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ABSTRACT 

In analyses of human survival often explicit consideration of the 
dynamics of physiological processes governing survival is not made. 
Failure to consider the influence of such processes can lead to incorrect 
inferences about the operation of such processes and the inability to 
forecast future changes in survival. An explicit model of such processes 
has been presented by Woodbury and Manton (1977). Myers (1981) developed 
another approach based on the appropriate extension of the Cameron-Martin 
method. We show that estimation can be conducted using a conditional 
Gaussian strategy and that the conditional Gaussian approach offers several 
substantive and computational advantages. 
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I. INTRODUCTION 

I n  t h e  ana lys i s  of mor ta l i ty  and morbidity i n  demographic and b i o s t a t i s t i -  

c a l  s t u d i e s  the  e x p l i c i t  r e l a t i o n  of t h e  r e a l i z e d  event r a t e ,  say  i ( t ) ,  t o  t h e  

parameters of t h e  underlying phys io logica l  process genera t ing  t h e  h e a l t h  events ,  

i s  o f t e n  not  considered. This  can lead  t o  a l ack  of p r e c i s i o n  i n  at tempting t o  

use t h e  observed d a t a  t o  make f o r e c a s t s  about h e a l t h  changes o r  inaccura te  s t a t e -  

ments about t h e  e f f e c t  on d i sease  r i s k  of a l t e r i n g  r i s k  f a c t o r s  i n  some s p e c i f i e d  

way. I n  t h i s  paper we consider  an  approach f o r  modeling t h e  r e l a t i o n  of t h e  ob- 

served r a t e s  t o  t h e  parameters of the  underlying process both  i n  t h e  presence of 

aux i l a ry  information on t h e  cross-temporal change of i n d i v i d u a l  phys io logica l  

va lues  and when such information i s  not  ava i l ab le .  The procedure relies upon t h e  

f a c t  t h a t  t h e r e  will be  information ava i l ab le ,  e i t h e r  from o t h e r  s t u d i e s  o r  from 

t h e o r e t i c a l  models, t h a t  can be used t o  spec i fy  a reasonable s t r u c t u r e  f o r  t h e  

process.  General ly,  f o r  a n i l y s e s  of .chronic d i sease  such d a t a  w i l l  be  a v a i l a b l e  

from p r i o r  epidemiological  and c l i n i c a l  s tud ies .  

The b a s i c  approach u t i l i z e d  i n  t h i s  paper is  der ived  from a m u l t i v a r i a t e  

Gaussian d i f f u s i o n  process model of human phys io logica l  change and m o r t a l i t y  

(Woodbury and Manton, 1977, 1983; Yashin e t  a l . ,  1985). From t h a t  model we can 

e s t a b u s h  t h e  mathematical r e l a t i o n  between observed m o r t a l i t y  and t h e  parameters 

of t h e  processes governing change in t h e  means and covariances of the  physiologi- 

c a l  v a r i a b l e s  r e l a t e d  t o  t h e  r i s k  of mor ta l i ty .  These r e l a t i o n s h i p s  can be used 

t o  develop t h e  l i k e u h o o d  funct ion  f o r  t h e  es t imat ion  of process parameters from 

t h e  d i s t r i b u t i o n  of t h e  observed t i m e  t o  death ( f a i l u r e )  of persons i n  the  popu- 

l a t i o n .  The l i k e l i h o o d  func t ion  can be general ized t o  dea l  wi th  providing esti- 

mates cond i t iona l  upon t h e  r e a l i z e d  va lues  of a n  observed process measured a t  f ixed  

times. 

The cond i t iona l  Gaussian approach t o  es t imat ion  presented i n  t h i s  paper can 

be  con t ra s t ed  wi th  t h e  more usual  Cameron-Martin (1948) approach (and i t s  

extensions,  Hyers (19blj  f o r  determining t h e  parameters of a -stochastic process. 



We w i l l  examine the  advantage of the condit ional  Gaussian approach over 

Cameron-Martin based s t r a t e g i e s .  

11. PRELIMINARY SPECIFICATIONS 

Suppose t h a t  t h e  mor ta l i ty  rate f o r  individual  i i n  a populat ion of I in- 

d iv iduals  depends on some P dimensional process Z( t )  which evolves over t i m e .  

W e  w i l l  assume t h a t  t h e  process f o r  each ind iv idua l  evolves independently from 

t h a t  of a l l  o the r  individuals .  W e  w i l l  a l s o  assume t h a t  t h e  mor ta l i ty  rate is a 

quadra t ic  funct ion of t h e  set of values Z ( t ) ,  or  

v ( t ,  Z( t ) )  = Z 1 ( t )  Q ( t )  Z( t )  + vO( t )  ( 1) 

&ere Q(t) i s  a non-negative d e f i n i t e  symetric P x P matrix where t - > 0. As- 

sume t h a t  Z( t )  s a t i s f i e s  t h e  l i n e a r  d i f fus ion  type,  s t o c h a s t i c  d i f f e r e n t i a l  equa- 

t i o n ,  defined f o r  a p robab i l i ty  space (Q, H, P) : 

where a o ( t )  is  a P-dimensional vector  function of t wi th  bounded elements f o r  

any t l  0; a ( t )  is  a bounded P x P matrix f o r  any t~ 0; b ( t )  is a bounded II x k 

matrix, and W is a k-dimensional Wiener process which does no t  depend on ini t ial  t 

condit ion (Z(0)).  The forms of (1) and (2) were se lec ted  on t h e  b a s i s  t h a t  they . . 

have been found t o  be appl icable  i n  many biomedical app l i ca t ions  (Manton and 

Woodbury, 1983, 1985) . I n  general  t h e  f o m  of (1) and (2) w i l l  be se lec ted  on 

t h e  b a s i s  of p r i o r  r e l e v a n t ' b i o s t a t i s t i c a l  s t u d i e s  o r  t h e o r e t i c a l  i n s i g h t s  i n t o  

t h e  physiological  processes of i n t e r e s t .  

In  purely demographic s t u d i e s  one o f ten  d i r e c t l y  analyzes t h e  rea l i zed  

age s p e c i f i c  morta l i ty  rate i ( t ) .  More p rec i se  evaluat ion of t h e  morta l i ty  pr- 

cess  can be achieved by u t i l i z i n g  t h e  r e l a t i o n  between z ( t )  and ~ ( t  , ~ ( t )  ) f o r  

condi t ional  Gaussian processes es tabl ished in Woodbury and Manton (1977) (see  fur-  

t h e r  mathematical development i n  Yashin e t  al. , 1984) . This re la t ionsh ip  w a s  of 

t h e  form - 
v( t )  - E ( Y ( ~ ;  Z ( t ) )  \Ti > t) 

where Ti is  t h e  death t ime of the  ind iv idua l  associa ted  with t h e  mortality r a t e  



l l ( t ,  Z( t ) ) .  

Where t he  i n i t i a l  condition, Z(O), has t h e  mul t ivar ia te  normal d i s t r i bu t i on  

with t he  vector of means m(0) and covariance matrix ~ ( 0 ) ~  and ~ ( t ,  Z( t ) )  i s  

quadratic (see equation ( l ) ) ,  then ;( t)  is the age spec i f i c  morta l i ty  r a t e  among 

survivors t o  t with the  following r e l a t i on  t o  t he  parameters 'of the  d i s t r ibu t ion  

of Z :  

- 
il(t) = m'(t) Q ( t )  m(t) + Tr(Q(t)  y ( t ) )  + ilo(t) ( 3) 

where m(t) and y ( t )  s a t i s f y  the  nonlinear ordinary d i f f e r e n t i a l  equations, 

and 

d 
( t )  = a t  t + t + b(t)b*(t)-2 y ( t )  Q ( t )  y ( t )  d t  (5) 

w i t h  i n i t i a l  conditions m(0) and y (0) . 
The re la t ionships  i n  (31, (4) ,  and (5) have at  least two important uses. 

F i r s t ,  they a r e  convenient forms f o r  including anc i l l a ry  information from other  

s tud ies  or  t heo re t i c a l  ins igh ts -  For example, p r i o r  s tud ies  may ind ica te  t he  

funct ional  form f o r  Q ( t ) ,  i . e . ,  the  nature of the  functional  dependence of t he  

population hazard r a t e  on the  means of the  Z(t) (e.g.,  Economos, 1982). For ex- 

ample, considerable evidence is  avai lable  t o  suggest t h a t  t h e  dependence of t he  

- 
p ( t )  on time, i n  the  case of human adul t  mortaUty,  could be Gompertz i n  form 

(Spiegelman, 1969). This would suggest t ha t  Q(t) is  a Gompertz function. A l -  

t e rna t ive ly  one may have information on the  form of t h e  process (Z( t ) )  influenc- 

ing mortal i ty.  Clearly u t i l i z i n g  this information is  very l i ke ly  t o  increase 

t he  precision of fo recas t s  of G(t) over naive procedures which ignore t h i s  in- 

formation and simply pro jec t  on the  bas i s  of the  age pa t te rn  of ; ( t )  . 
A second use of t h e  form specif ied i n  (3) (and of t he  aux i l i a ry  equations 

i n  (4) and (5)) i s  t o  develop a l ikelihood estimation s t ra tegy  t o  r e t r i eve  the  

parameters of the  process from the  t ra jec tory  of I ( t ) .  I n  t he  following we w i l l  - 
consider how such s t r a t e g i e s  may be developed f o r  two d i s t i n c t  observational  plans. 

The f i r s t  plan i s  f o r  t h e  continuous time monitoring of morta l i ty ,  where morta l i ty  



is  influenced by both observed and unobserved processes. Such a plan is  seldom 

found i n  the  type of longi tudinal  epidemiological s tud ies  i n  which we a r e  most in- 

teres ted.  Furthermore, s ince  t he  continuous time formulation requires t h a t  we 

evaluate the  parameters over the  e n t i r e  process from b i r t h  t o  death, i t  is  c o w  

pu ta t iona l ly  d i f f i c u l t  t o  apply. As a consequence we present  an approach f o r  a 

second type of observational  plan where measurements a r e  made at  f ixed times. 

We w i l l  show t h a t  the  same equations developed f o r  t he  continuous time case f o r  

t he  condit ional  Gaussian model can be applied t o  t h e  case of d i s c r e t e  time mea- 

surements i f  t he  correct  i n i t i a l  conditions f o r  the  start of each i n t e r v a l  a r e  

formulated. 

111. A MODEL FOR ESTIMATING THE PARAMETERS OF A TWO-COMPONENT FAILURE PROCESS 

UNDER BOTH CONTINUOUS AND DISCRETE TIME OBSERVATIONAL PLANS 

The f i r s t  s t ep  i n  our development i s  t o  generalize t h e  morta l i ty  process 

defined i n  equations (1) and (2) t o  t he  case where morta l i ty  i s  influenced by 

both an observed and unobserved process. Spec i f i ca l ly ,  suppose t ha t  the  duration 

of l i f e  f o r  any ind iv idua l  i n  t h e  cohort i s  a funct ional  of the  two component 

processes Z( t )  = X(t ) ,  Y(t ) .  We may rewri te  the  quadrat ic  form i n  (1) as 

P ( t ,  X( t ) ,  Y( t3  = (X1( t ) ,  Y t ( t ) )  + "(t) (6) 

where Q ( t )  and qZ2( t )  a r e  posi t ive-def in i te  s p e t r i c  matrices,  and 11 

Furthermore, l e t  us rewr i t e  equation (2) as 

d t  + (7) 

where W and WZt  are vector  valued Wiener processes, independent of i n i t i a l  It 

values X(.O), Y(O), and b ( t )  and B(t) a r e  matrices with the  appropriate dimen- 

sions.  Thus, the  processes X(t) and Y(t) a r e  the  so lu t ion  of these  l i n e a r  st* 

chas t i c  d i f f e r e n t i a l  equations. We may now consider the  two d i f f e r en t  observa- 

t i o n a l  plans f o r  multi-component processes of the  type described by (6) and (7) 



A. . Continuous Observations 

In  Yashin e t  al. (1985) we considered the  so lu t ion  of these  equations i n  the  

condit ional  Gaussian case by assuming t ha t  the  d i s t r i bu t i on  of the Y(t) w a s  normal 

condit ional  on the  observed process. We can demonstrate t he  v a l i d i t y  of t h i s  ob- 

servat ion by noting t h a t  one can always f ind  a vector  function F and a s c a l a r  G ,  

such t h a t  t he  individual  morta l i ty  r a t e ,  p ( t ,  X, Y), can be wr i t t en  

p ( t ,  X,  Y) = (Y - F) '  Q22(t )  (Y - F) + G  

where F and G a r e  functions of t and X,  i . e . ,  

-I 
F( t ,  X) = Q22 ( t )  Q21(t) X 

and 

The s t r uc tu r e  of (8) with respect  t o  Y is similar t o  the  hazard function 

considered by Myers (1981). However, it  is  d i f f i c u l t  t o  use add i t iona l  observa- 

t i ons  on the  measured process X i n  h i s  formulation. A more appropriate s t r a t egy  

seems t o  involve use of the  condit ional  Gaussian approach developed i n  Yashin 

(1984) f o r  a continuously observed process. This. l a t t e r  approach can be used 

f o r  the  evaluation of a process t h a t  i s  s t i l l  under observation, e.g.,  t o  analyze 

da ta  from the  intermediate phases of a longi tudinal  study. 

B. Fixed Time Observation 

Let us now assume t h a t  the  elements of X(t) a r e  measured at a s e t  of f ixed 

times. Thus Xi(t),  ..., X ( ) a r e  t h e  measurements on t h e  i t h  individual .  Yi(t) 
i 

represents the  va r iab les  t h a t  a r e  not  measured. We assume t h a t  both processes in- 

f luence the  morta l i ty  r a t e  and t h a t  this dependence is  as described by equation 

(6). Furthermore, we assume t h a t  the  evolution of X(t) and Y(t) a r e  described by 

( 7 ) .  We wish t o  est imate t h e  elements of Q(t) ( i n  equation (6))  on the  ba s i s  of 

da t a  only on X, i . e . ,  X ( t  A Ti) ,..., X ( t  A Ti), i = I where Ti a r e  t he  observed 
i . 1  i k  

death times. For s impl ic i ty  we w i l l  suppress the  index i and define i ( t )  as the  

matrix x(t l)  , x ( t2 )  , . . , X(t j  ( t ) )  where 
- 



The survival  function,  condit ional  on the observed process X,  say ~ ( t , i ) ,  may 

be defined 

so  t ha t  ,. 

A 

The problem of est imation is  t o  f ind the  appropriate r e l a t i o n  of i ( t ,  X( t ) ) ,  the 

average morta l i ty  r a t e  measured f o r  fixed t imes,to t he  parameters of the  under- 

ly ing process and ult imately t o  the  means (m(t) ) and covariance (y ( t ) )  of the  

var iables  i n  both X and Y. The appropriate r e l a t i ons  a r e  presented i n  the  follow- 

ing theorem: 

Theorem: Suppose t ha t  we have a  complex process defined by both 

measured and unmeasured var iables  with t he  s t ruc tu r e  presented i n  

equation ( 7 ) .  Then the  r e l a t i on  of t he  average morta l i ty  r a t e  

observed f o r  s u ~ v o r s  t o  a  spec i f i c  age t o  the  underlying observed 

and unobserved processes i s  provided by 

- 
u ( t , i ( t ) )  = (mt( t )  ~ ( t )  m(t) + ~ r ( ~ ( t )  y ( t ) )  + uO(t)  (14) 

y ( t >  
where m(t) = (m2(t) (')' y12(t)l on the  i n t e rva l s  t < t < t + 1  , ~ ~ ~ ( t )  j - J 

s a t i s f y  t he  equations, 

and 

d  ( t )  * 
= a )  Y(t) + Y(t)a ( t )  + b( t )b*( t )  - 2  y ( t )  Q ( t )  y ( t )  

a l l ( t ) ,  a12(t)] 
where ao( t )  = and a ( t )  = 

a21(t), a22( t )  



The primary d i f fe rence  between these  equations and those f o r  t h e  continuous 

time case i s  t h a t ,  f o r  each i n t e r v a l ,  a new set of i n i t i a l  condit ions holds. 

Thus, w e  have defined a jump process i n  t h e  observational  plan where, a t  each 

t i m e  of measurement, t h e r e  i s  a jump i n  information. Spec i f i ca l ly ,  a t  time t 
j ' 

j = 1,. . . , K the  i n i t i a l  values f o r  t h e  equation a r e  

-1 
y ( t j )  = m (t-1 + y12(tj) y22 (t;) (X(t.1 - m2(t i ) )  (16) 

1 j J 

m ( t  = X(t.1 (17) 
2 j J 

-1 
yl1(tj) = y (t:) - y12(tj) y Z 2 ( t j )  yZl(t j)  (18) 

11 J 

y2,(tj) = 0 (19) 

Y12(t.) = YZl(tj) = 0 (20) 
J 

Thus t h e  mean f o r  X i s  equal  t o  t h e  observed value a t  t h e  time of measurement 

(17) while t h e  mean f o r  Y is the  mean condit ional  on X. The variance of the  

values of the  observed v a r i a b l e  is  equal t o  0 a t  the  measurement time while f o r  

Y ,  we have t h e  condi t ional  variance.  The i n i t i a l  condit ions f o r  each i n t e r v a l  

represents  the  jumps i n  information at these  points .  These r e s u l t s  can be achieved 

through a two-stage proof. The f i r s t  and most important s t e p  is  t o  prove the  

condi t ional  Gaussian property. This is  done by examining t h e  c h a r a c t e r i s t i c  func- 

t i o n  condi t ional  on the process X and the  t i m e  t o  death. Once the  condit ional  

Gaussian p roper t i e s  are demonstrated ( f o r  d e t a i l s  see  Yashin et dl. (1985)) we 

know t h a t  w e  only need t h e  means and variances of the  d i s t r i b u t i o n  of Y(t)  t o  

character ize  the  process. I n  the  second s t e p ,  we can speci fy  the  equations f o r  

t h e  means and .variances,  again from the  c h a r a c t e r i s t i c  function. 

IV. ESTIMATION 

With the  r e s u l t s  above, es t imat ion can be conducted q u i t e  simply. Specif i-  

c a l l y  we may spec i fy  t h e  l ike l ihood function i n  terms of i ( t  , k ( t ) )  a s ,  



where u(t i ,a)  is given by equation (141, m(t,a) is given by (15) and i ( t , a )  by 

(16). To evaluate (21) we need only specify Q( t , a )  as some spec i f i c  function 

Bt 
(e.g., a e ; the Gompertz) and wr i te  i ( t  ,a1) i n  terms of m(t,a) and y ( t , a ) .  

i 

Thus from the  evaluation of i ( t  ,a) w e  can obtain the parameters of the underly- 
i 

ing s tochas t ic  process. Since we cannot d i rec t ly  evaluate the forms i n  (21) we I 
w i l l  have t o  use special  numerical procedures (see Yashin, 1984). 

V . A COMPARrSON OF THE CAMERON-MARTIN AND ' CONDITIONAL GAUSSIAN APPROACHES 

The Cameron-Martin approach (Yashin ,1984) gives a way of calculating the 

mathematical expectation of an exponent which is the functional of a Wiener pro- 

cess. The exponent can be considered as a conditional survival  function. Thus 

the approach has been suggested as a methodology fo r  survival  analysis where 

the s tochast ic  process in the  exponent is interpreted a s  covariates affect ing 1 
the survival  rate.  Unfortunately, the  Cameron-Martin approach has several  sig- 

n i f ican t  l imita t ions .  To i l l u s t r a t e ,  i t  can be shown t h a t  for  t h e  l i nea r  dif- 

fusion process wr i t ten  i n  ( 7 1 ,  the matrix of hazard coeff ic ient ,  Q( t ) ,  has the 

where r (u)  is  the solut ion of the  matrix R ica t t i  equation 

[b(u) ,B(u)I'  ( r (u)  + r '  (u)) 

with the terminal condition r ( t )  = 0. 

The par t icu la r  case of formula (22) corresponds t o  t he  well-known Cameron- 

Martin results (Yashin, 1984) specified f o r  a Wiener process i n  the  exponent of the 

form: 

where (Wu, Q(u) , Wu) i s  the s ca l a r  product equal t o  the  quadratic form, W u ' Q(u) , 



Wu * and r (u )  is a symetric nonposit ive d e f i n i t e  matrix which i s  an unique so lu t ion  

of the  matix Ricca t i  equation 

and r ( t )  = 0 is a zero matrix. 

To prove these  r e l a t i o n s  one uses l ike l ihood r a t i o  p r inc ip les  appl ied  t o  

d i f fus ion  type processes (Novikov, 1972; Liptzer  and Shir jaev,  1974). Using 

t h i s  approach, Myers (1981) found the formulas f o r  averaging the exponent, when 

ins teaa  of a Wiener process, the re  i s  a process s a t i s f y i n g  a l i n e a r  s tochas t i c  

d i f f e r e n t i a l  equation driven by a wiener process ( i . e . ,  22) and (23)) .  

Unfortunately, t h e  proof of t h e  Cameron-Martin formula and its generaliza- 

t i o n  (Myers, 1981) do no t  use t h e  i n t e r p r e t a t i o n  of t h e  matrix Q a s  hazard coef- 

f i c i e n t s  and do not  provide a d i r e c t  physical  i n t e r p r e t a t i o n  of the va r iab les  

r (u)  i n  (22) ( o r  (24)) .  Furthermore t h e  boundary condit ion on (23) (and (25) ) 

makes it d i f f i c u l t  t o  conduct the  ca lcula t ions  e i t h e r  f o r  sub in te rva l s ,  o r  when 

add i t iona l  longi tudinal  measurements are made. 

The methods described i n  t h i s  paper do not  have these  l imi ta t ions .  They 

involve the use of "Martingale" techniques t o  produce a general  formula f o r  averag- 

i n g  exponents which can be a more complex funct ional  of a random process of a 

wider class (Yashin, 1984). I n  t h i s  paper we provide t h e  s p e c i a l i z a t i o n  of these  

procedures t o  t h e  case where t h e  func t iona l  i s  a quadrat ic  form f o r  averaging t h e  

exponents. These procedures t u r n  out t o  have a range of computationally important 

p roper t i e s  based upon t h e  condi t ional  Gaussian property. 

VI. DISCUSSION 

I n  t h i s  paper we present  a procedure f o r  evaluating the  s t o c h a s t i c  process 

underlying the  observed populat ion averaged s u r v i v a l  r a t e .  This procedure, 

using condi t ional  Gaussian p roper t i e s ,  leads  t o  computationally powerful techni- 

ques f o r  assess ing human s u r v i v a l  data.  The condi t ional  Gaussian approach can 



be shown t o  have super ior  p roper t i e s  t o  the  Cameron-Martin procedure. The pro- 

cedure o f f e r s  l ike l ihood r a t i o  techniques f o r  es t imat ing t h e  b a s i c  parameters of 

t h e  process. 

The procedure has u t i l i t y  i n  severa l  important areas .  , F i r s t ,  the re  has been 

much recent  a t t e n t i o n  t o  the  question of heterogeneity (unmeasured d i f f e r e n t i a l s  

in t r a n s i t i o n  r a t e s )  and i t s  e f f e c t s  on the  ana lys i s  of human s u r v i v a l  (Vaupel 

e t  a l . ,  1979; Manton and S t a l l a r d ,  1984; Heckman and Singer,  1982). Underlying 

t h i s  concern i s  t h e  a n a l y t i c  problem of how systematic s e l e c t i o n  of persons by 

mor ta l i ty  a f f e c t s  the  average fo rce  of t r a n s i t i o n  among survivors.  This involves 

examination of t h e  e f f e c t s  of averaging of t h e  exponent (and r e l a t e d  funct ional )  

i n  t h e  s u r v i v a l  function.  Pas t  e f f o r t s  have tended t o  resolve  t h e  problem by 

ignoring t h e  p a r t i c u l a r  e f f e c t s  of d i f fus ion  by using a de te rmin i s t i c  t r a j e c t o r y  

f o r  the  temporal dependence of t h e  individual  hazard r a t e .  This approach can only 

be  an approximation and is problematic when one is  at tempting t o  i n f e r  the  opera- 

t i o n  of the  r i s k  mechanism at the ind iv idua l  l eve l .  B y , e x p l i c i t l y  inc luding the  

d i f f u s i o n  process i n  t h e  proposed model one can p o t e n t i a l l y  g rea t ly  improve t h e  

p rec i s ion  of one's p red ic t ions  and ce r ta in ly  has a much b e t t e r  procedure f o r  

determining t h e  e f f e c t s  of in te rven t ion  on t h e  r e a l i z a t i o n  of r i s k .  

A second major u t i l i t y  of the  proposed approach is t h a t  it  grea t ly  f a c i l i -  

t a t e s  the  in t roduct ion of al l ldl iary information i n t o  one's ana lys i s  of the  f a i l u r e  

process. T h i s  is f a c i l i t a t e d  because one can d i r e c t l y  examine t h e  d e t a i l s  of t h e  

process and thereby introduce information i n t o  t h e  appropriate f ea tu res  of the  

model. This is  a c r i t i c a l l y  important property i n  analyzing human surv iva l  a t  

advanced ages because the  evolut ion of chron icd i seases  i s  a complex process 

operat ing over a lengthy t i m e  sca le .  Thus, though t h e r e  i s  considerable empiri- 

c a l  information on r i s k  covar ia tes  and evolution of chronic d isease  from e x i s t i n g  

long i tud ina l  s t u d i e s ,  seldom have t h e  dynamic p roper t i e s  of such da ta  been com- 

p l e t e l y  exploited.  For example, c e r t a i n  negative associa t ions  have been demon- 

s t r a t e d  between a r i s k  f a c t o r  (e.g.,  asbestos)  antl a  s p e c i f i c  disease outcome 



(e.g.,  lung cancer) because of t h e  systematic s e l e c t i o n  of t h e  suscep t ib le  per- 

sons by a d i sease  process (e.g., asbes tos is )  which had an e a r l i e r  age a s s a u l t  

p a t t e r n  (Manton, 1985). Such dynamics and systematic s e l e c t i o n  requ i re  considera- 

t i o n  of t h e  b a s i c  dynamic process and t h e  e f f e c t s  of s e l e c t i o n  on the  average 

r i s k  among survivors  t o  unconfound such fac to r s .  Only by using a u x i l i a r y  informa- 

t i o n  and a model of t h e  i n t r i n s i c  processes can such pub l i c  hea l th  quest ions be  

adequately resolved. 
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