
NOT FOR QUOTATION 
WITHOUT PERMISSION 
OF THE AUTHOR 

ON A DEF'INITJON OF THE DESCRIPTION 
C O W ~ O F ~ ~  

Ashot Nersisian 

January 1984 
WP-84-4 

Working Papers are interim reports on work of the International 
Institute for Applied Systems Analysis and have received only 
limited review. Views or opinions expressed herein do not 
necessarily represent those of the Institute or of its National 
Member Organizations. 

INTERNATIONAL INSI'ITUTE FOR APPLIED SYSTEMS ANALYSIS 
2361 Laxenburg, Austria 





PREFACE 

Most of the systems studied a t  IIASA are characterized by large 
numbers of components and by complex interactions. To minimize the 
problems caused by these factors it is often useful to find the most 
economical (minimal) representation of the system (or of the model 
used to describe it). 

In this paper the  author, a participant in the 1983 IlASA Young 
Scientists' Summer Program, investigates the problem of finding 
minimal descriptions of finite deterministic systems with a given accu- 
racy. An algorithm for obtaining an asymptotically minimal description 
of discrete systems with constraints on the modeling accuracy is pro- 
pose d. 

ANDRZEJ WIERZBlCKl 
Qurirmcm 
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ON A DEFINITION OF THE DESCRIPTION 
COYlpLMITY OF F'INlTE sYsrExs 

Ashot Nersisian 

1. INTRODUCTION 

Modern complex systems are  characterized by large numbers of 

components and by complicated interactions. When studying such sys- 

tems, therefore, i t  is useful to consider ways of finding the most econom- 

ical representation of t h e  system. The size of the minimal representa- 

tion of a system is usually called its description complexity. 

In practice models of complex systems (approximations of a given 

accuracy) are  constructed, and these are then analyzed rather  than the 

systems themselves. In this case the description complexity of a system 

should be interpreted as the  complexity of its feasible approximation. 

If methods for the construction of minimal descriptions are to  be 

used in practice, they must  be computationally efficient (i.e., they 

should have polynomial time complexity ). 

* The time complexity of an algorithm is the number of computational steps necessary on 
my  formal machine which carries out letter-by-letter operations. 



For probabilistic systems the minimal description for a given fidel- 

ity criterion can be obtained by means of Shannon's rate-distortion 

theory (Shannon, 1959), which is described in more detail by Berger 

(1971). However, Shannon's results cannot be applied directly to practi- 

cal problems because they involve a time complexity of z ~ ,  where n is 

the size of the system. 

This paper investigates the problem of finding minimal descriptions 

of finite deterministic systems with a given accuracy. Deterministic 

methods of information compression, developed by Lupanov (1965), 

Nechiporuk (1985) and Sholomov (1967) for the synthesis of logical net- 

works, are used. A particular case of this problem, which deals with the 

description complexity of partially-specified systems, has already been 

analyzed by Nersisian (1981). 

An algorithm for obtaining an asymptotically minimal description of 

discrete systems with constraints on the modeling accuracy is proposed. 

The time complexity of this algorithm on any formal machine which car- 

ries out letter-by-letter operations (see Aho, Hopcroft and Ullman, 1976) 

does not exceed nl*, where n characterizes the size of the system and 

7 > 0 is an arbitrary constant. 

2. STATEMENT OF THE PROBLEX AND FORMULATION OF THE RESULTS 

Let a system S be given by 

s =  < V . P > ,  (1) 

where V = 11 ...., vj is a set of objects and P = ) P I , .  . . ,P,  j a collection of 

relations given on se t  V. 



Let a model M of the system be given by 

M = < V , Q > ,  

where Q = Q1. ...,Qp j is a collection of relations "simpler" than P. It can 

easily be shown (see, for example, Nersisian, 1981), that a system such as 

(1) can be represented by a sequence of symbols 2" = (z l ,  ..., z,) in some 

finite alphabet A = l a l ,  ..., a,{. Similarly, model M of system S can be 

represented by a sequence y" = ( Y ~ ,  ...,y,) in some finite alphabet 

B = ib l,...,bt j. We shall call sequence an approximation (model) of 2". 

The accuracy of modeling is determined by several criteria f l....,f N. 

Each criterion is characterized by a distortion measure p(d)(a,.bj) = ap) 

for each letter,  where 0 r C I ~ )  4 m is the  "penalty*' incurred by replacing 

symbol q by symbol b j  in the model. The overall distortion on going 

from sequence 2" to sequence y" is the sum of the distortions for the indi- 

vidual letters: 

where w,, is the number of positions u for which zu = q, yu = b,. We 

shall consider the case in which the permitted level of relative distortion 

dd)5 0, d = 1. .... N .  for each criterion f d  is given, and approximation 

y" = y"(z") satisfies the constraints: 

p (d ) (2" ,g ) r~(d)n .  d = 1 .  ..., N .  

This type of approximation will be called 2-accurate, where 

3 = (~('1, ..., dN)). I t  can easily be seen that  to satisfy these conditions it is 

necessary that  for each i there exists a j = j ( i )  such that  a$) = 0 for 

all d (otherwise for some d the distortion introduced by modeling will be 



greater than ,dd)n).  I t  should be noted that if = a then wij = 0 (i.e.. 

no q is replaced by b , ) .  

Let Mn(k l . . . . , k s )  denote the class of all sequences of length n in 

alphabet A such that  each sequence contains ki symbols q, i = 1. ..., s .  

k l +  . . . +k, = n .  Let parameters k  ,..., k, be functions of n ,  i.e., 

k  = k  l ( n ) . . . . , k s  = k , ( n ) .  We shall assume that there exists a certain 

encoding technique K  = & which associates each sequence 

2" E Mn(kl ,  .... k , )  with a binary sequence (code) K(z"). and that there 

exists a decoding technique D  = Dn such that  D ( K ( ~ " ) )  is a word of length 

n in alphabet B. The word D ( K ( ~ " ) )  will be considered to be the approxi- 

mation of 2". Let l(2") denote the length of codeword K(2"). Let us 

assume that  

ln (k  l , . . . . k s )  = max l ( f ) .  
Z€M,,(k ,,..., k,) 

This quantity will be called the description complexity of class 

Mn(k ...., k s ) .  

The accuracy of the  model will be characterized by the following 

quantities: 

p(d ) ( z")  = p ( d ) ( ~ ,  D ( K ( z ) ) ) ,  d  = 1 ...., N . 

The above encoding--decoding method will be called Z-accurate, where 

= ( & ( I )  ,.... &(w), &(I) 2 0 ...., F(W 2 0, if for each i E 4 ( k l  ...., k s )  

We now define 'Sentropy for the given P = and P = ( p  l ,  . , . , p s ) ,  

All logarithms are assumed to be to base two, i.e., logz z. 



Pij 
HE( P )  = min C pi, log IIpvII i , j  piCpuj u ' 

where the minimum is taken over all (s x t  ) matrices I Ipij I I for which 

Theorem 1 

( 1 )  Let the condition 

log log n 

be satisfied. 

Then for an arbitrary function a(n)  -, m there exist Z-accurate 

encoding and decoding techniques which ensure that the descrip- 

tion complexity satisfies the following relationship: 

- n H i [ > , . . . , k ]  + na(n)  log log n l n ( k  l,...,ks) - log n 

(2) If function a(n) is computable with time complexity n ,  then the 

encoding operation II;, and the decoding operation Dn have time 

complexities not greater than nl*, where y > 0 is an arbitrary con- 

stant. 

* 
( 3 )  For each :-accurate encoding and decoding technique 

l,(k ,,..., k , )  a n H E  - ,..,, - + cllog n 1:' :.I 

* The letter c , possibly with a subscript, denotes a constant here and elsewhere. 



3. PROOF OF THEOREM 1 

1. Let W  = 1 (wij I I be an ( s x t )  matrix satisfying the  condition 

The function 

I ( W )  = n  l o g n  - C  kilog ki - C m j  logmj  - C  w . -  =I l o g q j  
i i J 

( 5 )  
j 

is then associated with matrix W, where 

I t  is easy to  show that  

where 

kmma 1 

Given both an ( s x t  ) matrix W = 1 1 wij ( 1 and an ( s x t )  matrix 

W' = ( I wIij 1 1 such that  

then 

* The notation pn * $, or p, = 0($,) means that lim" < -, while the notation pn = o (qn) 
n +-$n 

Pn means that lim - = 0. 
n+-+n 



The inequality ( 0 )  Follows immediately from expression (5), using 

condition (7) and the fact that  s and t are limited. 

2. ~ e t *  

Consider all possible ( sx t )  matrices W = ( 1 wij 1 I which satisfy the  condi- 

tions 

For each j # j(i) le t  

w . .  = l . . A ,  
21 51 

where the  lij are  integers; for  each j = j ( i )  let  

Now, from these, l e t  us find the  matrix Wo with the smallest value of 

J ( W ) .  

Lemma 2 

(1) The following condition holds for matrix Wo 

(2) The time complexity of the algorithm for finding matrix Wo is lim- 

ited by the value n(1og n)2st+4.  

[Z] uZ[) denotes the largest (smallest) integer which does not exceed Z. 



Proof 

Let the minimum in expression (2) be achieved on collection (p*j . 

Define 

and introduce matrix w = 1 1 w; I 1 .  From (5) it follows that 

Let 

Then if wij is found from (9)--(12), the inequalities 

are satisfied, and from Lemma 1 

II(W) - I ( w * ) (  5 A logn  . 

Combining ( 7 ) ,  (9), (14)  and (15)  leads to the  expression 

l r ( w )  - r ( w v ) l  S A I O ~ ~  . 

Since the condition 

wij s wij = pijn 

holds for all j # j ( i )  and condition (10)  is valid for matrix w*, we have 

and therefore matrix W also satisfies condition (10) .  Inequality (13)  fol- 

lows from (16)  and from the relation 



Let us now evaluate the  complexity of finding matrix Wo. Instead of 

function I( W) we can consider the monotonically related function 

This expression contains numbers of the  form sS, s I n ,  whose dimen- 

sions (numbers of binary digits) do not exceed n log n. To compute sS 

requires only log s I log n multiplications (see, for example, Valski, 

1959). According to Schonhage and Strassen (1971). not more than 

n log3n elementary operations are  needed to multiply together two 

( n  log n)-digit numbers and the general number of operations required 

to compute s S ,  s S n,  is of the order of n log4n ,  or less. After finding 

all the  numbers of the form sS involved in (17) a finite number of multi- 

plication and division operations must  be performed. This requires of 

the order of n log3 n operations or less. To verify condition (10) requires 

no more than log n operations. Since there  are a t  most ((log n ) 2  + l)St 

versions of ( s x t )  matrix W, the overall t ime complexity of finding matrix 

Wo is of the order of n(1og n)2St+4 or less. 

3. Let us  introduce quantities 

and construct the ( s x t )  matrix QO = I I q O ( j / i ) (  1 .  Assume tha t  an 

integer v S n is given. We shall consider an arbitrary collection x I , , . . , ~  

such that  xXi = v.  Let M,(xl, ...,&) be the  class of all sequences contain- 
i 

ing xi symbols %. We shall use the following notation: 



Next let us form an ( s  xl ) matrix Cl = 1 I wij ( ( . Since 

we deduce from Lemma 1 tha t  

Xl x, I ( R )  - v I (  -,.. . , - ; QO) r log v , 
V V 

where 

It is also evident t ha t  

E aif)ug r C a $ l ) x i r l O ( j / i ) .  d=1.  .... N .  ( 2  1 )  
i ,j i ,I 

We shall say tha t  a se t  N of sequences in alphabet B ?-accurately 

approximates a se t  M of sequences in alphabet A if for each sequence 

from M there is a corresponding ;-accurate approximation in the N. Let 

us denote by T E ( x I , . , . , & )  the  minimum cardinality of a se t  which ?- 

accurately approximates M , ( x l , . .  . , x , ) .  

lemma 3 

( 1 )  The following relation holds: 

Xl x, log T Z ( x l . .  . . , & )  5 v I ( - ,  ..., - ; QO) + O(1og V )  , 
V V 



where 8 = (6(1)....,6(w) and 

(2) A set N which ?-accurately approximates M,(xI,.. .,xs) and satisfies 

estimate (22) can be found with time complexity not greater  than 

c z  + c g  log2n.  

Proof 

Estimate (22) can be obtained using the gradient procedure sug- 

gested by Sholomov (1967); this is a modification of the procedure pro- 

posed by Nechiporuk (1965). A table is  formed with 5 sv columns 
!xi ! 
a 

Y' 
corresponding to the sequences 7 E M , & ~ ,  ...,&) and with -< tV rows npj! - 

j 

correspondmg to the sequences 5 containing pj symbols b j .  At the 

intersection of row 5 and column we put a ''1'' if we have 

H 

oij (i = 1 ...., s , j = 1 ..... t) positions with symbol a, in sequence < and 

symbol b j  in  sequence 5;  otherwise we insert a "0". It is evident that  if a 

"1" is found a t  the intersection of row 5 and column t then jj is a 8- 

accurate approximation of 7. The gradient procedure is then used. A t  

each step of this procedure it is necessary to find the row with the max- 

imum number of ones in the current  table, and  delete this row and' the 

columns containing the ones. The procedure terminates when all the 

columns have been deleted, and the desired se t  N is formed by the 

sequences corresponding to the deleted rows. Calculations similar to 

those described by Sholomov (1967) give the estimate 



which, taken together with (20), yields ( 2 2 ) .  

The upper bound of the  size of the table is ( ~ , t ) ~ .  The time complex- 

ity of constructing the  table and performing the gradient procedure can- 

not exceed the polynomial of the table size, and is limited by the value of 

rxiwij 1 
c;. The complexity of finding parameters wij = I , ] and gj = C 0ij 

j 

does not exceed the  value of c 4  log2 n. The resulting total complexity is 

4. Let there be a sequence z" E M, ( k  I , . . . , k , )  in alphabet A .  Assume 

that a natural  parameter  v is  given and tha t  the sequence z" is  broken 

into pieces of length v: 

N H 

Z = t  . - .  M = ] q .  
V 

Let Tu belong to class M , ( ~ ? )  ....,$)). We shall denote by qU any 8- 

accurate approximation of tu, where 8 is determined using (19) and (23). 

Lemma 4 

The sequence 

N ? =;j ,,...,,, 

is an ?-accurate approximation of sequence 2 .  

Proof 

The overall distortion between the sequences z" and y" is equal to  the 

sum of the  distortions between the  pieces and their &accurate 



approximations f ,  : 

Substituting in ( 2 5 )  the value of GI$') from ( 1 9 )  we obtain 

M 
From the obvious equality C xiu)  = ki and relations ( 1 0 )  and ( l B ) ,  we 

u =1 

find that  

which proves the Lemma. 

5 .  We shall now describe the encodng procedure. 

The codeword K(z") for a sequence z" E M,(k l . . . . , k , )  consists of three 

parts: 

K(2) = A C 2 . 

These are known as the reference, main and auxiliary parts, respectively. 

We shall consider first the main part C of the codeword K(2). Sequence 

i E &(k  l , . . . , k , )  is assumed to have been broken down into pieces of 

length n.  We group the pieces with the same parameters x l ,  ...,&, 

xl+ , . +& = v into separate classes labelled M I , . . . , M R .  For each class Mi 

the 8-accurate approximations (where 8 is determined from ( 2 3 ) )  are 

found with, the help of the gradient procedure described earlier (see the 

proof of Lemma 3). We shall denote the  number of approximations by 

( x l , . . . , ) .  Now arrange all these 8-approximations f for sequences 



from MV(x in a certain (e.g., lexicographical) order and number 

them using binary sequences %(.fj) of length 

T, = ] log Tv [ . (26) 

Let P = ( i l .  ...,4,) denote the binary representation of number i and r* be 

the corresponding binary sequence, where 

2" = (ili , . . . . . ~ $  01) . 

I t  is obvious f h a t  numbers i and j can be found uniquely from sequence 

5.7. The code z(&) for the  piece $ E Mu = M ( ' ) ( ~ ~ , . . . . X ; )  will then  be of 

the form 

I * * -  N 

a(?,) = v r ( q j )  . (2 7 )  

where Cj denotes a %accurate approximation of &. A sequence of codes 

of adjacent pieces ti constitutes the main part of the codeword 

C = %(TI) . . . . 

The auxiliary part of the  codeword is a list of 8-approximations. Let 

the 8-approximations for the  class Mu = MV(xl, ...,&) be 

N 

i ) V 1 8 . . . . ~ ~ ~  * 

where 

Assume that  

N 

((4) = 4, .. . . i vp ,  . 
where i j  is obtained from 5 by replacing each symbol b j  E B by a ~5 v pv 

binary representation of length ]logt [. 



The auxiliary part Z will be of the form 

N 

Z = [(MI) . . . , 

where R is the number of classes M , ( X ~ , . . . , ~ ) .  We shall denote the length 

of T(Afi) by Ji and the  length of the  auxiliary part E by 1;;. 

The reference part  A contains the numerical parameters required to 

decode the main and auxiliary parts. I t  is of the form 

N. l * *  N C  W C  N C  l 
~ = n  k 1  ...k, L~ L: r l S  - i i l ; . . . J i .  

Let the length of the  reference part  be Lk It is evident tha t  the  code- 

word K(3)  can be decoded into x-accurate approximations 5, of pieces 

tu, which since they are adjacent (according to Lemma 4) give an F 

accurate approximation y" of the sequence z". 

6. The length L(K(9)) of codeword K(2) is given by: 

L(K(E)) = L* + L~ + L: . 

Let u s  estimate the length Lz of the main part  C of the codeword. This is 

where 1 (%&)) is the  length of the piece of code iiRi). From (26) and (27) 

it  follows tha t  

(a(?,)) 5 2 ] log R [ + ] log Q ( X ~ , . . . . ~ )  [ + 2 . (29) 

Since the  number R of classes cannot exceed (v+l)', we may write (tak- 

ing into account Lemma 3) 



One more Lemma must  be proved before we can estimate the value of Lz.  

For ? E M,kI ,..., xs) we introduce the notation 

Lemma 5 

Proof 

I t  is sufficient t,o consider the case g = 2 (as will be seen later). Let 

ti E M , , ( ~ ~ ( ~ )  ,,.., &)), i=1. ..., M. Using the upward convexity property of 

the average mutual information function, which holds when the  collec- 

tion QO of transitional probabilities is fixed (see Gallager, 1968), we can 

write 

Multiplying both parts of the inequality by vl+v2 and making use of (31) 

and 1 = TIT2 -E Evl+vz(X1(1)+X~2) ,...,X(l)+d2)), we obtain inequality (32). 

which proves the Lemma. Substituting (29) into (28), using Lemmas 2 

and 5 and the relation I(Yd = n , . . . ,  ; QO], we obtain 

, . . . ,  ; QO] + O ( n  log v) s 



n log v 
n H [ , . . . . ~ ] +  O [ Z ] +  log n 01 1 .  

Let us now estimate the  length of the auxiliary part of the codeword. 

The binary length of one approximation 6, is not more than v ]  log t [ .  

From the  fact tha t  the number of 8-approximations for one class does 

not exceed sv  and the number of classes is not more than ( v + l ) ' ,  we 

arrive a t  the estimate 

Lz r O ( ( V + I ) ~  v s V )  r C; . 

The value of LA is the  sum of the lengths of the 5' form representa- 

tions. Since the length of each parameter does not exceed n ,  it is not 

difficult to see that  

LA S R log n s (v+l) '  log n I vC6 log n . 

Finally we have 

9. Let a = a(n)-.m be an arbitrary function which satisfies the  con- 

dition 

an log n 
log log n -.-. 

and assume that  



I t  can be shown directly tha t  substitution of this value into (33) yields 

the estimate (3). 

10. Computing experience shows tha t  t h e  time complexity of encod- 

ing and decoding techniques satisfies the  estimate given in point (2) of 

Theorem 1. 

11. Using the  technique described in Sholomov (1967), the following 

inequality can be obtained: 

log TE(k ,..., k,) 2 nHE - ,..., - + c log n , [",'I 
from which, by means of "power" considerations, we arrive a t  est imate 

(4). 

4. CONCLUDING REMARKS 

1. The encoding technique proposed in the  present paper may be used 

t o  obtain a proof of Shannon's Theorem of encoding of discrete 

sources with a fidelity criterion without resorting to the  random 

encoding technique. 

2. The proposed encoding technique and codeword construction can be 

used to compress large arrays of information if a certain distortion 

of the initial array is allowed in decoding. A data-compression algo- 

r i thm for the case A = 10,1,+{. 8 = 10,1,j, aij E iO,mj was con- 

s t ructed a t  l lASA by the  author.  Here * represents an unspecified 

symbol which can be replaced arbitrarily by 0 or 1. This algorithm 

has  been implemented on the  VAX computer a t  IIASA by Z. Fortuna. 
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