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Abstract. 

Reliable software tools for mathematical modeling have been developed for 

simulation models but for constrained optimization models progress has been 

slower. 

The following approach examines the possibility of working with large-scale 

mathematical models in a compact form permitting t h e  direct analysis of 

input-output relations where information is transformed into a compressed 

mode ( as opposed to  aggregation procedures ) without loss of accuracy. 

The article also describes the  approach when applied to dmcrete dynamic 

models. 
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Introduction 

This paper examines the  mathematical modeling of discrete dynamic sys- 

tems,  i,e, those s tates  which a re  defined for specific fixed points in t ime. 

Usually this problem is solved by building an integrated model, which 

describes both the s tates  for all points in t ime under consideration and the  

links between these states. This leads to an  efficient use of computers but a 

restr icted application, for example, when the  number of t ime points considered 

i s  unknown or  variable, a s  in  minimal-time control problems. 

The static approach to modeling a discrete dynamic system requires tha t  

t he  model s t ruc ture  be changed with the  time points, which causes computer 

difficulties. 

This method builds a se t  of consistent submodels, each of t h e m  describing 

the  s tate  of the modeled system for a fhed  point in  time. This requires the  

solution of a system of problems concerned with finding s tates  of the modeled 

object with the  required properties by using solution procedures which are 

linked in information systems and synchronized and which may be solved 



independently. The effect of changing the number of time points considered is 

reduced to  changes in the number of problems included in the  system and, 

therefore, the  number of independently-run computer processes. I t  would be 

better to use physical a s  well as  logical dsaggregation processes ( i.e. to  use 

parallel working processors or computers ). 

The main question is how to organize the  information exchange between 

the submodels, which will direct the  whole set  to  the  required states. Consider 

that  all the  processes of solving subproblems are imbedded in a common infor- 

mation 'environment', t he  state  of which is described by a vector. Let t h e  com- 

ponents of this vector be exogenous parameters of the  linked submodels. An 

appropriate change in the  values of these parameters should to  bring all sub- 

models to  the  required states. 

In this situation each of the  submodels interacts  only with the 'environ- 

ment'; they receive exogenous information from i t  and initiate changes in its 

state. Information links between different subrnodels perform their function 

implicitly via the  information 'environment'. This makes i t  easier to  change the  

number of submodels . 

Next, we need to  define a mathematical form for the  interaction. We can 

include the components of the  vector of the 'environmental' s tate  in the 

description of the  submodels t o  be linked. This enables the  'environment' to 

influence the  states of t h e  submodels. The level of consistency of the submodels 

and the s ta te  of the  'environment' will be interdependent, and the  interdepen- 

dence may be used for iterative changes of this s tate  to  achieve better con- 

sistency. A method called 'compact modeling' will be applied here to  construct 

a computer procedure to  handle the  iterative change. 

These ideas are developed in this paper. 



1. Statement of the Initial Problem 

Consider a mathematical model of a discrete dynamic system for the fol- 

lowing fixed points in time 

t =1 .2 ,3  ,..., T. 

Let the state of the model be described by a vector z ' ,  which has n components 

defined for all t ,  and by a vector u', which has I components defined for 

t = [ l , T - I . ] .  The formal difference between vectors z t  and ut is that  the first 

depends on zt-I ( i.e. pre-history ) in an explicit way, but the  second does not. 

Thus a system of equations 

z t + l -  -f t ( z t .u t>  ( 1 )  

exists for all t  = [ I ,  T-1]  describing the dynamic links of the object under inves- 

tigation. 

Moreover, the components of z' and u' must satisfy the following set of 

constraints 

?d,L(zt , u t ) 2 0 ,  s = [ l , m ] .  ( 2 )  

In particular, these constraints may include boundary conditions, if these 

exist. 

Finally, a functional is assumed to exist which defines the quality of the  

synthesized sequence of t he  vectors z t  and ut 

4 ( z 1 , x 2  ,..., z y,u1,u2 ,,.., u T - l ) + m i n .  (3) 

The initial problem ( 1 ) - ( 3 )  consists of finding sequences I z t , t  = [ l , T ]  j and 

1 u t , t = [ l . ~ - 1 ]  j , which satisfy the constraints ( 1 )  and ( 2 )  and which define 

extremes for the functional (3)  . 

 condition^ ( 1 ) - ( 3 )  describe the statements of a wide class of problems 

which are of practical value and, in some cases, the statements of 



mathematical  models investigated may be reduced to  the  form of ( 1 ) - ( 3 )  by 

means  of various artificial transformations. 

2. The Information 'Ehvironment' and Parallel Processes 

The idea is to  change an integrated model of the  discrete dynamic system 

into a s e t  of linked submodels, the number  of which can be easily varied. 

The original s ta tement  ( 1 ) - ( 3 )  i s  not suitable for this purpose. Therefore. 

le t  u s  introduce an  auxiliary vector V. t he  components of which may  be con- 

sidered as  exogenous parameters  of the  linked submodels 

V ' + l = f  '(z' ,ut ), t = [ 1 , ~ - 1 ]  (4) 

=z i ,  t =[I, T ]  (5) 

yf(zt  ,ut ) r o ,  s = [ l , m ]  ( 6 )  

for all t = [ I ,  T ]  . If the  system of constraints ( 4 ) - ( 6 )  i s  feasible for a fixed V, then  

i t  is  also possible t o  evaluate t he  functional of t he  model as  a dependence of V .  

Relations ( 4 ) - ( 6 )  may be considered as  an implicit definition of the  depen- 

dences z t (v ,  v+') and ui(V',V'+') and we can t ry t o  reduce the  process of 

solving t h e  initial problem ( 1 ) - ( 3 )  t o  a two-level scheme;  components of V will 

be changed on the  first level and zt and u' will be calculated on the  second one. 

All submodels can now be brought to  t h e  desired s ta tes  by appropriate varia- 

t ions of t h e  components of V . Thus we have constructed an information 

'environment '  which is single-valued as  described by the  vector V and  in which 

all submodels a r e  supposedly imbedded. 

An optimal s ta te  of the  'environment' where all subproblems have solu- 

t ions with the  required properties m u s t  be found. In t h e  present case,  these  

solutions have t o  be considered for different points in t ime and the functional 

has  t o  have an extreme value. 



In practice this optimal s ta te  of the  information 'environment '  is found 

through a step-by-step movement towards optimality. I t  is necessary to  formu- 

late rules for Anding the  local direction of the  improvement and  for determin- 

ing the  value of t he  s tep  in  this  direction. 

To demonstrate how this  scheme makes i t  possible t o  change the  number 

of considered points in t ime,  we solve subproblems (4)-(6) independently when 

V is fixed. We must  s ta r t  a s e t  of parallel computer  processes, each of t hem 

solving the  subproblem for a given t .  We also need a process t h a t  finds the  

optimal state of the information 'environment'. All these  processes have t o  be 

linked according to  principles of informatics and  must  be synchronized. This 

means tha t  the  main process should be be able to  initiate all required 

processes whenever they become necessary and wait for the  results.  

In this  scheme, changing the  number of subproblems T is reduced to  

changing the  number of these parallel processes. The number of components of 

vector V and lengths of auxiliary arrays for t he  main process also need t o  be 

changed. All these changes a re  easily made  by standard programming prac- 

tices. 

Commands from the  operating system can also implement t he  synchroni- 

zation of the  processes and  information exchange between them. 

More detailed discussion follows. 

3. The Method of Compact Modeling 

The obvious approach for finding the  optimal s ta te  of the  information 

'environment' is to  t ry  t o  use an iterative scheme which converges t o  t h e  

desired state.  We first need a mathematical  s ta tement  of this  searching prob- 

lem i n  te rms  of components of t he  vector T/. The simplest way t o  formulate this  



is to exclude zt  and ut from the statement of (4)-(6), but this is only possible in 

the case of some trivial problems. 

The c o m p a c t  m o d e l i n g  method designed for the analysis of systems 

described by complex mathematical models is more appropriate here. 

This method is based on the assumption that,  even in the case of a very 

complex model, the  user is interested in the interdependence of only a small 

number of input and output data and wants to reformulate the model in terms 

of these data alone. 

Assume that  there is a high-dimensional vector X  , describing a s tate  of a 

model M .  Further, l e t  vector X* also be a solution of a problem solved by means 

of the model M and having the required properties. Then the solution process 

may be formulated as  the  relation 

M ( f )  +x* 
where f is an initial s tate  of the model. 

Assume that  the  low-dimensional vectors V  and W describe the input and 

output data respectively. We shall examine the dependence between W and V .  

We also postulate two conversion processes. The first permits the  generation of 

the initial s tate  of the  model by using the initial input data 

G ( v ) + ~  

and the second converts the  final s tate  X* into the output data 

s ( x * )  + W. 
Finally, the  dependence between the input and the output data can be written 

w = s ( M ( G ( v ) ) ) .  

The operator M = s ( M ( G ( - ) ) )  will be referred to as t h e  c o m p a c t  i m a g e  of the  

m o d e l  M 

As the explicit form of this compact image cannot be built for the  majority 



of mathematical models we must  And a form which is of more practical use. 

One way might be to build this image locally for the immediate vicinity of a 

current  V, rather  than globally for the whole set of V under consideration. The 

following analogy is relevant. The use of the local compact image may be com- 

pared with using a part of a power series as a local approximation of a function. 

This part has a convenient and simple description in comparison with the  

description of the  original function, but this simple description is different for 

different points. Simply stated, the  coefficients of the power series are different. 

It could be said, tha t  the  compact modeling approach is a method for the  

modeling of models. The approximating model must be low-dimensional and as 

simple as possible due to the local nature of the approximation. 

But this analogy is limited. The dependence w=B(v) is not correctly 

described by, for example, Taylor approximations, even if the  model x*=M(x) is 

described by smooth enough functions. 

There are three main reasons for this inconvenient property of the  depen- 

dence w=&(v) 

- a feasible s tate  X of the  model M for a given 

vector V of the  input data may not exist, 

- the solution z *  of the  model M may be non-unique, 

- the dependence of X' on V may be nondifferentiable, even if 

the  functions in (4)-(5)-(6) are themselves differentiable. 

These properties are present even in the  case of such simple models as 

linear programming problems or systems of linear inequalities. 

To use the standard Taylor approximations, i t  is necessary to transform 

the  original model M into a new one 3 possessing the  following properties: 



- the  M has a solution X for any vector V , 

- this solution 2 must be close ( in the  sense of a metric ) t o  

the  original solution X* , wherever the  lat ter  exists, 

- t he  dependence of W on V must  be smooth enough for the  use of 

standard Taylor approximations. 

Local approximations of this new form of the  model 2 are the  same com- 

pact images of the original mathematical model. which make i t  possible to  

investigate the  interdependence of input and output data. 

The practical effectiveness of the  compact modeling approach depends on 

the specific method used to transform the  original model A4 into B. Here this 

problem is considered only for finite-dimensional optimization mathematical 

models, t o  which the  model (4)-(6) belongs. 

4. The Method of Smooth Penalty Functions 

The compact modeling approach is now applied t o  find consistent solutions 

of the  submodels described by relations (4)-(6). To simplify the description we 

will not define the functional of the  whole model. 

The compact modeling approach enables us to  link together the compact 

images of the  submodels, even if the submodels in their original form cannot be 

linked. The input data are described by the  exogenous parameters V. The out- 

put data measure the  degree of inconsistency of the solutions found for 

different submodels. 

The description of the  submodel for a point in time t is 



Izr 1 I v l  It1 
If X = [ u t ]  is the solution of system (7), then the  relation 

Iv+l]+Ft] 

describes the operator M ( G ( * ) )  for the submodel (7). 

A norm of vector v -zt may be taken as a measure of the inconsistency of 

the optimal states of the  linked submodels. This norm may be calculated by a 

Euclidean or some other metric. Therefore, the vector W of the output data will 

have components Wt = I I v-zt I I,t = [ 1 ,  T 1 .  

It is not difficult to  demonstrate that  the dependence between X and V 

possesses all the undesirable properties mentioned in the previous section. For 

example, it is possible to  choose input vector V, such that  the  system (7) will be 

infeasible. In other words, this dependence is not defined for all V. 

The dependence may also be non-unique because the  system (7) may have 

a non-unique solution for a given V.  

Finally, even if this dependence exists and is unique-valued, the  function 

r ( ~ )  may be nondifferentiable, because of the fact that system (7) has 

inequality-type constraints. 

This means that all of these submodels must be transformed into the new 

form M. 

As discussed earlier, the model M has to reproduce exactly all the proper- 

ties of the original model M as well as having an input-output dependence pos- 

sessing "good" properties,i.e. permitting the use of Taylor approximations. 

We propose  here  that an auxiliary f u n c t i o n ,  c r ea t ed  fo r  s y s t e m  (7) accord -  

ing  t o  t h e  r u l e s  o f  the s m o o t h  v e r s i o n  of the P e n a l t y  f i n c t i o n s  Method, be t a k e n  

as t h e  t r a n s f o m e d  m o d e l  [ AFiacco, G.McCormick, 1968 1. 

This auxiliary function is 



where the so-calledpenalty function P,(r,a) is defined, is  smooth enough for all 

a and r>0 and satisfies the following relation 

lim 0 ,  arO 
r-++oP*(r* a)= 

The function P, is usually defined as  

Now we will demonstrate tha t  the auxiliary function ( 8 )  may be used as the  

transformed submodel a. 
Firstly, the  value of ,!!? may be used as a measure of the  degree of the  

inconsistency of the  submodels because of the  equivalence of E ' = O  and Wt=O.  

Secondly, 

exists for any vector of the input data as  a minimum point for a continuous 

function which is bounded below. 

Thirdly, EL =,!!? ( 7 , ~ '  ,.lit ) exists and is unique-valued for any V 

Finally, will be a differentiable function of V .  This is because the impli- 

c i t  functions theorem can be applied to  the condition of the  existence of the  

stationary state  of auxiliary function ( 8 )  

which defines the  implicit functions Z t ( v )  and G' (Y ) ,  subject to  all functions 

P, f ' ,  and y, being smooth enough. 

1,: 1 
Thus, the  vector -t can be considered as a smoothed and predetermined 

lu I 
image of the  vector X'*(V) .  Consequently, we may use local Taylor approxima- 

tions of Et (V)  to  analyse the properties of the  submodels (7). 



5. Searching for the Optimal State of the Information 'Environment' 

Now we may formulate a mathematical s ta tement  of the  problem of fin&ng 

the optimal s ta te  of the  information 'environment'. To ensure  tha t  the  values of 

the components of V guarantee consistency between t h e  linked submodels, i t  is 

sufficient t o  have a situation where the  minimum of 

equals zero. This value will differ from zero only if t he re  is no  consistency 

between the  submodels, or if their  internal constraints a r e  contradictory. 

Therefore, the  problem of searching for the optimal s t a t e  of t he  'environment' 

is equivalent t o  t he  minimization of (10). 

This minimization procedure may  be carried out  according t o  any numeri- 

cal scheme. To i l lustrate  t he  applicability of 'compact modeling' we will con- 

sider the  use of t h e  Newton method, where quadratic approximations of the  

function to  be minimized a r e  used. This requires t h e  calculation of all partial 

derivatives up  t,o a n d  including the  second order. 

Using the  s tandard method t o  calculate the  gradient and  hessian of t h e  

function E we have 

a & V E - +  HzvVz~+ HuVVu&, - a v  
where the  following notation is used 

for all t ,i,j . 

Substituting (10) and  taking into account t h a t  vZtEt = 0 and vUtEt = 0 from 

(9) we find 



This means tha t  i t  is not necessary, in calculating the  gradient, to  know the  

elements  of the sensitivity matrices HZv and Huv and also tha t  formulae for the  

gradient may be written in an explicit form as a function of vectors V,Z' and 

Analogously, le t  us find the second partial derivatives of t he  minimized 

function E . For t h e  hessian of E we have 

H*v( v* &);r + HUY( + 

(Hzv>;rVz& + ( ~ u v ) ; ~ , '  & 

According to  (9), only the  first th ree  terms will be nonzero here.  Finally we 

have 

a2& a2& where matrices - - and - have the components 
a2& . a2& 

a p '  a v a ~  a V ~ U  a v j a v p '  a q a q  

and " &  for all feasible indexer. 
e a ~ f  

The quadratic approximation 

k ( v 0 )  + ( V -  v,) v v k  + 3 v -  v O ) v ~ F ( v -  v0) 

may be constructed if all components of k ( v ) ,  vyEi and v;Et have been calcu- 

lated for a given point Vo . This approximation is t he  compact local i m a g e  of the  

submodels (7) for the vicinity of the  point Vo . 

There is a theoretical case where an explicit form for the  function E(V)  can 

be found; however, in practice we will use a numerical algorithm for the  minim- 

ization so a local approximation is sufficient. 



Searching for the  optimal state of the  information 'environment' is an 

iterative process, a t  each step of which the following elements are calculated: 

- vectors zi ,zlf and , if necessary, sensitivity 

matrices H ~ V  and H',V,  

- a direction w ,  along which there is a t rend t o  a 

decrease in the  auxiliary function E ,  

- p - the length of a step along this direction o, which 

guarantees the  convergence of the whole process. 

Finally, vector p+' describes a new 'improved' s tate  of the  information 

'environment' 

V+I = Vt + p w  

after the k th iteration . 

6. A Linear Dynamic Model. 

The efficiency of this approach depends on the volume of required calcula- 

tion, which will mainly build the compact images of the submodels. In its turn,  

this volume depends on the  concrete type of the functions (7). so i t  seems 

pointless t o  t ry  t o  elaborate a scheme effective for all cases. I t  is more practi- 

cal to  take into account specific features of the submodels to be linked. 

For example take the  following linear dynamic model 

= t  +I= A'=: + B' + c t  

for all t =[l, T-1] , 

D' + G'U' + f t  > O ,  s=[l, r n ]  

with a functional 



where A' ,B' ,D' ,g' ,c t  , f ' -pt ,q' are constant matrices of appropriate dimensions. 

As in the  general case, consider dynamic linear models without the functional 

(16). 

The submodel (4)-(5)-(6) in this case will be 

Atzt + Btut + c t  = I/t+l, 

zt = I/t 

Dtz' + Gtut + f' 1 0 ,  

The penalty functions P will be chosen in the  following form 

For the  auxiliary function (8) we have the scalar form 

where &.,&\,D;~, ~ : ~ , c f ,  f ,' are elements of the  matrices A',B' ,Dt , G' ,c ', f ' 
respectively. 

Minimizing the  piece-wise quadratic function (20) with respect to z' and u' 

we find Et a n d E t ( 5 ' ,  21' ) . 1:: 
This problem may be solved with standard software. 

Calculating the  elements of sensitivity matrices is reduced to solving a set  

of systems of linear equations built directly by differentiation of the equations 

(9) with respect to components of the vector V 



Taking (20) into account, we get 

where 

and 

1 1, if s -th cons t ra in t  is a c t i v e  
': = O. if oth.m-wise 

To learn whether the  s-th constraint is active or not, substitute values of Z: 

and ~f directly into (16). 

Let us  derive formulae for components of the gradient and hessian of the  

function E . Starting from (11) and taking (20) into account, we find 

Analogously, we can find other nonzero elements of (12) 

Substituting the  above formula and components of sensitivity matrices in (12) 

gives values of elements of the hessian of E . 

To summarize these resul.ts, we can say tha t  the  building of a quadratic 

approximation of a compact image for the  submodels (17)-(18)-(19) consists of 

the  following elementary problems: 



- minimization of a piece-wise quadratic function of n + 1 variables, 

which could be done by standard software, 

- defining the  subset of active constraints by means of direct 

substitution, 

- calculation of components of the sensitivity matrices by solving a set 

of systems of linear equations. 

Note that  there have been no limitations introduced to the  possible 

methods of optimization of the  state of the information 'environment'. The 

only difficulty is the  need to  regularize the hessian of E when its singularity 

takes place. 

7. An Illustrative Example. 

In this section the  approach under consideration is applied to a linear 

dynamic model and solved using the VAX-11/78O computer working under the 

UNIX operation system . 

The MINOS mathematical programming system [ Murtagh B., 1980 ] has 

been used t o  find an optimal s tate  of the information 'environment' and to build 

the compact images of linked submodels . In this system both linear and non- 

linear problems can be solved, but i t  is especially effective in the case of non- 

linear problems with linear constraints. 

The optimization of the  auxiliary function (20) consists of two stages. The 

first stage, the  systems of linear inequalities (17)-(18)-(19), are solved by a 

modified version of the  simplex-method. As a rule these systems a r e  infeasible. 

The final basis of the  first stage was used as an initial basis for the second stage. 

The second stage consists of minimizing the  following piece-wise quadratic 

function with respect t o  a, 0, 7, z and u 



subject to  linear equality-type constraints 

where none of t he  variables have any constraints on their sign. 

As t h e  MINOS system solves nonlinear problems using the derivatives of t he  

first order only, i t  is not necessary to  calculate sensitivity matr ices  here.  

The whole problem is solved by T+1 processes. The main process of optirn- 

izing the  s tate  of t he  information 'environment' initiates optimization 

processes of functions (20), whenever values of E and  components of i ts gra- 

dient a re  required. 

The MPS-files for t he  submodels a r e  prepared and corrected by specially 

written subroutines. 

The optimal number of the  considered periods of t ime is found by a one- 

dimensional search according to the  following rule: if for a given T t h e  system 

of t h e  submodels is consistent ( in this case E is zero ), t hen  T has been 

decreased by one. If the  consistency is not reached ( E is different to  zero ), 

then  T is replaced by T+1. The solution is the minimal T, when t h e  consistency 

still takes place. 

Finally, an illustrative problem. 

Let us  find the minimal  number  of periods required to  bring the system 

described by vector I jz: ,zh,x6 I I from the  initial s ta te  ) )1.,1.,1. ( / t o  the final 

one satisfying zTr4 .  , z l r 2 . 5  and z l r 1 . 2  , if 



subject to  

lz! -z$11:1.5 

Izh - z & 1 ~ 1 . 5  

Iu: ( < I . ,  (u$  1 ~ 1 .  

It is easy to  verify tha t  T = l  is not the  solution. Therefore, the  process s tar ts  

from T=Z. T=9 shows a desirable level of consistency but the  exact solution is 

T=10 when the  value of E appears small. 

Table 1 gives all the information. 

Table 1. 

Figure 1 shows the graph of the dependence of E on T . 

Table 2 gives the optimal solution for T=10.  



Figure 1 . 
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Figure 2 . 



Table 2. 

Figure 2 shows these  dependencies in graph f o r m .  

The initial basis is taken from the  solution with T=9 . The vector V 

corresponding to  th i s  s ta te  of the information 'environment' has components 

given in Table 3 . 



Table 3 

The value of auxiliary function ( lo) ,  while searching for the  optimal s ta te  

of the information 'environment' for T=10 ,  is given in Table 4 .  

Table 4 . 

given in Table 2 .  

Mean inconsistency 

0.129 

0.096 

0.012 

# of iteration 

0 

5 

10 

25 

E 

1.673 e -1 

9.290 e -2 

1.531 e -3 

The optimal values of the components do not differ from the  values of zf 

8.031 e -8 0.00003 



Related Work 

In this paper the compact modeling approach has been applied to the 

analysis of discrete dynamic models. I t  has also been applied to other  problems 

involving the interdependence of a small number of inputs and outputs of a 

complex model. Examples include linkage procedures for optimization 

mathematical models [Umnov A, Albegov M., 19811 and optimization of the 

share of the Pareto se t  in multicriteria mathematical models [Umnov ,19821. 

The most detailed description of practical aspects for using the compact model- 

ing approach in t h e  case of large-scale models can be found in [ Umnov 1983 ]. 
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