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FOREWORD

The objective of the Forest Sector Project at 1IASA is to study long-
term development alternatives for the forest sector on a global basis.
One of the key problems of analysing long-term development is to predict
the changing patterns of demand, supply capacity and international
trade. In the modeling of these structural change processes
econometric estimation plays a central role.

In this paper Professor Fedorov draws attention to the fact that
some of the results from econometric analysis of estimation in situa-
tions with unobservable variables can be readdressed within the frame-
work of traditional regression analysis. These observations are of impor-
tance in the choice of methods to be used in estimating demand, supply
or import equations.

Markku Kallio
Project Leader
Forest Sector Project
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MODELS CONTAINING UNOBSERVABLE VARIABLES AND TRADITIONAL

REGRESSION ANALYSIS

V. Fedorov

1. INTRODUCTION

At present, models with unobservable variables are widely spread in
econometric investigations. In this paper we deal with two of the most
popular models of this kind. The first model {compare with Robinson and

Ferrara, 1977) which we shall consider is described in the following.

Yi =90z + ¢

z; =Bc7,' z; +v;, i=1n. (1)
In (1) we suggest that the response y; is observable, the vector z;cR!
describes the conditions of observation and is supposed to be known; the
vector z; €™ corresponds to unobservable variables; g; are i.l.d. random

2

values with zero means and the variance g% v; are i.i.d. random vectors

with zero means and the variance matrix d; vector 4, and matrix By con-
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tain unknown components (some of their components can be known a
priori, e.g., they can be zeros). "T" stands for transposition, "0" points

out the true value of the parameters.

The second model under consideration is described by the following
set of equations {(compare with Zellner, 1977):
¥, =9¢ 2, + g

ui:zi:l-ui, 1'.=TE.
In () all notations and suggestions which take place for {1) are fulfilled.
However, the relation between z; and z; does not contain random values,

and the vector z; can be observed with some additive random errors.

Both models can be generalized for multi-response cases (y; can be
a vector). The generalization of estimators is straight-forward and this is
the reason why we consider the scalar case in this paper. Our main pur-
pose is to show that the models (1) and (2) can be transformed to some
well-known regression models and corresponding estimators for which
the properties and the numerical procedures are well studied, and can

be efficiently used after the appropriate adjustment.

2. REDUCING TO A REGRESSION MODEL WITH A VARIANCE CONTAINING
UNKNOWN PARAMETERS

Let us start with the first model. It is obvious that variables z; can

be eliminated by constructing

yi =9 By = + ¢ (3)

where

E[¢]=0



and

E[E'[,é]] = 15z~j(02 + ’laon'lgo)
In other words (2) is equivalent to regression problem (nonlinear, if both
elements B and ¥ are unknown) with a variance depending on parame-
ters '60.-:
CASE A In the most trivial case when 3 and d are given and some

elements of the matrix B are unknown, model (3) can be transformed:

y1=7{z + & (4)
where y = B ¥95. This model is a traditional linear regression model with
unknown variance s? = g® + 190Tdo Yo- Therefore no more than ! linear
combinations of the elements of B can be estimated and the least
squares method provides the best linear unbiased estimators of these

linear combinations.

It should be noted that the least square estimator of y will be con-

sistent if (see for instance, Wu 1981)

n (14c)/2
(max eigenvalue of )] z; z;
t=1

lim sup €C < (5)

74, ~»00

n
min eigenvalue of )} z;z]
i=1

for some ¢ > 0. In other words, the possibility of the consistent estima-
tion is defined not only by the structure of the model but also by the

structure of a design (conditions under which observations are made).

In the linear case (see Schmidt, 1976), the consistent estimator of
variance E[ftz] = 0%+ ﬂordoﬂo can be constructed without any condition

on the design.
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CASE B. When all elements of the matrices By and d are known, one
would also have to deal with the rather trivial situation which neverthe-
less presents some interest in applications. For the sake of simplicity,
let us suppose that rank By = m. Then model {3) can be transformed to
the linear regression model with an unknown variance depending or

parameters 4.

y; =g w; + 4 (6)
where w; = By z;, §; is defined in the comments to (3).
When B, = I, where [ is identity matrix, model (6) becomes a partic-

ular case of the well-known regression model with controllable variables

subject to error (see for example, Fedorov 1974).

CASE C. The estimation problem for model.(3) becomes more
difficult when both ¥ and B depend upon the same unknown parameters.
Consider the most simple case withl =m =1, and®¥ = vy, B = by, where
v and b are known. Then model (1) can be reduced to the following
model.

Y, =arlz + (7
where
a =vb, E[t.‘] =0, E[s’,t]] = dij[ﬂ'z"l"l’z'yzd]
It is obvious that the parameter v for {1) is consistently estimated if at

least a sign of 74 is known a prior.

In the general case, when ¥=9(y), B=B(y), l.m =1 and yeR¥, one

has

y; =87(70) BT (30)z; +¢; = ¥T(7)z; +¢; (8)

where
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El¢;]= 0.E[£;¢;] = 6,;[0%+97 (75)d 3 (7))
It is known {(Wu, 1981: Theorem 1) that if there exist a consistent
estimator for all 70€I‘c]i’k where I' is compact, then (under very mild

conditions on the distribution of ¢;)

[¥(7) — ¥(r0) 1T M, [¥(7) = ¥(yp)] » = (9)

4]
asn - o for all y # 74 in . Here M, = ZziziT. Moreover, the condition
i=1

(9) provides the consistency of the least squares estimator of 7. In other
words, an experimenter should appropriately choose a design {z;} as
well as I. Note that the condition (9) is not fulfilled if the set I' includes
¥ = —70. in (7). It is clear from (9) that no more than ! parameters can be

2

estimated if either 0% or d is unknown.

CASE D. As it was noted in Case B, model (3) is closely connected
with the regression models when controllable variables are subject to
error. Moreover, the method suggested in Fedorov (1974) can be used for
approximate estimation of parameters of the generalized version of (1):

¥ =n(v0z:) +

z; =’p(7o,:,-) + 6v; = p; +0y; i=1n (1%
where y stands for both parameters ¥ and B, ne€ R p € Rty cRF, E;
are i.i.d. random values with variance 0%, v; are 1.i.d. random vectors

with unit variance. Matrix d and 4 are some constants.

In the following, it will also be assumed that the function 7n{y,z) has
derivatives in correspondence to z up to the third ones for all
z; = p(y.z;) and y € 'cR* where I'is compact, and

1,n, p.g.r =1m.

E‘[|u!-puiquir|]se < =, i



-8 -
Similarly to Fedorov {1974), one can calculate that

Ely; 1= E[n(yo pi+6v;)+ &1 = (70, %;)+0(6%)
El(y; —E(y; )?] = AN yq.x;) +0(6%) (10)

where

62 *n(y,
ply.z) =n(yp)+5-trd %'paw)'

A Yy.z) = 0%+67 a”(7T"’) da”t%f’) |

3p p=p(r.z)

Therefore the model {1*) can be approximated by the following regres-
sion model

¥; = #(r0T )1y (11)

1
where A2(y,z;)p; are ii.d. random values. This regression problem is

well studied (see for example: Fedorov 1974; Jobson & Fuller, 1980, Car-
rol, 1982) and the simple estimator closely related to the least squares
method can be used here. This estimator is defined as a limit point of

the following iterative procedure:

¥ =lim 7, , (12)

§ oo

n
s = Arg min 3 My _p.z;)y; —(7.z;) 2
7€l =1

The estimator (12) will be consistent within the frame of approximation
(10) under very mild assumptions (see for example, Fedorov 1974; Wu
19681), the main one of which is

Errom ora) plr0z)F + =
as n - for all y#yyin I. For "sufficiently” smooth functions ¢(7,z;), the

estimator (12) is normally asymptotically distributed:
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Tn(Fn—7) » N(O.H7Y) (13)

where Tp > @S 7L 300, and

dp(r.z;) dg(y.z;) |

T 7=% (14)

n
M =1lim 7' Y A(90.2, )
e T -;gx o oy oy

Naturally, the existence of the limit in (14) is suggested. The last
result is more general than a similar one from Fedorov (1974), and it is
the obvious corollary of theorem 5 from Wu (1981). It is useful to bear in
mind that the estimator

5 = Arg min 3 \.z,)[v; 9 (7.7 P
7l =)
is not consistent for regression problem (11) (Fedorov, 1974).

In conclusion of this section, we point out that the models from the

Cases A - C can be treated as the particular cases of model (1*) and for

all of them the residuals terms in (10) equal to zero.

3. REDUCING TO A MULTIRESPONSE, REGRESSION MODEL

The model {2) can be treated as the specific case of the multi-

response regression model

w; = n(y.z;)+uy (15)
where 7{7.z) is a given vector function; ycR*, random vectors u; are

i.i.d. with zero means; and the variance matrix

b2 0
Elup] =% = 0 d
Consider the case when all elements of B and ¥ are unknown. Model (2)

can be transformed to model (15) if one assumes that



7T=("31-"'-"3m'511v"'-511 ---- Bims " Byp)

m i
7]1(7,.7:) = 2 'aaz Bﬁazﬁ
p=1

a=1

Ng(7.z) = Xt]Bﬁlxﬁ (18)
g=1

i
nm+1(7’z) = 2 Bﬁmzﬁ
B=1

Model (15) was studied for instance by Philips (1976) and Fedorov {1977).
Several slightly different estimators were suggested for the estimation of
yand & (tvhe case wheen I is given is too well-known to be discussed here).
Similar to the estimator defined by (12), one of them can also be found

with the help of the following iterative procedure:

¥ =limy,, ¥ =1lm3,,

§ oo § o

7s = Arg min f} [w; ~n(y.z )15 [w; —n(r.2,)] (17)

t=1

£, £ 3 [wg =g yz) s ~n(ys pz )17

i=1
Unlike model (1), in the case under consideration, all elements of B and

¥ can be consistently estimated if the sequences z;, - - ' .z,

is appropri-
ately chosen. The estimator (17) asymptotically coincides with the max-

imum likelihood estimator when u; are normally distributed.

The estimator (17) can be improved if the structure of the variance
matrix X will be taken into account, and in the iterative procedure

instead of the matrices I_, one will use

s

1= {b2 0]_ n|wi—8J2g)? 0
* - (0 4 =2 0 (uy —2 )(u; -2

i=1

T (18)

where z; = Bsrz‘-: 5 (or 4 and 5) and §' (or & and d) will denote below
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the improved estimators of ¥ (or ¥ and B) and I (or ¢? and d).

Let us introduce matrices

no.7 no . n r
My, =) 8,8, M=) 1,8 Mp=) z;x/,
i=1

i=1 i=1
where Si = §T:zi. Using the standard technigues of regression analysis,

it 1s possible to check that the consistent estimator D of the variance

matrix D = E[$57] can be calculated in the following way:

D= +J,)74
where
M 3T o M.
=5 11 12 4 7= 0 0
179 BeM, 3WTemy, 00 27 o d'e My,

The matrix J; can be interpreted as the information matrix correspond-
ing to observations of y; and the matrix J; can be interpreted as the

information matrix corresponding to observations of z;.

When rank By = rank d; = m, then similarly to (5), the parameters

¥ and B will be consistently estimated by (17) if

(max eigenvalue of M,,) (14c)/2
lim sup — Sc <o
n e min eigenvalue ofM

for some ¢ > 0. This fact is derived from the results of Wu (1981) and
from the structure of the matrix [J which is mainly defined by the matrix
Mzz:

In conclusion, it should be emphasized that (12), (17), and (18) not

only describe the estimators with some admissable statistical properties;
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it does, moreover, deliver the effective numerical procedures which are

based on the well-studied standard least square techniques.
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