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ABSTRACT

In analyses of human survival often explicit consideration of the
dynamics of physiological processes governing survival is not made.
Failure to comnsider the influence of such processes can lead to incorrect
inferences about the operation of such processes and the inability to
forecast future changes in survival. An explicit model of such processes
has been presented by Woodbury and Manton (1977). Myers (1981l) developed
another approach based on the appropriate extension of the Cameron-Martin
method. We show that estimation can be conducted using a conditional
Gaussian strategy and that the conditional Gaussian approach offers several
substantive and computational advantages.
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I. INTRODUCTION

In the analysis of mortality and morbidity in demographic and biostatisti-
cal studies the explicit relation of the realized event rate, say ﬂ(t), to the
parameters of the underlying physiological process generating the health events,
is often not considered. This can lead to a lack of precisién in attempting to
use the observed data to make forecasts about health changes or inaccurate state-~
ments about the effect on disease risk of altering risk factors in some specified
way. In this paper we consider an approach for modeling the relation of the ob-
served rates to the parameters of the underlying process both in the presence of
auxilary information on the cross—-temporal change of individual physiological
values and when such information is not available. The procedure relies upon the
fact that there will be information available, either from other studies or from
theoretical models, that can be used to specify a reasonable structure for the
process. Generally, for andlyses of chronic disease such data will be available
from prior epidemiological and clinical studies.

The basic approach utilized in this'paper is derived from a multivariate
Gaussian diffusion process model of human physiological change and mortality
(Woodbury and Manton, 1977, 1983; Yashin et al., 1985). From that model we can
establish the mathematical relation between observed mortality and the parameters
of the processes governing change in the means and cova;iances of the physiologi-
cal variables related to the risk of mortality. These relationships can be used
to develop the likelihood function for the estimation of process parameters from
the distribution of the observed time to death (failure) of persons in the popu-
lation. The likelihood function can be generalized to deal with providing esti-
mates conditional upon the realized values of an observed process measured at fixed
times.

The conditional Gaussian approach to estimation presented in this paper can

be contrasted with the more usual Cameron-Martin (1948) approaéh (and its

extensions, Myers (lY&l) for determining the parameters of a_stochastic process.



We will examine the advantage of the conditional Gaussian approach over

Cameron-Martin based strategies.

II. PRELIMINARY SPECIFICATIONS

Suppose that the mortality rate for individual i in a population of I in-
dividuals depends on some £ dimensional process Z(t) which evolves over time.
We will assume that the process for each individual evolves independently from
that of all other individuals. We will also assume that the mortality rate is a
quadratic function of the set of values Z(t), or

u(e, z2(e)) = 2" (t) Q(e) 2(t) + ny(e) (D

where Q(t) is a non-negative definite symetric 2 x 2 matrix where t > 0. As-
sume that Z(t) satisfies the linear diffusion type, stochastic differential equa-

tion, defined for a probability space (Q, H, P):
dz(t) = (ao(t) + a(t) Z2(t))Xdt + b(t)d W (2)

where ao(t) is a fL-dimensional vector fumnction of t with bounded elements for
any t > 03 a(t) is a bounded £ x & matrix for any t > 0; b(t) is a bounded & x k
matrix, andvWt is a k-dimensional Wiener process which does not depend on initial
condition (Z(O))ﬂt The forms of (1) and (2) were selected on the basis that they
have been found to be applicable in many biomedical applications (Manton and
Woodbury, 1983, 1985). In general the form of (1) and (2) will be selected on
the basis of prior relevant biostatistical studies or theoretical insights into
the physiological processes of interest.

In purely demographic studies one often directly amalyzes the realized
age specific mortality rate u(t). More precise evaluation of the mortality pro-
cess can be achieved by utilizing the relation between u(t) and u(t,Z(t)) for
conditional Gaussian processes established in Woodbury and Manton (1977) (see fur-
ther mathematical development in Yashin et al., 1984). This relationship was of

the form
u(e) = EQu(ty 2(e))|T; > 0
where Ti is the death time of the individual associated with the mortality rate



u(t, 2(t)).

Where the initial condition, Z(0), has the multivariate normal distribution
with the vector of means m(0) and covariance matrix v(0), and u(t, Z(t)) is
quadratic (see equation (1)), then u(t) is the age/specific mortality rate among
survivors to t with the following relation to the parameters of the distribution
of Z:

u(t) = m'(t) Q(t) m(t) + Tr(Q(t) y(t)) + Hg (6 (3)

where m(t) and y(t) satisfy the nonlinear ordinary differential equationms,

48 - o)+ a(t) m(£)-2 m(e) QL) v(B) (4)
and

d y(t) _ * * '

—Y—dt = a(t) y(t) + y(t)a (£) + b(t)b (t)-2 y(t) Q(t) vy(t) (5)

with initial conditions m(0) and v(0).

The relationships in (3), (4), and (5) have at least two important uses.
First, they are convenient forms for including ancillary information from other
studies or theoretical insightS. For example, prior studies may indicate the
functional form for Q(t), i.e., the nature of the functional dependence of the
population hazard rate on the means of the Z(t) (e.g., Economos, 1982). For ex-
ample, considerable evidence is available to suggest that the dependence of the
u(t) on time, in the case of human adult mortality, could be Gompertz in form
(Spiegelman, 1969). This would suggest that Q(t) is a Gompertz function. Al-
ternatively one may have information on the form of the process (Z(t)) influenc-
ing mortality. Clearly utilizing this info;mation is very likely to increase
the precision of forecasts of ;(t) over naive procedures which ignore this in-
formation and simply project on the basis of the age pattern of u(t).

A second use of the form specified in (3) (and of the auxiliary equations
in (4) and (5)) is to develop a likelihood estimation strategy to retrieve the
parameters of the process from the trajectory of u(t). In the following we will
consider ho; such strategies may be developed for two distinct observational plans.

The first plan is for the continuous time monitoring of mortality, where mortality



is influenced by both observed and unobserved processes. Such a plan is seldom
found in the type of longitudinal epidemiological studies in which we are most in-
terested. Furthermore, since the continuous time formulation requires that we
evaluate the parameters over the entire process from birth to death, it is com
putationally difficult to apply. As a consequence we present an approach for a
second type of observational plan where measurements are made at fixed times.

We will show that the same equations developed for the continuous time case for
the conditional Gaussian model can be applied to the case of discrete time mea-
surements if the correct initial conditions for the start of each interval are
formulated.

IIT. A MODEL FOR ESTIMATING THE PARAMETERS OF A TWO-COMPONENT FAILURE PROCESS

UNDER BOTH CONTINUOUS AND DISCRETE TIME OBSERVATIONAL PLANS

The first step in our development is to generalize the mortality process
defined in equations (1) and (2) to the case where mortality is influenced by
both an observed and unobserved process. Specifically, suppose that the duration
of life for any individual in the cohort is a functional of the two component
processes Z2(t) = X(t), Y(t). We may rewrite the quadratic form in (1) as

Qll(t), le(t) X(t)

p(t, X(t), Y(t) = (X"(t), Y'(t)) + uo(t) (6)

QZl(t), sz(t) Y(t)

where Qll(t) and Q22(t) are positive—definite symetric matrices, and
v =
Furthermore, let us rewrite equation (2) as

[Y(ti] 257 (t) ag;(t), ayy(B)) | T(E) b(t) W,
d

x(0)] T[] egy®] a0, a0 x| FFlsw] 4w, | P

where wlt and W2t are vector valued Wiener processes, independent of initial
values X(0), Y(0), and b(t) and B(t) are matrices with the appropriate dimen~-
sions. Thus, the processes X(t) and Y(t) are the solution of these linear sto-

chastic differential equations. We may now consider the two different observa-

tional plans for multi-component processes of the type described by (6) and (7).



A. Continuous Observations

In Yashin et al. (1985) we considered the solution of these equations in the
conditional Gaussian case by assuming that the distribution of the Y(t) was normal
conditional on the observed process. We can demonstrate the validity of this ob-
servation by noting that one can always find a vector function F and a scalar G,

such that the individual mortality rate, u(t, X, Y), can be written

u(E, X, 1) = (T - F)' Qp(t) (Y- F) +6 (8)
where F and G are functions of t and X, i.e.,

F(t, D) = Q,, (£) Qpp () X (9)
and

G(£,%) = X'Qp;(£) B-X'Qu,(E) Qpp~ () QpyX#ug(e). (10)

The structure of (8) with respect to Y is similar to the hazard function
considered by Myers (198l). However, it is difficult to use additional observa-
tions on the measured process X in his formulation. A more appropriate strategy
seems to involve use of the conditional Gaussian approach developed in Yashin
(1984) for a continuously observed process. This latter approach can be used
for the evaluation of a process that is still under observation, e.g., to analyze
data from the intermediate phases of a longitudinal study.

B. Fixed Time Observation

Let us now assume that the elements of X(t) are measured at a set of fixed
times. Thus Xi(t),..., Xi(tk) are the measurements on the ith individual. Yi(t)
represents the variables that are not measured. We assume that both processes in-
fluence the mortality rate and that this dependence is as described by equatiomn
(6). TFurthermore, we assume that the evolutiom of X(t) and Y(t) are described by
(7). We wish to estimate the elements of Q(t) (in equation (6)) on the basis of
data only on X, i.e., Xi(ti A Ti),..., Xi(tk A Ti)’ i = I where Ti are the observed
death times. TFor simplicity we will suppress the index i and defime X(t) as the

matrix X(tl), X(tz),..., X(tj(t)) whe;e




tj(t) = sup{tm: t < t} (1D

The survival function, conditional on the observed process X, say S(t,i), may

be defined

S(t, X) = P(T >t|X(t)) (12)
so that

B(E,X(D) === in S(6,%) (13)

~

The problem of estimation is to find the appropriate relation of n(t, X(t)), the
average mortality rate measured for fixed times, to the parameters of the under-
lying process and ultimately to the means (m(t)) and covariance (y(t)) of the
variables in both X and Y. The appropriate relations are presented in the follow-
ing theorem:

Theorem: Suppose that we have a complex process defined by both

measured and unmeasured variables with the structure presented in

equation (7). Then the relation of the average'mortality rate

observed for survivors to a specific age to the underlying observed

and unobserved processes is provided by

R(E,X(E) = (@' () Q(E) m(e) + Tr(Q(e) v(£)) + yy(t) (14)
_ ml(t) _ Yll(t)’ le(t) .
where m(t) = (m2(t))’ y(t) = Yzl(t)’ Yzz(t) on the intervals tj <t«< tj+l

satisfy the equatioms,

dm(t)
dt

ar(t) + a(t) m(t) - 2m(t) Q(t) v(t) (15)

and

AU L () v(8) + v(B)a" () + BB (D) ~2v(t) Q(E) ¥(B)

_|%0t® _ | eaa(®)s ep®
where a,(t) = [POZ(t) and a(t) = @y1(t), ay,(t)



The primary difference between these equations and those for the continuous
time case is that, for each interval, a new set of initial conditioms holds.
Thus, we have defined a jump process in the observational plan where, at each
time of measurement, there is a jump in information. Specifically, at time tj’

j=1,..., K the initial values for the equation are

-1 _
ml(tj) = ml(tJ'.) + le(tg) Yoo (tg) (X(tj) - mz(tj)) (16)
=X (17

m2(tj) ‘tj) . )
Yll(tj) = Yll(tg) - le(tg) Y22(t3) Y21(t§) (18)
Yzz(tj) =0 (19)
Y1p(t) = Tpy(e) = 0. (20)

Thus the mean for X is equal to the observed value at the time of measurement
(17) while the mean for Y is the mean conditional on X. The variance of the
values of the observed variable is equal to O at .the measurement time while for
Y, we have the conditional variance. The initial conditions for each interval
represents the jumps in information at these points. These results can be achieved
through a two-stage proof. The first and most important step is to prove the
conditional Gaussian property. This is done by examining the characteristic fumc-
tion conditional on the process X and the time to death. Once the conditional
Gaussian properties are demonstrated (for details see Yashin et al. (1985)) we
know that we only need the means and variances of the distribution of Y(t) to
characterize the process. In the second step, we can specify the equations for
the means and variances, again from the characteristic fumction.
IV. ESTIMATION

With the results above, estimation can be conducted quite simply. Specifi-

cally we may specify the likelihood function in terms of ﬁ(t,ﬁ(t)) as,

t: -
I =f-Y u(u,a)du 21
;£~= L u(ti? a) e 0 » . . (21)

7 i=1



where E(ti,a) is given by equation (14), m(t,a) is given by (15) and y(t,a) by
(16). To evaluate (21) we need only specify Q(t,a) as some specific function
(e.g., a eBt; the Gompertz) and write E(ti,al) in terms of m(t,a) and y(t,a).
Thus from the evaluation of ﬁ(ti,a) we can obtain the parameters of the underly-
ing stochastic process. Since we cannot directly evaluate the forms in (21) we

will have to use special numerical procedures (see Yashin, 1984).

V. A COMPARISON OF THE CAMERON-MARTIN AND CONDITIONAL GAUSSIAN APPROACHES

The Cameron-Martin approach (Yashin,1984) gives a way of calculating the

mathematical expectation of an exponent which is the functional of a Wiemer pro-

cess. The exponent can be considered as a conditional survival function. Thus
the approach has been suggested as a methodology for survival analysis where
the stochastic process in the exponent is interpreted as covariates affecting
the survival rate. Unfortunately, the Cameron~-Martin approach has several sig-
nificant limitations. To illustrate, it can be shown that for the linear dif-
fusion process written in (7), the matrix of hazard coefficient, Q(t), has the
property

E exp[-/{[¥(w ,Xw]' Q@) [¥(wx(u] du =

exp[(Y(O),X(O))'F(O) (Y(0) ,X(0)) + Tr fg[b(u),B(u)] [b(u) ,B(u) ] (22)
r'(u)du
where I'(u) is the solution of the matrix Ricatti equation

dr(u)

o - W - (P(u) + I'(w) auw) - 3(r(w + ' (w)[b(w,B(w]

' (23)
[b(w),B(w] (T'(w) + T'(w)
with the terminal condition TI'(t) = 0.
The particular case of formula (22) corresponds to the well-known Cameron-
Martin results (Yashin, 1984) specified for a Wiemer process in the exponent of the
form:
E exp[—fg(wu,Q(u) W, du] = expl’ J'S Tr T (u)du] (24)

where (W , Q(u), W) is the scalar product equal to the quadratic form, W',
u u




W , and T(u) is a symetric nonpositive definite matrix which is an unique solution
u

of the matix Riccati equation

dgiU) =2 Q(u) - I‘z(u) (25)

and T(t) = 0 is a zero matrix.

To prove these relations one uses likelihood ratio principles applied to
diffusion type processes (Novikov, 1972; Liptzer and Shirjaev, 1974). Using
this approach, Myers (1981) found the formulas for averaging the exponent, when
instead of a Wiener process, there is a process satisfying a linear stochastic
differential equation driven by a Wiener process (i.e., 22) and (23)).

Unfortunately, the proof of the Cameron-Martin formula and its generaliza-
tion (Myers, 198l) do not use the interpretation of the matrix Q as hazard coef-
ficients and do not provide a direct physical interpretation of thé variables
T(u) in (22) (or (24)). Furthermore the boundary condition on (23) (and (25))
makes it difficult to conduct the calculations either for subintervals, or when

additional longitudinal measurements are made.

The methods described in this paper do not have these limitations. They
involve the use of "Martingale" techniques to produce a general formula for averag-
ing exponents which can be a more complex functional of a random process of a
wider class (Yashin, 1984). In this paper we provide the specialization of these
procedures to the case where the functional is a quadratic form for averaging the
exponents. These procedures turn out to have a range of computationally important
properties based upon the conditional Gaussian property.

VI. DISCUSSION

In this paper we present a procedure for evaluating the stochastic process
underlying the observed population averaged survival rate. This procedure,
using conditional Gaussian properties, leads to computationally powerful techni-

ques for assessing human survival data. The conditional Gaussian approach can



10

be shown to have superior properties to the Cameron-Martin procedure. The pro-
cedure offers likelihood ratio techniques for estimating the basic parameters of
the process.

The procedure has utility in several important areas. A First, there has been
much recent attention to the question of heterogeneity (unmeasured differentials
in transition rates) and its effects on the analysis of human survival (Vaupel
et al., 1979; Manton and Stallard, 1984; Heckman and Singer, 1982). Underlying
this concern is the analytic problem of how systematic selection of persons by
mortality affects the average force of transition among survivors. This involves
examination of the effects of averaging of the exponent (and related functional)
in the survival function. Past efforts have tended to resolve the problem by
ignoring the particular effects of diffusion by using a deterministic trajectory
for the temporal dependence of the individual hazard rate. This approach can only
be an approximation and is problematic when one is attempting to infer the opera-
tion of the risk mechanism at the individual level. By explicitly including the
diffusion process in the proposed model one can potentially greatly improve the
precision of one's predictions and certainly has a much better procedure for
determining the effects of intervention on the realization of risk.

A second major utility of the proposed approach is that it greatly facili-
tates the introduction of auxiliary information into one's analysis of the failure
process. This is fac}litated because one can directly examine the details of the
process and thereby introduce information into the appropriate features of the
model. This is a critically important proﬁerty in analyzing human survival at
advanced ages because the evolution of chronic diseases is a complex process
operating over a lengthy time scale. Thus, though there is considerable empiri-
cal information on risk covariates and evolution of chronic disease from existing
longitudinal studies, seldom have the dynamic properties of such data been com—
pletely exploited. For example, certain negative associations have been demon-

strated between a risk factor (e.g., asbestos) and a specific disease outcome
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(e.g., lung cancer) because of the systematic selection of the susceptible per-
sons by a disease process (e.g., asbestosis) which had an earlier age assault
pattern (Manton, 1985). Such dynamics and systematic selection require considera-
tion of the basic dynamic process and the effects of selection on the average

risk among survivors to unconfound such factors. Only by using auxiliary informa-

tion and a model of the intrimsic processes can such public health questions be

adequately resolved.



12

ACKNOWLEDGEMENTS

Dr. Manton's efforts in this research were supported by NIA Grant No.

AG01159-08.



13

REFERENCES

Cameron, R.H., Martin, W.T: Transformation of Wiener Integrals by Nonlinear
Transformation Transactions of American Mathematical Society 66:253-283,
1948..

Economos AC: Rate of aging, rate of dying and the mechanism of mortality.

Arch Gerontol Geriatr 1:3-27, 1982.

Heckman JJ, Singer B: Population heterogeneity in demographic models. In

Multidimensional Mathematical Demography (Land K, Rogers A, eds.).

New York, Academic Press, 1982, pp. 567-599,

Liptzer, R.S., Shirjaev, A.N: Statistics of Random Processes, Nauka, 1974.

Manton KG: An evaluation of strategies for forecasting the implications of
occupational exposure to asbestos. U.S. Library of Congress, Congres-
sional Research Service, Government Divisiom, 1985.

Manton KG, Stallard E: Heterogemeity and its effect on mortality measurement.
Chapter 12 in Proceedings IUSSP Methodology and Data Collection in Mortality

Studies Seminar, July 7-10, Dakar, Senegal, forthcoming in 1984.




14

Manton KG, Woodbury MA: A continuous-time multivariate Gaussian stochastic pro—~

cess model of change in discrete and continuous state variables. In

Sociological Methodology, 1985 (Tuma N, ed.). Jossey~Bass, forthcoming in
198s5.

Manton KG, Woodbury MA: A mathematical model of the physiological dynamics of
aging and correlated selection: Part II-Application to the Duke Longitudinal
Study. J Gerontol 38:406-413, 1983,

Myers L: Survival functions induced by stochastic covariate processes. J

Applied Probability 18:523-529, 1981.

Novikov AA: On Parameters Estimation of Diffusion Processes: Studia

Science Mathematics 7:201-209, 1972.

Spiegelman M: Introcduction To Demography. Cambridge, Mass., Harvard University

Press, 1969.

Vaupel JW, Manton KG, Stallard E: The impact of heterogeneity in individual
frailty on the dynamics of mortality. Demography 16:439-454, 1979.
Woodbury MA, Manton KG: A mathematical model of the physiological dynamics of

aging and correlated mortality selection: Part I-Theoretical development
and critiques. J Gerontol 38:398-405, 1983.
Woodbury MA, Manton KG: A random walk model of human mortality and aging.

Theor Popul Biol 11:37-48, 1977.

Yashin AI: Dynamics in survival analysis: Conditional Gaussian property versus
Cameron-Martin formula. WP-84, International Institute for Applied Systems
Analysis, Laxenburg, Austria, 1984.

Yashin AI, Manton KG, Vaupel JW: Mortality and aging in a heterogeneous popu-
lation: A stochastic process model with observed and unobserved variables.

Theor Popul Biol, forthcoming in 1985.




