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ABSTRACT

The problem of the existence of natural "laws" in the social
and behavioral sicences as opposed to empirical relations is con-
sidered. It is shown that this question is intimately tied-up
with the question of when two systems are equivalent. Tools from
the mathematical theory of singularities of smooth mappings are
employed to formalize the equivalence issue and to provide an
operational mathematical basis for investigating the existence
of laws of nature. The theory developed is applied to a spectrum
of situations arising in water resource analysis, forestry manage-
ment and urban development.
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System Similarities and the Existence

of Natural Laws

by

John Casti

1. Systems and Laws of Nature

One of the main pillars upon which the edifice of modern
theoretical physics rests is the existence of "laws" of nature,
which specify fixed relationships that must obtain between the
variables describing particular physical processes. Laws such
as the conservation of mass-energy, conservation of charge,
conservation of spin and so forth, provide the foothold upon
which mathematical models of a dazzling degree of fidelity are
based and, in general, seem to account for much of what we can
legitimately say we "know" about relationships in the physical

world, at least from the modeling point of view.

In an earlier paper [1], we have argued that natural laws,
as that term is understood in physics, do not exist in the social
and behavioral sciences and this "lawless" state accounts for
much of the difficulty in trying to mimic the techniques of
physics for modeling human affairs. Our contention was that
in order to qualify as a law of nature, a relationship between
variables must possess the properties of independence, invari-
ance and analyticity. Roughly speaking, the first condition
means that the relationship must not depend upon.the particular

physical system in which the related quantities are used (e.g.



we cannot have one version of Henry's law for inductors in a

TV set and another for the same inductor in a car stereo). The
second reqguirement simply means that the expression of the law
must not depend upon the coordinate system chosen to express it,
i.e. the law is a coordinate-free relation between variables.
Finally, analyticity implies that local space-time information
is sufficient to impose a global rigidity upon the system and

it is not necessary to explicitly account for what is happening

"at infinity" in the expression of the law.

In this paper we propose a framework suitable for mathe-
matically formalizing the above concepts and to examine the issue
of the existence of law outside the physical sciences. As indi-
cated below, the formalization of the notion of a natural law
involves the idea of system similarity and is closely connected
with the concept of a bifurcation of one system description (or
model) from another. During the course of investigating the
existence of laws, it will turn out that many of the results
from the theory of singularities of smooth mappings play an im-
portant role in providing the necessary mathematical underpinnings
to make our ideas operational. For this reason, the bare essen-
tials of this theory are sketched in a later section of the paper.
Finally, the general ideas are employed to study problems in
water basin characteristics, forest growth relationships and
urban population migration as illustrations of the difference

between a natural law and an empirical relationship.

2. System Descriptions and Models

We begin with a natural system I which, for our purposes, is
assumed to be described by some set of real-valued observables
{fi} defined on an abstract set of states X, i.e.

fi : X >R , i=1,2,....

For purposes of modeling 2; we extract a finite subset of these



observables f = {f1,...,fn}, say, and write an abstraction of

L as

f:X-»>YyY ,

where Y C Rn. A mathematical model of £ is then a translation or,
following the terminology of Rosen [2], an encoding of the abstrac-
tion of T into some formal mathematical system M, and a subse-
quent retranslation or decoding of the theorems of M back into
properties (relations) of the observables f. The basic situa-

tion is depicted in Figure 1. The essence of the modeling re-

lation lies in making effective choices of the formal system M

encoding

M
{f1lf2Io-c}

decoding

Figure 1. Modeling Relation

and the encoding/decoding operations. For our purposes in this
paper, it will not be necessary to pass from an abstraction of

L to its formal model M, but the above diagram should always be
kept in mind as a reminder of the intrinsic duality between the
real-world of £ and its description in terms of observables, and

the abstract world of M and its formal mathematical structures.

Now let {f1,...,fn} be some abstraction of £, and assume
that there exist m relations {¢i} linking the observables f, i.e.

we have real-valued functions

21---lfn) =0 ’ i

¢i(f1,f 1,2,...,1‘;’1 .



The relations {Qi} are termed the equations of state for r.

Since each fi is a real-valued function, we can more compactly

represent the equations of state as

Clearly, the structure of I is contained in ¢, while f represents
only the measurement process. Thus in seeking natural laws for
L, we shall focus attention upon ¢ and, by abuse of terminology,

call ¢ a description of L. Our first item of business is to con-

sider the question: when are two descriptions of £, ¢ and 3

equivalent.

Let us imagine that instead of using the observables f and
the description ¢, we choose an alternate set of observables
f = {f1,f2,...,fn} and a description ¢ = {¢1,...,¢m} of ©. i.e.

Now we ask for conditions under which the two descriptions ¢ and

¢ are equivalent. Diagrammatically, we seek maps g and h such

that the diagram

o)

R ———> g
gl l h
Rn'—A_—)Rm
0]

commutes. Thus, we count the descriptions ¢, 3 equivalent if by
coordinate changes in the domain and range, we can make & "look
like" $, and conversly. If no such g and h exist, then the de-
scriptions ¢ and 3 convey essentially different,,or inequivalent,
information about I and there is a gain in knowledge about I by
employing both descriptions; otherwise, the use of both ¢ and 3

is redundant.



Algebraically, the condition for equivalence is

]

Q

°
o0

® o h

As an elementary illustration, consider the case n = 2, m = 1
with

¢(f1,f = f

2) 2!

The transformation g defined as

with h = identity, transforms ¢ into $ as the calculation

+ f2 = f2 = ¢(f1,f2)

demonstrates. Thus, the two descriptions ¢ and % are equivalent.

The concept of bifurcation of descriptions arises precisely

when two descriptions are not equivalent. 1In this case,

there is essential information contained in one description that
cannot be obtained from the other by shifting to a new view of
L via transformations g and h. 1In this case, we say that the

description ¢ bifurcates from 2.

In general, in order to provide specific testable conditions
under which ¢ -~ 8, we must be more specific about the mathemati-
cal properties of the maps ¢, 6 and the admissible class of co-
ordinate tranformations. For a variety of mathematical reasons,
it is convenient to require that the functions ¢, 8 be smooth,

i.e. Cm, with the coordinate transformations g, h being diffeo-



morphisms. Happily, this purely mathematical requirements co-
incides nicely with our earlier condition that any natural law
should possess the property of analyticity. 1In what follows,

we shall express results for smooth ¢, ) and, hence, for analytic
(or real-analytic) ¢, o. If there is an open neighborhood* U of
¢ in the space of smooth functions such that ¢ is equivalent to
each $<;u, then we call ¢ stable. Thus, the unstable smooth

functions represent bifurcation "points" in c”.

Sometimes instead of fixed functions ¢, 8, we wish to con-

sider parametrized families of functions where now

o = ¢u(f) ' o2 = o(£)

with a, GeRk being vectors of parameters. In this case we have

the diagram

where now the coordinate change g is such that it acts on the
product space R" x Rk in the usual fashion. In other words, the
families ¢u(f), $a(f) are equivalent if there exist diffeomorphisms
g = (g1,g2) and h such that

g1:f+f
g, :a > a
h :6 + &

making the above diagram commute.

*In the so-called Whitney topology on the space of smooth maps.
See [2-5] for a detailed definition.



The central questions that now arise are:

A) (Determinacy Problem). Given ¢, ¢ (or ¢ , ¢&), how
can we tell whether or not they are equivalent or,

what is the same thing;

A') Given ¢ (or ¢a), what are all 9 ($&) that are equi-

valent to it?

B) (Classification Problem). 1In the equivalence class

of ¢, what is "simplest" or canonical representative
of that class?

C) {Unfolding Problem). If & is unstable, what is the
minimal-parameter family, ¢a that we can imbed ¢

within, so that {¢ } is stable as a family of maps?

The theory of singularities os smooth mappings has been created

specifically to answer these questions.

3. Singularity Theory

Here we briefly review elementary aspects of the theory of
stable mappings and singularity theory, érimarily to give the
flavor of the type of results obtainable from the full machinery
of singularity theory. Since a full account of the theory is far
beyond the scope of this paper, the reader is urged to consult

[2-5] for more detailed»information.

Let us consider a smooth function ¢ : M+ N, when M, N are

smooth manifolds. Let

3¢i
J¢(XO) = [-a—x; (XO)

be the Jacobian matrix of ¢ at xOGEM. We assume that J¢(x0) is

of maximal rank, i.e. min {dim M, dim N} = rank J¢(x0). Then

we call ¢ an immersion at Xq if dim M < d4im N, a submersion at

X if dim M > dim N and a local diffeomorphism at X if dim

M = dim N and ¢ is a bijective immersion at X

The map ¢ : R" » R" is called stable at a point x

0 if there

is a neighborhood U of x, such that for any neighborhood U of x

0 0



contained in U, and for any perturbation ¢ of ¢, there is a point

xoesa and local diffeomorphisms g and h such that the diagram

¢
(RY, x5) —> (R, ¢(x,))

g h
(R", %) ——— (R", §(%,))
¢
commutes.

The importance of immersions and submersions resides in the

following global stability results of Mather.

Theorem 1. Let N be a compact subset of R" and let ¢ : N+ R"

be a one-to-one immersion. Then ¢ is stable. Furthermore, if

m>2dim N + 1, then ¢ is a one-to-one immersion if and only if
¢ is stable.

Theorem 2. Let ¢ :Rn->Rm be a submersion. Then ¢ is stable.

These results are important because they are global conclusions

from local conditions.

Locally, we can use the Implicit Function Theorem to obtain

similar conclusions.

Theorem 3. Let ¢ :N-+Rm, where N C R" and let ¢ be an im-
mersion at X0+ Then ¢ is locally stable at Xq and there exists

a coordinate change h: R"+R" such that ¢ takes the form

s 0,...,0) .

h o ¢(x1.---,xn) = (x1,...,xrl

Theorem 4. Let ¢ : R">R" be a smooth submersion at x,€ ucr".

Then ¢ is locally stable at Xq and there is a coordinate change
g : R® > R"” such that

¢ o g(x1,x2,...,xn) = (xn_m+1,...,xn) .



For immersions and submersions, the above results dispose
of the questions of stability and "simple" representatives for
equivalence classes. However, in general we cannot expect maps
to be either immersions or submersions. In this event J'¢(xo)
will not have maximal rank and we are naturally led to the idea
of a singular point of ¢. A point Xq is called a singular point

for ¢ if rank J’¢(x0) < min {dim M, dim N}. Otherwise, x

is a
0
regular point. We study the stability of ¢ near a singular point.

The simplest case, and the one that serves as the model to

motivate more general situations, is when ¢ is a function,
i.e. m = 1., The classical situation studied by Morse is when Xq
is a singular point and the Hessian of ¢ at X is nonsingular,

in which case X is called a non-degenerate critical point. If

all the singular points of ¢ are non-degenerate critical points,
we call ¢ a Morse function. The basic stability result for Morse

functions is Morse's Lemma.

Theorem 5. ¢ :Rn-*R is stable if and only if ¢ is a Morse

function and the critical values of ¢ are distinct; (i.e. if Xgr
xa are distinct non-degenerate critical points, then ¢(x0) #¢(x3).

Furthermore, the Morse functions form an open, dense set in

c” (R®, Rr).

Finally, in the neighborhood of any non-degenerate critical

change g :Rn-+Rn, such that

2 2 2 2
b o g(XyrXypeearX ) = Xy ¥y = X g X

So, by Morse's Lemma any smooth function can be locally
approximated by a Morse function which, in turn, can be made to
look like a non-degenerate quadratic form in the neighborhood
of a non-degenerate critical point. Furthermore, the only stable
smooth functions are of this type. We note in passing that this
result forms the mathematical basis for why the so-called "laws"
of qlassical physics all turn out to be expressed as quadratic

forms.
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While Morse's Lemma, in effect, closes out the stability

problem for functions, the following result of Whitney for maps

of Rz-*R2 served as the starting point for what is now the theory

of singularities.

Theorem 6. Let M be a compact subset of R2 and let ¢: M-*Rz,

i.e. ¢(x,y) » (u(x,y), v(x,y)), ¢ smooth.

(1) Then ¢ is stable at (xo,yO)E M if and only if near Xq

¢ is equivalent to one of the three mappings:

(a) uv=x, v=y, (regular point)
2 .

(b) u=x", v=y, (fold point)

(c) u=xy-x", v =y , (cusp point).

(2) The stable maps ¢: M*—szorm an everywhere dense set
. © 2 2
in C (R",R7).

(3) ¢ is globally stable if and only if
(a) ¢ is stable at each point of M

and
(b) The images of folds intersect only pairwise

and at non-zero angles and the images of folds

do not intersect images of cusps.

Stability and density conditions for general maps ¢ : "+ R"
require introduction of technical concepts beyond the scope of
this paper for their precise statement. However, we can indicate
the nature of these conditions in slightly imprecise, but straight-
forward language. The basic idea, due to Mather, is to try to pro-

vide conditions under which the stability of ¢ at a point is

equivalent to the general stability of ¢, and to determine con-

ditions on a finite set of derivatives of ¢ that imply point

stability.
Let us assume that ¢(0) = 0 and let C:(Rn) denote functions

on RT+R that are smooth at 0. Then we have the following



-11-

characterization of stability of ¢ due to Arnol'd: if for every
function wGECz(Rn) there exists an nxm matrix B of Cg(Rn) func-

tions and an mxm matrix K of Cg(Rm) function such that

VI, = (JO)H +Kep+ o(|x|™T), (%)

then ¢ is stable, where I, = mxm identity. In other words, if
the equation (*) is solvable by matrix functions H and K up to

order m = dim R™ for every smooth we;cg (Rn), then ¢ is stable,
and conversly.

The importance of Arnol'd's result is that it provides a
necessary and sufficient test for stability of ¢ dinvolving only
the properties of ¢ and its first derivatives at 0, i.e. local

properties of ¢ are sufficient to provide a global result.

As an example, consider the case when m = 1, n = 2,
¢(x1,x ) = 1/3 (x + X, ) Then J¢ = (xf,x ) and Arnol'd'

condition for stablllty of ¢ is that for every we;co(R ), we

must have

x2 + h

1 2%

2 2 2 2
o+ 1/3k(x] + x5) + 0(|x|

for111,h2,k€EC3 (R) . It is clear that this function is not stable,
since linear functions y cannot satisfy the condition. Of course,
this result could have been obtained from Theorem 5, using the
fact that the only critical point of ¢ is the origin, which is

a degenerate critical point.

The failure of ¢ to be stable leads to the question of "un-
folding", i.e. the existence of a parametrized family of maps
containing ¢, such that the family is stable in the sense dis-
cussed in Section 2. 1In order to deal with this question, it

is necessary to consider the idea of the codimension of ¢. For

simplicity, we consider only the case when ¢ is a function (m=1),
although the general idea can be extended to maps with additional

technical effort.
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The Jacobian ideal A(¢) of ¢ is the set of all smooth func~

tions expressible as

where g; are arbitrary smooth functions. Let

m = {¢6€ Cy(R") : $(0) = 0)

Then the codimension of ¢ is defined as
cod (¢) = d1mR mn/A(¢) .

Roughly speaking, the codimensions measures the number of inde-
pendent directions in C;(Rn) "missing” from A(¢). As an example,

consider the function used earlier

_ 3.3
¢(x1.x2) = 1/3(x1 +x5) .
Then
3¢ _ 3¢ _ .2
X X ¢ 3%, X2

and we see that a basis for mn/A(¢) is given by the elements

{x1,x2,x1x2}. (By convention, the constants generated by 1
are not considered in the calculations). 8So, the cod ¢ = 3.
On the other hand, the function ¢(x1,x2) = x? X, has cod ¢ = =,

One of the deepest and most far-reaching theorems of singu-
larity theory is the result that an unstable function ¢ can be

stabilized by imbedding it into a k-parameter stable family of
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functions and that the smallest k that will work is k = cod ¢,
Furthermore, the parameters can be made to appear linearly and
the new functions that must be added to ¢ to define the family
are exactly these comprising a basis for mn/A(¢). Such a stable

family is called a universal unfolding of ¢. So, for the unstable

function ¢ = 1/3(x?-+;§3, a universal unfolding is given by

3 3
1/3(x1-+x2) + a1x1 + a2x2 + o, X Xy

ast.

Another way of viewing the unfolding concept, and one that
is somewhat more directly related to our goals in this paper, is
as follows. 1Imagine we have the function ¢(x) and we perturb it

by a smooth perturbation p(x) to obtain a new function $(x).

Assume that cod (¢) = c and that the functions ug (x), ... u (x)
form a basis for mn/A(¢). Then we can write

R c

¢(x) = ¢(x) + p(x) = ¢(x) + I cxiui(x) + z(x)

i=1
The basic unfolding theorem then guarantees that in a suitable
coordinate system z(x) = 0. That is, $ is equivalent to ¢ modulo
the unfolding terms. All of the "directions" in the perturba-
tion p(x) can be removed by a suitable coordinate change with
the exceptions of those directions represented by the {ui(x)}.
Thus, the universal unfolding of ¢ represents the entire family

of functions that are equivalent to ¢.

For special classes of maps (submersions, immersions, Morse
functions, etc.), we have seen earlier that coordinate changes
can be found such that a map of the given class can be made equi-
valent to a certain "simple" cancnical form. Now we examine

the general classification problem, i.e. for given n,m, determine

. n m
the number of equivalence classes of smooth mapsof R +R and de-
termine a "simple" representative, or canonical form, for each

class.
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A related question that arises is whether or not the stable
maps form a dense set in the space of maps from Rn-va, i.e.
whether any map can be approximated arbitrarily closely by a
stable map. We have already seen that if m = 1, then the Morse
functions are stable and form such a dense set. The answer to
the density question can be shown to depend upon the values of

(n,m). The basic result is

Theorem 7. Let q = m-n. Then the stable smooth maps of

Rn-+Rm are dense if

(1) gq > 4, m < 7q + 8;
(2 g =0,1,2,3, m< 79 + 9;
(3) q = -1, m < 8;

(4) gq = -2, m < 6;

(5} g < -3, m< 7 .

Corollary. Stable smooth maps of R" > R™ are always dense

if n < 7 or m < 5.

General classification results exist in the literature. As
an illustration of the type of results available, Table 1 shows

the classification of all stable maps R" + R™ for n, m < 4,

Table 1. Canonical Stable Maps R +R", m, n < 4

SPACES CANONICAL STABLE MAPS
R » R X > X
2
X + X
R » R2 X »+ (x,0)
R ~» R3 x »+ (x,0,0)
R » r? x » (x,0,0,0)
R2+ R (x,y) » x
2, 2

(x,y) > *x"ty
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Table 1 contd.

R” - R (x,y) » (x,y)
(x,y) » (x,yz)
(x,y) » (x,y3-+xy)
R + R (x,y) > (x,y,0)
(x,y) » (x,xy,yz)
R™ » R (x,y) - (x,y,0,0)
R3 - R (x,y,z2) > x
(x,y,z) » txztyzizz
R™ + R (x,y,2) > (x,¥)
(x,y,2) » (x,tyzizz)
R + R (x,y,2) » (x,y,2)
(x,y,z) ~ (x,y,zz)
(x,y,z) > (x,y,z3+xz)
(x,¥y,2) »> (x,y,z4+xz+y22)
R + R (x,y,2) > (x,y,2,0)
(x,y,2) » (x,y,z,zz)
R + R (x,y,2,t) » x
(x,y,z,t) > ixziyztzzttz
R° » R (x,y,2,t) > (x,y)
(x,y,z,t) » (x,iyztzzitz)
(x,y,z,t) > (x,iy2122+t3+xt)
R" > R (x,y,2,t) *+ (x,y,2)
(x,y,z,t) » (x,y,tzzitz)
(x,y,z2,t) » (x,y,tzz+t3+xt)
(x,y,2,t) > (x,y,izz+t4+xt+yt2)
R° + R (x,y,z,t) > (x,y,2,t)
(x,y,z,t) »> (x,y,z,tz)
(x,y,2z2,t) » (x,y,z,t3+xt)
4+xt+yt2)
5+xt+yt2+zt3)

(x,y,2,t) » (x,y,2,t
(x,y,z,t) > (x,y,2,t
(x,v,2,t) » (x,y,zt,zztt2+xz+yt)

In order to classify unstable functions, we need to intro-
duce one final concept, the idea of the corank of a function.
Let ¢ : R" + R be a smooth function having a degenerate critical
point at the origin, i.e. grad ¢ (0) = det H¢ (0) = 0, where



-16-

H¢ is the Hessian matrix of ¢. Then the integer r = n-rank H¢ (0)

is called the corank of f.

The importance of the corank is that it can be shown that

if corank ¢ = r, then ¢ is eguivalent to a function

2 2

2
g(x1,...,xr) X 4 F XK otentx

where g is 0(|x|3). Furthermore, it can be shown that the clas-
sification of ¢ depends only upon the similar classification for
g. In Table 2 we display the classification of all unstable func-

tions having corank < 2, codim < 5, together with their universal

unfoldings.

terms above).

(Note that Table 2 omits the irrelevant gquadratic

For an account of how these classification theorems

Table 2. The elementary catastrophy of codimension <. When
T the + sign occurs, germs with sign (+) are called
standard, (-) are called dual.
NAME FUNCTION | UNIVERSAL UNFOLDING CORANK |CODIMENSION
fold x3 x3+ax 1 1
cusp :}4 :_x4+ax2+bx 1 2
swallowtail x5 x5+ax3+bx2+cx 1 3
butterfly :}6 :_x6+ax4+bx3+cx2+dx 1 4
wigwam x7 x7+ax5+bx4+cx3+dx2+ex 1 5
elliptic umbilic X —xy2 x3—xy2+ax2+bx+cy 2 3
hyperbolic umbilic| x +xy x3+xy2+ax2+bx+cy 2 3
parabolic umbilic :ﬂx2y+y4) 1(x2y+y4)+ax2+by2+cx+dy 2 4 -
second elliptic 5—xy2 xs-xy2+ay3+bx2+cy2+dx+ey 2 5
umbilic
second hyperbolic x5+xy xs—xy2+ay3+bx2+cy2+dx+ey 2 5
umbilic
symbolic umbilic iﬂx3+y4) iﬂx3+x4)+axy2+by2+cxy+dx+ey 2 5
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are established, see references [6-7]. Now we return to the
question of natural law and system descriptions.

4. Descriptions, Laws and Similarities

Armed with the foregoing tools of singularity theory, we can
now rephase our earlier questions surrounding natural laws in much
more specific and testable terms. For simplicity, let us assume

that we have a single equation of state

¢(f1,f .,fn) =k ,

2,--

linking the observables {fi} of a description of I. To satisfy
our requirement of "analyticity" for a natural law, assume that
the function ¢ is analytic, i.e. ¢ equals the sum of its Taylor
series. The requirement of "independence" is not a mathematical
condition, so we assume it is also satisfied for the ¢ and the
physical situaion under consideration. Our interest focuses

upon the final requiremeht for a natural law, “invariance".

If we were to interpret the invariance criterion in the stric-

test sense, then it would follow that the diagram

would be commutative for all g and h, i.e.
1
¢ =h o ® o g .

Of course, in general this condition is too strict and can only
be satisfied in the trivial case h =g =ididentity. Thus, the real

problem associated with natural laws is an inverse problem: given

a relation ¢, determine a subgroup G of diff (R™ x R™) such that
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¢ is invariant under G. We then say ¢ is a "law" of nature re-
lative to G. This notion of a natural law also shows explicitly
that a law is not an absolute in the sense that some "laws" are

stronger than others: 1if a law ¢1 is invariant under a group G1
and ¢2 is a law invariant under a group G2 with G1 a subgroup of
G2, then ¢2 is a stronger law than ¢¢4. Ideally, our task is to
find the largest subgroup of diff (Rn)cRm) which leaves a given
relation ¢ invariant. The physical utility of the law will then
hinge upon our ability to interpret the group G within the con-

text of the given systenm.

Generally speaking, it is extremely difficult to determine
such a subgroup of diff (Rn>cRm) for a given relation ¢. How-
ever, one important special case where it can be carried out
explicitely is when ¢ is a linear operator, i.e. an mxn matrix,
and the coordinate transformations g and h are linear. 1In this

case, we must have

where ¢, H and G are the matrix representations of ¢, h and g in
some bases in R" and R". For simplicity, take the case when n=m
and G=H. Then the problem is to find the largest subgroup of GL(n)
such that

H¢

in other words, to characterize all nonsingular matrices H that
commute with ¢. This is a classical problem of Frobenius and is
treated extensively in, for example, in [8-9]. The simplest re-
sult in this direction is when the characteristic polynomial of
¢ coincides with its minimal polynomial, in which case H must be

a polynomial in ¢. This meanslthat the set {I,¢,¢2,...,¢n—1}
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generates the maximal subgroup of GL(n) commuting with ¢.

While the case of ¢ linear is the simplest possible situa-
tion, it represents an extremely important case in the sense
that virtually all of the standard "laws" of classical physics
fit into this mold since they are based upon linear rélation-
ships of one type or another (e.g. Newton's 2nd Law, Ohm's Law,
Maxwell's equations, etc.).

Unfortunately, for nonlinear descriptions ¢ no such body
of results exists for determining interesting subgroups of
diff (Rn>cRm) upon which to base a natural law, and we must
lower our sights and consider only system similarities of the
type discussed in the last section. For pratical purposes,
such an approach is a generalization of the idea of law, as a nat-
ural law represents only the special case of a "self-similar"”
description. In the following section, we consider a few ex-
amples of the enployment of system similarity concepts in a

variety of settings in natural resource and human systems.

5. Examples of System Similarities

A. Water Basin Similarities - in a recent paper [10], it

has been argued that the probability density functions of the
peak and time-to-peak of the instantaneous unit hydrograph can
be characterized as specific functions of the rainfall charac-
teristic and the geomorphological features of a river basin.
We wish to examine these results to see if it is possible to
identify those basins which are similar in the sense of having
the same instantaneous unit hydrograph distribution function,

modulo a coordinate change.

Following [10], let us consider the instantaneous unit
hydrograph, which is the probability density function for the
time arrival of a randomly chosen drop of rainfall at the ab-
sorption state. The main characteristics of the hydrograph are
its peak and time-to-peak, which we denote by qp and tp’ respec-
tively. It has been argued in [10] that the probability den-

sity functions for qp and tp are given by
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3/2 §/2

f = 3.534 1 -1.412 1

(qp) qp exp (-1 qP ),

~-7/2 -5/2

f(t = 0.656 t -0.262 't ,

( p) p exp ( p )

where
5/2

— T 3/2
n = LQ /(1RAQRL0LQ ) .

Here, the quantities comprising II relate to the water basin's
geomorphological structure, and to the storm intensity and local
climate. We shall not elaborate upon these physical quantities,
but focus our attention solely upon the relation for f(qp), which

we shall rewrite in more streamlined fashon as

3/2 5/2

@c(x) = AcX exp (-Bcx )

where A and B are regarded as fixed constants, and ¢ is a parameter.

In this case, our diagram is

b

and the condition for it to commute is that there exist functions
g and h such that

or, more explicitly,
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3/2
h{Acx e

5/2

-Bcx ) = Ac'x'

The coordinate change g is determined if we can find x' as
a function of x,c,c'. The simplest way to accomplish this is to

let h = identity and solve for x' in the above relation. With
h = identity, it is easy to see that g = ¢;1 o ¢c , which implies

that g is uniqueﬁy determined for all c¢' such that ¢c' is invertible.
[P ]
This means that € (x) # 0. Checking this condition yields

dx
1/2 _ ' 5/2 5/2
-—;7 d)c,(x) = 1/2 Ac' x e Bec' x [3-5Bc'x 1,
d®cl(x)
so that ax = 0 for all (c',x) such that

5/2
3-5Bc'"x £0 .

Reinterpreting this result for the water basin problem, we
see that with regard to the distribution function for the peak of
the instantaneous unit hydrograph, two basins described by para-

meters II and NI' are equivalent if

5/2

3-5BI" 0o .
dp #

That is, we can always find qé as a function of qp, I, N* as long
as the above inequality holds. A similar analysis can be carried

out for the time-to-peak function involving tp.

While the preceding analysis is correct, it suffers from the
defect that one of our coordinate changes h has been preselected
to be the identity. This enabled us to easily derive the fore-
going global result for a subgroup of diff (RxR). Let us now
proceed in another fashion to obtain local results for all of
diff (Rx R) and then piece the local result togeéher to obtain
a global picture.
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An alternate way of looking at the above situation is to
employ Theorem 5 on Morse functions. If we return to the func-
tion Qé(x), we find that the critical poig}g of ¢ (x) are x*=0

= 3/(5Bc). In terms
of the unit hydrograph, these values correspond to the modes of
the distribution of the peak flows. To determine whether or not
these are degenerate critical points, we calculate d2¢c(x). This
2

and the positive roots of the equation x

yields dx

32 _ 5/2

— ¢ (x) = 1/4 Ace
2 C

dx

Bec'x 1/2

[5x2(1—513c2)+x‘ 1 .

2

. d .
Since Ix ¢C(0) = o, X

Similarly, if we set a
x*5/2

*

0 is a non-degenerate critical point.

3/(5Bc) and examine the critical points

= a, we find that x” is non-degenerate if
158cad’S ¢ 172 /w25,

a condition satisfied by all o > 0. Thus, for all fixed c # 0,
the critical points of ¢c(x) are non-degenerate, so by Theorem 5
we can assert that there exists a coordinate change x + g(x),
such that

¢c(x) > + x2 .

However, physically the parameter c¢ is replaced by the parameter

I which is always positive. Hence, we conclude that locally near
the singular points x* = 0, (3/5I3c)_5/2, the distribution function
f(qp) =+ qg,wherethe sign is determined by ég% & (x*), which in
this problem is always positive. So, near a critical point f(qp)
always looks like qg, while away from a critical point, the Im-
plicit Function Theorem insures that f(qp) looks like the linear

function .
u qp
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The above results can be summarized by saying that insofar
as the distribution of the peaks of the instantaneous unit hydro-
graph adequately describe a river basin all basins are equivalent:
up to a coordinate change in the measurement of the peak, the
distribution of the peaks of one basin can be transformed into

the peaks of another. Thus, the passage from one basin to another

via a change of I+ JI' can always be undone by a corresponding

change in the measurement scale.

B. Forestry Yield Models - An extremely interesting applica-

tion of the ideas presented in this paper arises in the modeling of
timber yields in a forest as a function of tree diameter and height.
If we let

D = tree diameter at breast height (in cm),

-
]

tree height from breast height (in m),
V = total tree volume, exclusive of bark,

stump to tip (in m3),

then the following relationship is empiriéally derived in [11] re-

lating these quantities:

0.0073 + 0.000040 D°H

<
]

a + B D2H .

We inquire as to what extent this empirical relationship consti-

tutes a natural law for timber yield from a given tree.

For our purposes, the parameter a plays no role so we set
a = 0. Similarly, our results do not depend upon B, other than
that R be non-zero. So, we set B = 1 and consider the function
d(x,y) = xyz.

Computing %g = y2, %% = 2xy, it is easy to verify that cod ¢

= + o, Thus, ¢ is as degenerate as a smooth function can possibly
be, in the sense that it takes an infinite number of unfolding para-

meters to imbed ¢ into a stable family of models. In particular,
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an arbitrarily small perturbation of ¢ will produce a function
$ that is not equivalent to ¢ in our sense. 1In other words, ¢
is unstable in the strongest possible sense.

Interpretation of this result in the forestry context sug-
gests that the above empirical rule for timber yield is about as
far away from being a natural law as any relationship could possibly
be. 1In fact, the high sensitivity of the relationship strongly
suggests that extreme caution be employed before utilizing this
relationship in any real forestry management situation. Of course,
whether or not the type of instability we focus upon here actually
matters in the use of the relationship depends upon what purposes
are served by the relationship. But mathematically, the empirical
rule Vv = a + 8 D2H is highly questionable as a basis for any policy-

making due to its almost pathological sensitivity to perturbations.

C. Urban Spatial Structure - in simple models of the evolu-
tion of urban structures an important role is often played by the

flow of money from residents of one region into shops in another
region. If we let the zones of the region be labeled i = 1,2,...,K

and define

8.. = flow of cash from region i to region j,

e. = per capita expenditure on shopping goods

by residents of zone i,

Pi = population of zone i,
W, = size of the "center" represented by zone i,
cij = cost of travel from zone i to zone j,

the the standard aggregate model for Sij is [12]

o
e.PiEB exp(—Bcij)

e~ R =
-~

o
Wkexp( Bcik)

k=1
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where a and B are parameters representing consumer economies and

"ease" of travel, respectively. Here we shall investigate the

map

W = (W1,W2,...,WK)

(511'512""’SKK) .

To see things most clearly, we consider the case of two

regions, i.e. K = 2. Since Kz > K, our first approach is to

test S for being an immersion and, if so, invoke Theorem 1 to

conclude that S is stable. To check whether § is an immersion,

we need to calculate the Jacobian of S,

Since we are interested primarily in the parameters a,B, we set

e; = P; 1 for this analysis.

After some algebra, we find

w‘;‘”w‘; e B(C11%S2)
2
D
1
w2 Tye o7B(C%C5)
1 W
7
D,
JS (W) =a-
wo 1w e B(Cy %Cy5)
1 W
3
D,
—w‘i"‘wgl “B(Cy1+C5,)
12
D,
|
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It is easy to see that rank J = 1 for all W and a and B, i.e.

J is not of maximal rank and, hence, S is not an immersion and,
furthermore, every point W = (w1,w2) is a singular point of S.
Thus, S is an unstable map.

The instability of S means that there exist arbitrarily
small perturbations of S, call them S', such that S' is not equi-
valent to S. S and S' contain inherently different information
about the urban structure. By our earlier conditions for a nat-
ural law, the instability of S also rules out S as a candidate
for being a law of urban structural behavior. It is purely a
relationship connecting the "attractiveness" of urban centers as

measured by W, with the flow of funds among these centers.

Although S is unstable, Theorem 7 tells us that stable maps
of Rz-*R4 are dense. Thus, while there are maps close to S that
are not equivalent to it, there are also other maps equally close
that are stable, i.e. S can be arbitrarily closely approximated

by a stable map.

6. System Equivalence and Complexity

There has been a considerable amount of systems literature
devoted to the idea of characterizing the complexity of a system.
Most of the complexity measures proposed have tacitly assumed that
complexity is a property intrinsic to the given system E, i.e.
it is independent of the interaction of I with any other system
S. We take the position that complexity is a contingent property

of £ and that it is meaningless to speak of "the" complexity of I
without specifying the system § with which I is in interaction;
a system cannot perceive its own level of complexity. This level
is only established by placing I into interaction with another

system.

Following the work of Rosen [13], we shall adopt the view

that the complexity I is equal to the number of non-equivalent

descriptions that S can form for . In other words, if S can

provide only a small number of non-equivalent description of E,
then relative to S, £ will have a low degree of complexity. Con-

versly, if © can display many non-equivalent modes of interaction
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with S, then S will perceive I as being very complex.

Relative to the mathematical development described above,
the operational realization of this complexity measure is rather
straightforward. Given a family{¢a}.<:eA, A an index set, of
descriptions of a system I, we define

complexity of £ = the number of equivalence
classes which arise from ¢a'
a€A.

Here, each value of acA corresponds to a different description
of £, and we measure the complexity of Z in terms of the bifurca-

tion points, a*eA. Each such point o represents a description

of £ that is not equivalent to descriptions "near" a*, i.e. for
some a arbitrarily close to a¥, Qa and ¢a* are in different equi-
valence classes. With this definition of complexity, the problem
of finite classification of maps ¢a takes on more direct system-
'theoretic significance. 1In the event ¢a is a function, we know
from the Thom-Arnol'd theory that there are a finite number of
equivalance classes (under C» coordinate changes) only if cod¢a:56.
The system-theoretic interpretation of this result is still not
clear, and even more elusive is the meaning of the "moduli" that
enter into the classification for cod ¢a:>6. These items will

form the basis for future investigations.
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