u = t we get 

f 1 

The right-hand side of this equality is an %w-predictable process. Remembering 

the definition of Zt , we deduce that  the process I ( T  I t ) I ( T , < t )  is Kw- 
predictable. 

The result of the lemma may then be derived from the monotonic class 

theorem [15]. 

6.6. Characterization of HW mp-predictable processes 

The following assertion describes the structure of Wlp-predictable 

processes. 

kmma 6. An Hwap-adaptedprocess is Wlp-predictable if and only i f ,  f o r  any 

n r 0, there ezists an ~w-welZ-measurable process such that 

Proof 

Necessity. Consider the process = I ( t  I T), where T is an arbitrary Hwlp- 

stopping time. It follows from Lemma 1 that  

which leads to equality (0) with = I(t  I F). That these conditions are  neces- 

sary may be proved from the monotonic class theorem. 

SiLflciency. Observe that for an arbitrary KW-adapted process 5 ,  the process 

ItT, s t j Yt is P"p-adapted. This is because 

and any arbitrary set from ( p v ~ f - ) n t ~ ,  < f j is VvH/'-measurable. Left- 

continuous KW-adapted processes Yt generate left-continuous Hwmp-adapted 

processes IITn S t j &. This means that  the following inclusion is true: 



where ~ ( I E , ~ )  and n ( p l p )  are o-algebras for w- and prp-predic table  sets 

respectively, and ] JT,,T,+~]I is the stochastic interval corresponding to the 

stopping times Tn and Tn+l. The inclusion ( k 2 )  yields: 

From Lemma 5, the process < t )  is Rw-predictable. Inclusion (A.3) 

shows tha t  the process (which according to equality (AI)  coin- 
n 

cides with process q) is W1p-predictable. This completes the proof. 

6.7. A property of conditional distributions 

Let H, G, F be u-algebras in R. Assume that  they are  complete with respect 

to  measure P and such that  G s H ,  F sH. The next statement will then be use- 

ful in analyzing the form of the dual predictable projection. 

hmma 7 .  Let B E H ,  P(B) > 0 be such that the  f a m i l i e s  of  s e t s  F n B a n d  

G n B c o i n c i d e  P-a.s. m e n  f o r  m y  H - m e a s u r a b l e  i n t e g r a b l e  r a n d o m  v a r i a b l e  q 

the f o l l o w i n g  e q u a l i t y  h o l d s :  

Proof. For any A E H define the measure P ~ ( A )  as follows: 

Let denote the mathematical expectation with respect to $. The families of 

se ts  G n B  and F n B  form o-algebras of the subsets of set B that ,  generally 

speaking, are not a-algebras in R. Since these families are complete with 

respect to measure pB, they coincide 9 - a . s .  with the u-algebras GvB and FvB, 

respectively. 

It follows from the conditions of the lemma that  for any A E H we have 

or, equivalently, 



and thus the following equality holds 9 - a . s .  for any bounded random variable 7: 

E~ (7  1 GvB) = E (q ) FVB) . 

This may be rewritten in the form 

I(B) ~ ~ ( 7 1  GVB) = I(B) E ~ ( ~ ( F v B ) ,  P-a.s. 

or 

I(B) ~ ( 7 1  GvB) = I ( B ) E ( ~ ~ F v B ) ,  P-a-s. , 

thus completing the proof. 

6.8. Some properties of conditional mathematical expectations 

The next assertion will be useful in proving the predictable characteriza- 

tion of some random measures. 

Lemma 8. Let A E H c + l .  Then the following equalities are true f o r  a n y  t > 0 : 

Proof. Since B, is non-singular for any u r 0, the process wt may be 

represented as follows: 

where 

This shows tha t  the process wt is HI-adapted and leads to the inclusion: 

m H &  s H,I . (A 5 )  

Consider now the bounded random variables XI, X2, X3 which are measur- 

able with respect to  a-algebras q, H# and H;"-, respectively. Note tha t  X3 
n 

does not depend on events from Ht and consequently since s H t .  



Define d = E(X~X~X~I(T, S t ) 1(A)). Using the P v H Y  -measurability of 

the product X1X2X3 this can be rewritten as 

Observe now that  the product X1~ZI(~n+l (-- t)I(A) is HfiU-measurable and conse- 

quently H;z-measurable. Using the fact that X3 is independent of the events of 

0-algebra Hf we obtain 

Since I(Tn+, s t) = I(Tn+l I t) I(Tn < t )  equation (A.6) may be rewritten as fol- 

lows: 

Noting that events from (H;Wvh7fn ) filTn < t { also belong to Hf and since X3 is 

independent of H;Z we get 

Thus 

Using the monotonic class theorem we prove the f i s t  part of the lemma. 

In a similar way it is possible to  prove the equalities: 

which yield 



6.9. Predictability analysis of the uo 

The following assertion is an important s t ep  towards the  proof of the main 

result .  

Lemma 9. Far any r E B(E) the process vo((O,t].I'). t 2 0, is W1p-predictable.  

Proof. It  follows from Lemmas 5 and 6 t ha t  the dual How8p-predictable projec- 

tion of integer-valued random measure p(du ,dz)  may be represented as follows: 

Observe tha t  the function on the right-hand side of this equality immedi- 

ately following the indicator I(T, < t I Tn+l) is W H t - m e a s u r a b l e ,  with 

right-continuous, left-limited sampling paths. This means tha t  the  function is 

H,w-well-measurable. From Lemma 3 the process 

is IE,w-predictable, and consequently (from Lemma 4) the  process vo((O,t], i7)tro 

is lP"p-predictable for any r E B(E). This completes the  proof. 

6.10. Measure v as the dual Fop-p red ic t ab le  projection of p 

The next two lemmas give the  probabilistic form of the dual Wlp- 

predictable projection of p. 

Lemma 10. FOT a n y  F E B (E) the process 

is an Wtp-adapted local martingale. 

Proof. From t h e  definition of the vo. Y: is an  qwlp-adapted local martingale for 

any  r E B(E). Introduce the process 

I t  is easy to  see tha t  4 is an H""P-adapted local martingale. However, i t  follows 

from Lemma 6 t h a t  t h e  process qr is Wap-adapted and consequently coincides 

with &r, thus  proving the lemma. 



The following assertion provides a probabilistic characterization of t he  

dual w~p-p red ic t ab le  projection of measure p. 

Lemma 11. The d u d  H?lp-predictable projection of integer-valued random 

measure p coincides with the process vo. 

This may be proved using Lemmas 6 and  7 and the uniqueness of t he  dual 

HWIJ'-predictable projection of p. 

6.1 1. Probabilistic form of the dual HZ -predictable projection of p 

The fact t h a t  eqn. (4) has a strong solution for 4 yields the  inclusion 

which, together with (ll), shows tha t  a-algebras ~ v H ( L  and Hr coincide. This 

in tu rn  means tha t  the  classes of Pop-  and  Hz-predictable processes coincide, 

and  consequently tha t  vo is I f-predictable.  

The introduction of a non-singularity condition for B,, u ZL 0, means  tha t  

for any n r 0 we have: 

where 

It follows from these equalities t ha t  process zut is HI"-adapted and  consequently 

tha t  

Note also tha t  equations (6) have a strong, unique solution for % , t ,  n 1 0. This 

fact  yields the inverse inclusion: 

and  consequently 



From the definition of H? we have 

~ ? n ( ~ ~ < t l = ~ c n ( ~ ~ c t j = H &  ( T n < t j  

and thus 

Substituting the T v H f  -conditional probabilities in eqn. (3) by HP- 
n 

conditional probabilities we obtain: 

From Lemma 7 and the coincidence of the a-algebras II;"vHP and H t  for any 

t > 0, we deduce that process 

is an Hz-adapted local martingale. The uniqueness of the dual W-predictable 

projection means that  measures vo and vZ coincide, thus completing the  proof 

of Theorem 2. 

References 

1. J. Jacod, "Multivariate Point Processes: Predictable Projection, 

Radon-Nicodim Derivatives, Representation of Martingales." Zeitschrift fiir 

Wah7~~cheinlichkeitstheory und V e m .  Gebiete 31, pp.235-253 (1975) .  

2. J. Jacod, C a l c d e s  Stochastique e t  Probleme & Marfingales. Lecture Notes 

in Bathonat i c s ,  Vol. 714, Springer-Verlag, Heidelberg (1 979). 

3. P. Bremaud, Point Processes and Queues, Springer-Verlag, New York, 

Heidelberg and Berlin (1980). 

4. C. Dellacherie. Capacit ies e t Processus Stachcrst ipes,  Springer-Verlag, Ber- 

lin and New York (1972). 



5. Yu.M. Kabanov, R.S. Liptzer, and AN. Shiryaev, "Absolute Continuity and 

Singularity of Locally Absolutely Continuous Probability Distributions," 

Math. Sbornik  USSR (in Russ ian )  35(5), pp.63 1-680 (1979). 

6. AI. Yashin, "Convergence of Bayesian Estimations in Adaptive Control 

Schemas," Proceedings  of t h e  Workshop o n  Adaptive Control ,  October 27-29, 

1982, Florence,  I taly ,  pp.51-75 (1982). 

7. R. Rebolledo, "Central Limit Theorem for Local Martingales," Zei t schr i f t  

f u r  Wahrscheinlichkeitstheory u n d  Verw. Ge bie te  51, pp. 269-286 (1980). 

0. R.S. Liptzer and A.N. Shiryaev, "Functional Central Limit Theorem for Sem- 

imartingales," Probabil i ty  m e o r y  and  Applicat ions ( i n  Russian) 25, pp.667- 

688 (1980). 

9. M.H.A. Davis, "Detection Of Signals With Point Process Observations." 

Depar tmen t  o f  Comput ing  a n d  Control ,  Publ. 73/8, Imperial  College. Lon- 

d o n  (1973). 

10. C.S. Chou and P.A Meyer, gLL7 l a  Represen ta t ion  d e s  Martingales C o m m e  

h t e g r a l e s  S tochas t iques  d u n s  l e s  Processus  Pounc tue l s ,  Lec ture  Notes in 

Mathemat ics ,  Vol. 465 , Springer-Verlag, Berlin ( 1975). 

11. AI. Yashin, "Filtering of Jumping Processes," Automat i c  and Remote  Con- 

trol  5, pp.52-58 (1970). 

12. D.L. Snyder, R a n d o m  Point  Processes ,  John Wiley and Sons. New York 

(1975). 

13. J.W. Vaupel and A.I. Yashin, 7he Deviant  Dynamics  o f  Death in Heterogene- 

o u s  Bpuldions, R R - 8 3 1 ,  International Institute for Applied Systems 

Analysis, Laxenburg, Austria (1982). 

14. R.S. Liptzer and A.N. Shiryaev, S ta t i s t i c s  of R a n d o m  Processes,  Springer- 

Verlag, Berlin and New York . 
15. P.k Meyer, Probabi l i ty  a n d  Potent ia ls ,  Waltham, Blaisdell (1966). 



(ii) the process h ( (0 , t  1, I?) - v0((0,t 1, r)), t 2 0, is an w-adapted local mar- 

tingale. 

Dual predictable projections of integer-valued random measures may be 

interpreted as generalized cumulative random intensity functions. 

Remark Notice here that u-algebra Ho is not necessarily formed by events 

independent of H t .  For instance, Ho could be the u-algebra in Q corresponding 

to the past history of some random process up to time 0. We shall consider the 

a-algebra Ho generated by a Wiener process up to time =. 

3.3. Probabilidic representation of random intensity hrnctions 

In some senses, Jacod's representation of dual w-predictable projections 

serves as a bridge between the abstract theory of random processes with jumps 

currently developing in the framework of the martingale approach, and the  

wide range of applications based largely on the  knowledge of probabilistic distri- 

bution fuoctions. 

In order to express Jacod's result, we have to define regular versions of the 

H6fG -conditional probabilities of events l u{ y \ lK+l~  r{, ITn+l 2 u 1. 
where u 1 0 , r E B (E) and n = 1,2, ... . This may be done using equalities 

I t  should be emphasized once again that  in this part of the paper we are consid- 

ering the  case in which additional information about events and variables 

influencing the  multivariate point process perceived by the statistician 

(observer) does not change over time. 

The following theorem was proved in [I]. 

Theorem 1. lrtrr IoUowing is a representation 03 a dual H&pre&table projec- 

tion vo o J m s m u e  p: 

Corollary. Notice that  if the u-algebra H,, does not provide the observer with 

any information about the events, and if all he has at time t is information 



about events from the history HfCI, the hazard rate coincides with the dual w- 
predictable projection v of the measure p and the formula for v is a simple 

corollary of equation (3): 

In the case of a pure point process (a sequence of random times T,), the 

formula for the dual W-predictable compsnsator ~ ( t  ) becomes: 

where the a-algebras kItN, t r 0. are generated by the values of the point pro- 

cess (T,)n,o or, equivalently, by the valoes of the counting process %, u r 0, 
up to time t .  

Equations (3') and (3") produce known results when applied to well-studied 

processes. Thus, for a Poisson process with deterministic local intensity Func- 

tion A(t), the dual predictable projection A(t) defined by equation (3") coin- 

cides with the cumulative hazard rate and is given by the equality 

For a finite-state, continuous-time, Markov process Ct , t r 0, with states 

I1,2 .... ,N] and intensities h j ( t ) ,  i,j = (1.2 .... ,N), t r 0 , equation (3') gives the 

dual predictable projection in the form: 

Now assume that the observer has some additional information about the 

intensity function, for instance, that  he knows the value of some random vari- 

able Zwhich influences the frequency of the jumps. This means that  he is deal- 

ing with the history H g t  as determined by the equality (I), where a-algebra & 
coincides with the o-algebra a(@ generated by random variable Z in Q . In this 

care the observer needs to use the dual H,f-predictable projection of p as a ran- 

dom intensity function. Thus, in the case of a double stochastic Poisson pro- 

cess \ , t & 0 ,  with random intensity function ZA(t) , t r D (where Z is some 



positive random variable), it is necessary to use eqn. (3) which gives the follow- 

ing dual %-predictable projection of Nt . t > 0: 

Note that if two observers have different information about the processes 

occurring in some real system (for example, if one of them knows the value of 

the variable Z and the other does not), they will use different hazard rates to 

estimate the  probability of change. In the case of continuously distributed 

jumpt imes in a double stochastic Poisson process, the relation between the two 

intensities (derived from a comparison between eqns. (3") and (3')) may be 

represented as follows: 

where h ( t )  is the H'-predictable local hazard rate. This is related to the  dual 

~ ' -~ r ed i c t ab l e  projection x ( t )  of Nt by the equality: 

We shall now prove the relation between X(t) and A(t). Consider the 

integral ~ , ( t )  defined by the equality: 

which is taken from the  right-hand side of eqn. (3"). Let pP(u) be the density 

function of conditional distribution P(Tp+I s u I H! ). Note that the following 
P 

equality holds: 

where j ( z )  is the density distribution function of random variable 2. Using 

this equality and noting that for Tp < u 



we have 

Since 

we can derive the formula for the K( t )  from eqn. (3"). 

Remark. Equation (4) shows that to calculate intensity functions x ( t )  or x(t) it 

is &st necessary to calculate the H'-conditional mathematical expectation. 

This problem can be overcome by using an approach based on filtering of the 

jumping processes (see, f0.r instance, [ll, 121). In the simplest life-cycle 

models, which are characterized only by stopping time T (time of death) and 

are  widely used in reliability and demographic analysis, the random intensity 

describes diflerences in susceptibility to death or failure [13]. Notice that in 

the case of life-cycle processes, equation (3") gives the following relation 

between the H-adapted compensator A ( t  ) and the local intensity function A(t ): 

Recall that, from the definition of the compensator, the  process 

is an H-adapted martingale. 

4. GENERAL FORMULA POR R E P ~ A T I O N  OF RANDOM 

In spite of the fact that  dual predictable projections exist for a wide class 

of families of 0-algebras, probabilistic representations a re  known only for o- 

algebras with structure (1). However, in practical situations u-algebras often 

have a more general structure. In particular, new information may be gen- 

erated not only by the multivariant point process but also by some additional 

process In this case the 0-algebras describing the  observation history have 

the form Ht = H t v v H f ,  where a-algebras h!f are generated by some process qt 

which is observed simultaneously with the multivariate point process 

(L, Z,,)nlo. Detailed probabilistic characterization of dual predictable 



projections is often useful when applying the results of the general theory of 

random processes in practice. 

In this section we will give the probabilistic representation of the dual 

predictable projection of integer-valued random measures corresponding to the 

jumps of the semimartingale with respect to the family of o-algebras generated 

by this process. 

4.1. Generation of jumps 

Let random process 4 ,  t 2 0, defined on probability space (R,H,H,P) be H- 

adapted, take values in $ and have right-continuous, left-limited sampling 

paths. Denote by IF the family of u-algebras 

and assume that is completed by the sets from HI = H1, with a P-probability 

of zero. Assume also that  process 4 may be represented as follows: 

where 4 and B,, are HI-adapted matrices of appropriate dimensions, matrix B, 

is non-singular for any u 1 0 ,  E = $ - IOj. and w,, is an H-adapted. k- 

dimensional Wiener process independent of Xo. 

Note that, in general, the dimension of 4 may be greater than that  of the 

jumping changes. This can mean, for instance, that  we are also considering 

situations with two-component processes of which one is pure jumping and the  

other is continuous. 

I t  follom from (3) that  the measure p is *-adapted and that  

Let 9 denote the  dual *-predictable projection of integer-valued random 

measure p. Our main aim is to  derive t he  probabilistic representation of meas- 

ure vf . 



4.2. The form of the hazard rate 

The main result of this subsection is formulated in terms of auxiliary 

processes defined by the equalities: 

where A,  B, w ,  p have been defined previously. Introducing the measures 

defined by the equalities 

eqn. (8) m a y  be rewritten as  follows: 

Notice that measure p,, may be considered as a measure of the jumps of the  

process & , t r 0. 

Introduce c-algebras $ and H? such that: 

and define the regular versions of the  conditional probabilities of events 

using the equalities 

The next assertion is the main result of this paper. 

Theorem 2. Assume that c o e w n t s  A and  B m e  such tha t  a s trong s o l u t i o n  oJ 

equat ion (3) % l i s t s  and is unique. m e n  we have the following r e p r e s e n t a t i o n  oJ 

thr dud IF -pta&tabla projec t ion vf oJ integer-valued random m e a s w e  p: 



This theorem is proved in the Appendix. 

Sometimes it is more convenient to use another form of representation for 

vZ , transforming the conditional probabilities on the right-hand side of (7). For 

this purpose we introduce the function F (u, r), making use of the equality 

where P(l&+l E q + l - )  is the regular version of the P$+l--conditional pro- 
- 

bability of event I&+1 E rj. The dual Hf-predictable projection v' of measure p 

may then be represented in terms of this function as follows: 

5.1. Conditional Gaussian property 

Let processY(t). t r 0, satisfy the linear stochastic differential equation 

where Yo is a Gaussian random variable with mean no and variance yo, w ( t )  is 

an H-adapted Wiener process. H = (Ht)t,o is some non-decreasing, right- 

continuous family of u-algebras, and Ho is completed by F z e r o  se ts  from 

H = H,. Denote by the family of a-algebras in R generated by the values of 

the random process Y(u), i.e.. 

Assume that process ~ ( t )  determines the random rate of occurrence of some 

unexpected event characterized by the random time T, through the  equality: 



Notice that process Z ( U )  = y2(u) ,  u 1 0 ,  may be interpreted as the frailty 

of an individual changing stochastically over time. Using the terminology of 

martingale theory one can say that the process 

is an W-predictable compensator of the life-cycle process 4 = 1(T < t ) ,  t 10. 

This means that the process Mt = I(T < t ) - A ( t  ), t 1 0 i s  an #-adapted mar- 

tingale. Associating the stopping time T with the time of death, we may 

describe the process y 2 ( t ) ,  t r 0, as the age-specific mortality rate for an indi- 

vidual with history yot = [ Y ( u ) ~ ,  0 S u S t .  

Letting h ( t ) ,  t 2 0, denote the observed age-specific mortality rate we 

h a v e x ( t )  = h ( t ) Z t ) ,  t 20, whereZ(t) = ~ l ~ ~ ( t ) l ~ > t j  [13]. 

In order to calculate the observed mortality rate x ( t ) .  t r 0, i t  is neces- 

sary first to calculate the second moment of the conditional distribution of the  

Y ( u )  given the event I T 1  0 j .  It turns out that this moment may be calculated 

quite easily using the result of the following theorem. 

Theorem 3. Assume thal process Y ( t  ) and stopping t i m e  T are relaled t h r o u g h  

e q m .  ( 8 )  and ( 9 ) .  Then the  conditional d is tr ibut ion of Y ( t  ) g w e n  [T 2 t  j is &us- 

sian. ?'he parameters  01 this  distribution,  i . e . ,  the  m e a n  9 and the v a l i a n c e  yt , 

a m  g i v e n  b y  the lol lowing equations: 

7he l o m u l a  for i ( t  ) is then i ( t  ) = X(t ) (nt2 + yt ) , 

This theorem may be proved in a similar way as the conditional Gaussian 

property for processes governed by stochastic differential equations of the  

diflusion type (see 1141). 



6. APPENDIX: PROOF OF TkEORE16 2 

The proof uses representation (3) for vo. It turns  out that  if the u-algebra 

so in eqn. (1) is of a particular form (which will be specified later) then the  

Hbft -conditional probabilities of events tTp+l ' ~ j n t % + ~  E rj and [Tp+l 2 uj 

will P-a.s. coincide with the  *-conditional probabilities of these events on t h e  

integration intervals i n  (7). Representation of measure vo through e- 
conditional probabilities makes it  easier to prove its HI-predictability property. 

It is then easy to check tha t  the  process 

is an IF-adapted martingale for any r E B(E). The fact tha t  t7 is unique shows 

that  t7 and vo coincide P-a.s. Representation (7) is derived from (3) through 

substitution of the conditional probabilities. Several auxiliary results will be 

useful in the  proof of Theorem 2: these are derived in the following subsections. 

8.1. Auxlliarg u-algebras 

Introduce the  auxiliary right-continuolis families of u-algebras 

H"', W, W~p. Kw, bwJ' and @". where 

where J? is some o-algebra in O and a-algebras and H# a re  completed by P- 

zero se ts  From o-algebras f? and Hp, respectively. 

Recall also that  Family P is defined as  follows: 



6.2. Existence of E$ -predictable projections 

We shall now establish that dual W-predictable projections exist and are 

unique. 

Lemma 1. 7ha dual HI-predictable project ions J of the in teger-valued r a n d o m  

m e a s u r e  p ez i s t  und are u n i q u e .  

Proof. Note that the sets [0] E ITn ,T, E belong to and have measure 

less than or equal to 1. This means that measure M,, is o-bite on 

((n (0.t ] E ) ,  n). From [I]  , this implies that the lemma is true. 

6.3. Characterization of IP "%&opping times 

For any t 2 0 let 

The next assertion is a generalization of Lemma 3.2 in Jacod's paper [I]. 

hmma 2. b t  T be the P I P - s t o p p i n g  t i m e .  For a n y  n 2 0 there e z i s t s  a  r a n d o m  

variable SL such thaf ind ica tor  I(F 2 u) is c , , - r n e m r a b l e  f i r  a n y  u 2 0 and 

the fol lowing equal i ty  holds:  

Proof. I t  follows from the delinition of the u-algebra rZ(P that the following fami- 

lies of sets coincide: 

and consequently the families of sets 

also coincide. Take the set IT< uj from ev&L_, and and the set D, from 

=HE such that 



Note that  for T < u we now have 

[ ( D r n j ~ n  < r J ) b ( D U n l T n  < ~ J ) ] n j T , < u  <T,+,j = D u n j T n  < U  ST,+, ]  . 

Define Sn by the equalities 

tp < u $  = U (DrntTn < 71) . 
rsu 

where the r are rational numbers. We then obtain 

thus completing the proof of Lemma 2. 

8.4. Representation of martingales 

The following result plays a fundamental role in the analysis of the predic- 

tability property. 

hnima 3. Let be a r igh t -con t inuous ,  l e f t - l imi ted ,  square- in tegrable ,  

p - m a r t i n g a l e  process. m e n  a n  i?-adapted process f ( u , w ) ,  u > 0, e z i s t s  s u c h  

that 

and 

The proof of this lemma is similar to that o f  Theorem 5.5 in [la]. The following 

well-known result is important in the proof of some auxiliary assertions. 

Lemma 4. k t  L be s o m e  u s c t o r  space of  bounded r e d  )'unctions deflned o n  Q. 
Assume  that it contains  tha c o n s t a n t  1, is closed wifh respect  t o  u n i f o r m  con- 

v e r g ~ n c e ,  and k such that for  any uniformly b o u d e d  increasing sequence  of  

m n - n a g a t w e  func t ions  f ,  . n 2 0 , f ,  E I,, t h  f u n c t i o n  f = lim also belongs  
n +- 

t o  L Let Q be a subset of L which is closed with respect  t o  multiplication. 'Ihen 



the space L contains all bounded functions, n e a s u ~ e d  with respect to the o- 

algebra H generated by the elements of Q. 

Remark This result is known as the monotonic class theorem, and is proved in 

[15] . The theorem is also true if 

(a) L is closed with respect to monotonic and uniform convergence and 

(b) Q is the algebra and 1 E Q 

or 

(a') L is a set of functions closed with respect to monotonic convergence to the 

bounded function and 

(b') Q is a vector space closed with respe'ct to operation A (maximum of two 

functions) and 1 E Q. 

6.6. Predictability of &w-rell-measurable processes 

It turns out that H,w-well-measurable processes have the following remark- 

able property: 

kmma 5. Let be an arbilrary ~w-ulell-measurable process, nLen process 

F I f T n  < t j is Kw-predictable. 

Proof. Let T be an arbitrary Kw-stopping time, and denote by h(t ) the  dual KW- 
predictable projection of non-decreasing process I(TS t). From the definition 

of h(t)  the process & = I (T < t ) - h(t ) is an %w-rnartingale. 

Now consider the process u, = ZUT.,,+~ - w ~ .  and define = ( q , t ) t 2 0 ,  

where Xtt = rr [vu, u s t jvGaT, . 

Observe that g,t = =,T,+~ and consequently that family coincides 

with family hnl' = (q ,Tn+t)rao.  I t  is not difecult to check that v, is a Wiener 

process with respect to and that  qn = qn+: is an Knlw-martingale process. 

From Lemma 3 we have the following representation of qn: 

or, in terms of &, 



Taking Tn +u = t we get 

The right-hand side of this equality is an %w-predictable process. Remembering 

the definition of , we deduce that the process I (TI  t ) l (Tn<t )  is Kw- 
predictable. 

The result of the lemma may then be derived from the monotonic class 

theorem [15]. 

8.6. Characterization d HW '@-predictable processes 

The following assertion describes the structure of W1@-predictable 

processes. 

Lemma 0. kh PIP-adapted process ZC is Wlp-predictable if and only if, f o ~  any 

n r 0, thsre ezisfs an ~ W - w e l l - r n e ~ r a b l e  process Y;" such that 

Proof 

Necessify. Consider the process = l ( t  9 T), where T  is an arbitrary W1F- 

stopping time. It follows From Lemma 1 that  

which leads to equality (0) with = 1(f s Sn). That these conditions are neces- 

sary may be proved from the monotonic class theorem. 

2hIpCciency. Observe that for an arbitrary Kw-adapted process 5 ,  the process 

ItT, r t j 5 is H?*-adapted. This is because 

and any arbitrary set from ( ~ H ~ ) ~ ~ T ,  S t 1 is WvHf-measurable. Left- 

continuous hV-adapted processes $ generate left-continuous W*-adapted 

processes ItTn < t j 5 .  This means that the following inclusion is true: 



where n(%y and n (W,f i )  are a-algebras for hW- and H""fi-predictable sets 

respectively. and ] IT,,T,+~]~ is the stochastic interval corresponding to the 

stopping times Tn and Tn+l. The inclusion (A2) yields: 

From Lemma 5, the process Y;nl(Tn % t )  is H,w-predictable. Inclusion ( A . 3 )  

shows that  the process IllG,Tfi+,]l (which according to equality (A1) coin- 
n 

cides with process &) is lP"p-predictable. This completes the proof. 

6.7. A property of conditional distributions 

L e t  H, G,F be a-algebras in R. Assume that  they are complete with respect 

to  measure P and such that  G s H, F sH.  The next statement will then be use- 

ful in analyzing the form of the dual predictable projection. 

kmma 7.  Let B E H ,  P (B) > 0 be s u c h  that the  f a m i l i e s  of  s e t s  F n B a n d  

G  n B coinc ida  P -a . s .  men f o r  m y  H - m e a s u r a b l e  in t egrab l e  r a n d o m  v a r i a b l e  q 

ths j o l l o w i n g  e q u a l i t y  h o l d s :  

Proof. For any A E H define the measure $(A) as Follows: 

Let E~ denote the  mathematical expectation with respect to $. The families of 

se ts  G n B  and FnB form a-algebras of the  subsets of set  B that ,  generally 

speaking, are not o-algebras in Q. Since these families are complete with 

respect to  measure pBI they coincide P8-a.s. with the o-algebras GvB and FvB 
respectively. 

It follows from the  conditions of the lemma that  for any A E H we have 

or, equivalently, 



and thus the following equality holds 9 - a . s .  for any bounded random variable 7): 

E ~ ( ~ / G v B )  = E(~(FVB) . 

This may be rewritten in the form 

I(B) E ~ ( ~ ~ G v B )  = I(B) E~(~)FvB), P-a.s. 

thus completing the proof. 

0.8. Some properties of conditional mathematical expectations 

The next assertion will be useful in proving the  predictable characteriza- 

tion of some random measures. 

Lemma 8. Let A E H c + l .  7Aen the j a l f o w i n g  equalities m e  h e  f o r  any t > 0 : 

Proof. Since B, is non-singular for any u r 0, the process wt may be 

represented as follows: 

where 

This shows tha t  the process wt is W-adapted and leads to the  inclusion: 

Consider now the bounded random variables XI, XZ, X3 which are measur- 

able with respect to  a-algebras v, Hf and q-, respectively. Note t h a t  XS 
n 

does not depend on events from Ht and consequently since s Ht.  



Define d = E(X~X$~~I(T,+~ % t )I(@). Using the P v H &  -measurability of 

the product X1X2X3 this can be rewritten as 

Observe now that the product X1X21(Tn+l % t) I(A) is w-measurable and conse- 

quently Hf-measurable. Using the fact that  X3 is  independent of the events of 

a-algebra we obtain 

Since l(Tn+l r t) = I(T,+, % t)I(Tn % t )  equation (A.6) may be rewritten as fol- 

lows: 

Noting that  events from ( V v H E  ) n[Tn < t 1 also belong to Hf and since X3 is 

independent of Hf we get  

Using the monotonic class theorem we prove the first part of the lemma. 

In a similar way i t  is possible to prove the  equalities: 

which yield 



6.9. Predictability analysis of the  vo 

The following assertion is an important s tep towards the proof of the main 

result. 

Lemma 9, For any r E B(E) the process v0((0,t].r), t r 0, is If'"P-predictable. 

Proof. It follows from Lemmas 5 and 6 that  the dual bWaP-predictable projec- 

tion of integer-valued random measure ~ ( d u , d z )  may be represented as follows: 

Observe tha t  the function on the  right-hand side of this equality irnmedi- 

ately following the indicator 1(Tn < t r T,+l) is W V H ~ - m e a s u r a b l e ,  with 

right-continuous, left-limited sampling paths. This means that  the function is 

~w-well-measurable. From Lemma 3 the process 

is  )52w-predictable, and consequently (from Lemma 4) the process vO((O,t], r)trO 

is  IF"&-predictable for any I' E B(E). This completes the proof. 

6.10. Measure v as the dual W SF-predictable projection or p 

The next two lemmas give the  probabilistic form of the dual W*P- 

predictable projection of p. 

Lemma 10. For m y  l? E B (E) the process 

qr = ~ ( ( o , t ] .  r )  - v0((o,t], r ) ,  t 2 o . 
is an W 1 P - a d q t e d  local martingale. 

Proof. From t h e  detlnition of the  vg qr is an qwlp-adapted local martingale for 

any r E B(E). Introduce the process 

I t  is  easy to  see that  4 is an Hwlp-adapted local martingale. However, i t  follows 

from Lemma 8 t h a t  the  process qr is  IPJ'-adapted and consequently coincides 

with @, thus  proving the  l e m m a  



The following assertion provides a probabilistic characterization of the 

dual HW4p-predictable projection of measure p. 

Lemma 11. 7'71~ dual W0p-predictable projection of integer-valued random 

m e w r e  p c~inc ides  'With the process vo. 

This may be proved using Lemmas 6 and 7 and the uniqueness of the dual 

WJ"'predictab1e projection of p. 

8.1 1. Probabilistic form of the dual IF -predictable projection of p 

The fact tha t  eqn. (4) has a strong solution for Xt yields the inclusion 

which, together with (ll), shows tha t  a-algebras V v H f  and coincide. This 

in turn means that the classes of HW+- and Hz-predictable processes coincide, 

m d  consequently that vo is IF -predictable. 

The introduction of a non-singularity condition for 3,. u 2 0, means that  

for any n r 0 we have: 

where 

I t  follows from these equalities that  process wt is *-adapted and consequently 

that  

H ~ H ~ ~  C ip . 
Note also that equations ( 6 )  have a strong. unique solution for n r 0. This 

fact yields the inverse inclusion: 

and consequently 



From the definition of H? we have 

H ~ & ~ ( T ~  < t j  = H C n l T n < t  I = Hfn ITn < t l  

and thus 

Substituting t h i  WvHE -conditional probabilities in eqn. (3) by I$"- 
conditional probabilities we obtain: 

From Lemma 7 and the coincidence of the a-algebras F H /  and H;r for any 

t 2 0, we deduce that process 

is an W-adapted local martingale. The uniqueness of the dual W-predictable 

projection means that measures vo and vl coincide. thus completing the proof 

of Theorem 2. 
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