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PREFACE

In this paper the authors are concerned with the upper bound on the
length of genomes imposed by the error rate (the frequency of inaccu-
rate replication) of nucleotides. This limiting law was originally derived
from a deterministic chemical model by Eigen. The authors make a con-
nection between these deterministic chemical equations and the theory
of multitype branching processes in order to study certain properties of
the Eigen kinetic equations and to generalize the error threshold cri-
teria. This generalization is based on a criterion for the extinction of
branching processes.

This research was carried out as part of the Feasibility Study on the
Dynamics of Macrosystems in the System and Decision Sciences Pro-
gram.

ANDRZEJ WIERZBICKI
Chairman
Systemn and Decision Sciences
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ABSTRACT

The theory of multitype branching processes is applied to the kinet-
ics of polynucleotide replication. The results obtained are compared with
the solutions of the deterministic differential equations from conven-
tional chemical kinetics.






POLYNUCLEOTIDE EVOLUTION AND BRANCHING
PROCESSES

Lloyd Demetrius, Peter Schuster and Karl Sigmund

1. INTRODUCTION

Allometric relations, which set limits to the growth of organisms based on
certain physical laws, are very common in nature. For example, the height of
trees is restricted by the strength of wood and the capacity for water transport
of the trunk, the size of insects is restricted by the rate of oxygen transport
through capillary diflusion, and the body weight of vertebrates is limited by the
carrying capacity of the skeleton. We are concerned here with a closely related
limitation at the molecular level: an upper bound on the length of genomes
imposed by the error rate (the frequency of inaccurate replication) of nucleo-
tides. This limiting law was derived from a deterministic chemical kinetic
model (Eigen, 1971; Eigen and Schuster, 1979) and is based on the relation
between the rate of production of accurate replicas of molecules and the mean
total productivity. This paper describes a connection between the determinis-
tic chemical equations and the theory of multitype branching processes. We
study this connection, in particular the matrix of mean values of the branching
process, in order to look at certain properties of the Eigen kinetic equation and
to generalize the error threshold criteria*. This generalization is based on a

criterion for the extinction of branching processes.

Eigen (1971) postulated a formal, phenomenological kinetic equation

dtt =z; = Z:wv-zj -z, ij =1..m (1)
j

to describe the evolution of a population of replicating units under the ideal-
ized experimental conditions of a dialysis reactor (see, e.g., Kiippers, 1979). We

shall call these units types and represent them by /,,..../,. We use z; to denote

*The expectation of a replication error must always remain below a sharply defined threshold (the
error threshold) if the information accurnulated in the evolutionary process is not to be lost.



the relative concentration of type I;:

_ G

[£)=c;0 = Z:CJ.' %:Ij:l
2

All concentrations z; are positive and hence the physically accessible domain

of variables is restricted to a unit simplex

Sy = z€]&n:0$ziSIVi=l....,m.z:‘-=1
*

The flow term ¢ is given by

¢ = Ewnzs
s

The elements w;; are constants which will be discussed in detail later in the
paper. We shall simply note here that they are constructed from rate constants
and mutation frequencies in accordance with the replication mechanism. The
deterministic equation (1) has been subjected to rigorous mathematical
analysis (Thompson and McBride, 1974; Jones et al., 1976; Swetina and Schuster,
1982; McCaskill, 1984a; Eigen et al., 1984), and its solutions have been obtained

in terms of the eigenvalues and eigenvectors of matrix }f = iw‘-]-}.

The deterministic equation (1) has a number of serious drawbacks when
applied to realistic experimental systems. In the case where the replicating
units are polynucleotides, the case we are basically interested in here, there

are three sources of stochasticity which are of particular importance:

1. PFinite population size. The number of potential types, i.e., the number of
possible, different polynucleotide sequences, is extremely large (4¥ for a
length containing v bases). Thus, the number of potential types is far
greater than the total number of molecules available in any experimental
set-up or in nature. Only a tiny fraction of these sequences can possibly be
present at any time . Thus, the population size truncates the existing
mutant distribution and introduces a stochastic element into the dynam-
ics of replicating ensembles of polynucleotides. In the case of high replica-
tion fidelity, this truncation aflects the many types of molecules which are
present in only small numbers in the stationary mutant distribution. In
cases of low replication fidelity, i.e., in systems which replicate with accu-

racies below the error threshold, the deterministic description given by
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equétion (1) fails completely. Indeed, the deterministic solution predicts
that all types are present in equal amounts. This is impossible since we
really cannot have less than one molecule of a given type. What we should
expect, therefore, is a steadily changing population of polynucleotide
sequences, with some dying out while others appear through mutations.
No stationary distribution of mutants can ever exist in the real world
(Swetina and Schuster, 1982).

2. Kinetic degenerocy. Conventional deterministic equations are unable to
handle cases of kinetic degeneracy, i.e., situations in which two or more
types have identical kinetic rate constants. In this case the relative con-
centrations of such molecules are determined by random drift (Schuster
and Sigmund, 1984a,b).

3. Complezx dynamics. Sensitive dependence on the initial conditions can
give rise to a third source of stochasticity in autocatalytic systems.
Although this kind of stochastic dynamics {often described as chaotic
behavior) arises in some complicated networks of replication processes, it
does not occur with equation (1), and hence will not be discussed any

further here.

The formal description of chemical reactions by stochastic processes has a
.long tradition (see, for example, the review by McQuarrie, 1967). More recently,
new analytical techniques for the study of chemical master equations have
become available and this fact has revived interest in stochastic approaches to
biochemical reaction systems. Equation (1) is essentially multi-dimensional,
and this makes any analysis of the corresponding master equation particularly
difficult (Ebeling and Feistel, 1977). Some attempts to study the master equa-
tion of an ensemble of replicating polynucleotides under rather radicai simpli-
fying assumptions have been made by Jones and Leung (1981), Heinrich and
Sonntag (1981), and Schuster and Sigmund (1984a). Inagaki (1982) reported a
study of replication with random mutations using a Langevin-type equation. So
far the only error threshold relation derived from an underlying stochastic
model was obtained in a very recent study by McCaskill {1984b), which however

makes several drastic approximations.

By contrast, the approach described here adopts a less general but very
powerful method: the theory of branching processes. This theory, which was
originally developed to deal with the extinction of family names, has been

applied to a great variety of physical and biological problems since the forties.



-4 -

The mathematical background can be found, for example, in Harris (1961),
Athreya and Ney (1978) and Jagers (1975); the main properties are summarized
in Section 3. We shall apply this concept to polynucleotide replication and
relate branching processes to the deterministic equation (1). In particular, we
shall analyze the "freezing in” of fluctuations which makes the results of the
deterministic model so reliable. Section 4 is concerned with the probability of
extinction, and the error threshold relation is derived in a stochastic context.
The original experimental set-up {Eigen, 1971) can then be broadened consider-
ably in the light of these results. It has already been shown that the results
hold for most evolving systems (Eigen and Schuster, 1978). We are now in a
position to extend the theoretical predictions even further, to systems with a
discontinuously changing environment. Sequential sampling or, more gen-
erally, any sequence of alternating phases of growth and sampling is amenable
to a similar analysis, thus validating the threshold relation for conditions close
to those under which molecular evolution occurs in nature. The paper con-
cludes with a discussion of "corhplexity". which we interpret in a different way
to the concept of algorithmic complexity used, for example, by Ebeling and
Jimenez-Montano (1980). The notion of complexity discussed here is an
entropy-based invariant which describes the frequency with which there are
mutations back to the "wild type” (see later). The complexity parameter, like
the extinction parameter on which our threshold criterion is based, is a func-

tion of the mean value matrix of the branching process.

2. POLYNUCLEOTIDE REPLICATION AS A MULTITYPE BRANCHING PROCESS

If we try to describe polynucleotide replication in terms of elementary step
kinetics we obtain an exceedingly complex reaction network {Biebricher et al.,
1983). However, in many cases we can dispense with most of the details as long
as we retain certain important steps in a simplified reaction mechanism (see,
for example, Gassner and Schuster, 1982). The basic features of selection and
evolutionary optimization can be derived from a crude dynamical model which
represents the whole polymerization process as one single reaction step. In
this simplified model it is only necessary to distinguish between faithful repli-

cation and mutation.
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2.1 Discrete-time branching processes
2.1.1 Transition probabilities

Consider a population consisting of m types of polynucleotides, /;.....4,.
Each polymer of type I, can generate polymers of the same type (J; + 2/;) by
faithful replication or polymers of different types (l,' - I+ IJ-) by false replica-
tion, i.e., mutation. Molecule replications are assumed to be homogeneous in
time and mutually independent. We shall first assume that the molecules exist
in discrete generations. In every generation, each polymer of type  produces
T, pPolymers of type I,, r, polymers of type [, and so on up to r,, polymers of
type I, with probability P;(r,,....7p ).

Let Zt('n.) denote the total number of polymers of type [; in generation n,

where the vector Z(n) = {Z,(n).....Z,,(n)] is a random variable.

In order to illustrate the transition law for the stochastic process we shall
take Z(0) = e;, where ; = (0....,1,...,0) is the unit vector in the direction of type
I;. This implies that the population consists of a single polymer of type I, at

time n = 0. In this case the probability generating function of Z(1)

A)(s) = F(s,s) = % P(”(Zl.‘...Zm)slz1 e s,i”‘ . (2)
2,2y =0
where
P®)(Z,.....Z,) = Prob {Z,(n) = Z,u...5 (n) = Z,,} . (3)

is of the simple form

FA)g)=f.(s)= Y Pi(rl....,rm)s:‘ g™ (4)
Tivetm=0

We may make the following generalization: if Z(n) = (Z,.....Z,,) represents the

distribution of polymers in generation n, then Z(n+1) is the sum of

Zy+ '+ + Z, independent random vectors of which a number Z, have gen-

erating function f.,, Z, have generating function f,, and so on. We may thus

dispense with the explicit formula which is rather lengthy and not very infor-

mative.



2.1.2 The mean value matriz

For reasons which are physically obvious®, we assume that first moments
m;; = E{z (1) z(0) = e;} (5)

exist for all i and j. Thus, my;

derived from a polymer of type I; within one generation. In terms of generating

is the mean number of polymers of type [

functions we have

a1 ;
ij = —L- ;4 o=
m‘l.] [ as.‘ Ll= [ =sm=1' 1’-] 1,...,m s (6)

We are clearly dealing with non-negative first moments my; = Q0. Unless other-
wise stated, we shall assume that the matrix M = im.ij; is positively regular,
i.e., there exists an n > 0 such that M™ has strictly positive elements. This
implies that M is irreducible: each type I can be derived from every other type
IJ- by a series of mutations. (Mutation models which consider only point muta-
tions, such as that analyzed by Swetina and Schuster (1982), are generally
based on non-zero probabilities' of mutation over a sufficiently large number of
generations. In more sophisticated models which include deletions and inser-

tions it might be advantageous to have disjoint sets of types.)

According to the Perron—Frobenius theorem (see, e.g., Karlin, 1974), the
matrix M has a unique eigenvalue A > 0 which is dominant in the sense that
|y,| < A for every other eigenvalue u of ¥. The eigenvalue X is non-degenerate
(or simple): there exist right and left eigenvectors, denoted by u and v, respec-

tively, where u; > 0 and v; > Ofor all i = 1,...,m, such that

Mu=Xu and vM =Av . (7)

Both eigenvectors are normalized in a special but very useful manner:

(w.v)=1 and Pv; =1 . (8)

The matrix T = {¢;; = v;u;] is idempotent, 72 = T, and in addition we have
TM = MT =AT and lim A™M* =T . (9)
n »o

*[n real systems we always deal with finite populations in finite time and in this case the expecta-
tions do not diverge.
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No other eigenvalue u of ¥ is associated with an eigenvector whose components

are all strictly positive.

2.1.3 Probabilities of extinction

A population is said to become extinct if Z{n) = 0 for some n > 0. Let 9;

denote the probability of this event given the initial condition Z(0) = e;:

g; = Prob {Jn such that Z(n) =0/Z(0) =¢;} . (10)

The vector q = (ql,....qm) is given by the smallest non-negative solution of the

equation
(g =q . (11)

where £(s) = {f ,(s).....f,, (8)} and the f (s) are given by (4).

Conditions for extinction can be formulated in terms of the dominant

eigenvalue \ of M:
(i) ifa<1theng; =1 for all i and extinction is certain,

(ii) if A > 1then g; < 1for all 1 and there is a positive probability of survival to

infinite time.

2.1.4 Asymptotic frequencies
The frequency of type [; in generation n is a random variable defined by

Z(n)
Z](n) + 0+ Zm(n)

X(n) = (12)

provided that the denominator is non-vanishing, i.e., that the system does not

become extinct.

If A> 1, there exists a random vector W = (¥,,....#,,) and a scalar random

variable w such that with probability 1

LimA ™ Z(n)=W (13a)

n o

W=wu , (13b)
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where u is the right eigenvector of M from (7). It follows that

1i ) Uy
Mm X(n) = o

e (14)

holds almost everywhere provided that the population does not become extinct.

Equation (14) asserts that the random variable X;(n) representing the fre-
quency of type L converges almost surely to a constant (provided that w # 0).
This asymptotic behavior of the random vector X(n) is in sharp contrast to that
of the population distribution Z(n) and the total population size
Z(n) = zi Z'('n) Because of the autocatalytic nature of the replication pro-
cess, Z(n) may experience large fluctuations in the initial phases which persist
and even accumulate in subsequent generations (see, e.g., Schuster, 1983). In
the later stages of the stochastic process the system either becomes extinct or
grows very large (with probability 1). In the latter case the law of large

numbers implies that fluctuations in relative concentrations will be small.

The behavior of the random variable w can be described completely by

results obtained by Kesten and Stigum (1968). We have either
(i) w =0 with probability 1 (15)
(which is always the case if A < 1), or
(i) Blwlz(0)=¢}=1v; ., (18)
where v; is the i-th component of the left eigenvector v of M (see equation 7).
A necessary and sufficient condition for (18) to hold is
E{Z;(1) log Z;(1)| Z(0) = ¢;} <= for 1<i,j<m . (17)

This condition of finite population size clearly holds for all real populations. If

the population initially consists of a single polymer of type [, the distribution

of w displays a jump of magnitude g; at zero and has continuous density on the

set of positive numbers.
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2.2 Continuous-time branching processes
2.2.1 Transition probabilities

The assumption of discrete generations generally applies to populations
with external (and sometimes also internal) clocks which prevent the mixing of
generations. Such conditions are often found in nature, e.g., in populations
whose breeding periods are fixed by seasonal requirements. In chemical sys-
tems there are usually no such regulators. Indeed, if we start polynucleotide
replication in an initially synchronized population the synchronization is lost
within a few rounds of replication. Continuous-time multitype branching Mar-
kov processes offer an accurate description of polynucleotide replication, but
one which is technically quite complicated. The basic results are similar to
those obtained in the discrete case, however, and are summarized briefly below.

In the continuous-time model we suppose that, independently of the other
polymers, a polynucleotide of type I persists for some random period of time
(which has an exponential distribution and mean ;1.‘-'1) and then generates
copies by replication and mutation according to a distribution whose generat-
ing function is fz-(s). This is the case if it is assumed that in a time interval of

length At, up to probability o(At), the polynucleotide must experience one of
the following:

(i) nochange
(ii) it "dies off", or
(iii) it survives and produces a copy of type [; (j = 1,...,m).

The time-homogeneous probabilities of events (ii) and (iii) are proportional to
Af, up to some o(At). As before, we let Z;(t) denote the total number of polynu-
cleotides of type I at time t, and the random vector Z(t) = (Z,(t).....Z, (¢))
denote the distribution of types.

2.2.2 The mean value matriz

For physical reasons we assume once again that all the first moments
m,; (t) = B{Z,(¢) 1 2(0) = ¢;}

are finite, for all £ = 0. The mean value matrix M(t) satisfies the semigroup

property

Mt +u)=M(EIMx), t,u=20 (18)
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and the continuity property

lim M(t)=/1d , 19
Jim H(t) (19)

where /d is the identity matrix. Conditions (18) and (19) imply that there

exists a matrix A such that
HM(t) =e4 (20)

for all £ 2 0. A is called the infinitesimal generator. The elements of A are

given by a;; = u;c;;, where ¢;; = b;; — 6 (‘5ij is the Kronecker delta) and

af;
aSle=...=sm=1 ‘ (21)

Again we assume that each type can give rise to all of the others. It follows

i

that my; (t) > 0for t >0, and hence that A is essentially positive, i.e., a;; > O for
all 2 # 7. The Perron—Frobenius theory then implies that there exists a unique
real eigenvalue X of A which is dominant in the sense that it is larger than the
real parts of all other eigenvalues. The eigenvalue A is simple (non-degenerate)
and has positive right and left eigenvectors u and v, which we again normalize
such that ¥ v; = ¥ u;v; = 1. The dominant eigenvalue of #(t) is eM, with u and

v as associated eigenvectors. Taking t;j =v;u; we again have

%irne"“{ﬂ(t); =T . (22)

2.2.3 Asymptotic behavior

As in the discrete case, the extinction conditions are given in terms of A.
If, as before, q = (g,.....9,,) denotes the extinction probabilities, then q is the

unique solution of

g(s)=0 (23)
where

&(s) = (9,(s)-..9,, (s))
and

9:(8) = p;(fi(s) —s;) . (24)
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We have
(i) ifA<Otheng; =1foralli;
(ii) if A > Othen g; < 1foralld.

Furthermore, we once again obtain

Z;(t) Uy
X (t) = ZE) + - +Z, ()  u + - +u

(25)

m

provided that the process does not lead to extinction.

3. EXPECTATIONS AND EIGEN'S SELECTION EQUATION

3.1 Figen's selection equation

In Eigen (1971) and Eigen and Schuster (1979) the evolution of polynucleo-

tides in a dialysis reactor was modeled by a differential equation of the form

‘éi = Zwijzj -z [2 wnxs] (28)
J rs

or, in vector notation (with ¥ = (w;;). x=(z,,....z;) and 1 = (1....,1)),
x=Wz -(1-¥Wx)x (27)

on the unit simplex
Sm=[x€R’":zi20.sz=1] . (28)

Here the z; are the concentrations of polynucleotides of type /; (i =1,..m).
The coefficients W5 satisfy wj; = AJ-QJ-J- - Dj and wy = AJ-QI-J- (i #3), where
A; > 0 is the total rate constant for polynucleotide synthesis on template J;, D;
is the decay rate and &.;, the "quality factor”, gives the probability that a copy
of a molecule of type J; will be of type I; (for j # i this is a mutation rate). We
shall first assume that W is positively regular. The term

g=1-Wx=Y(Wx), =) wzg (29)

r rs

is interpreted as an externally controlled "dilution flow” which keeps the total

concentration Zz‘- constant (without loss of generality, equal to 1). The
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parameter ¢ may be viewed as the "average productivity” of the molecular
population. It is easy to check that S,, is invariant under (26): if x(0) € S,
then x(t) € S, forall t = 0. '

Equation (26), then, was introduced as a phenomenological equation
describing the kinetics of self-reproducing molecules in a dialysis reactor
under the constraint of constant total population. The aim of this section is to

relate this equation to multitype branching processes.

3.2 Preliminary remarks
We begin with a few simple remarks.

1. Let
y=Wy (30)

be a linear differential equation with (essentially) positively regular W. If
y(0) € R®, then

x(t) = ﬁ;(—t)yu) (31)

is well defined and in S, for all ¢t = 0. x(t) is also a solution of {26).

2. It is also possible to obtain (28) from (30) by setting
t
¥(t) = f o(u)du (32)
0

and
y(t) = x(t)e¥® (33)

(see Jones et al., 1976; Thompson and McBride, 1974).

8. The nonlinear equation (28) is therefore easy to solve. Any equilibrium of

(26) must satisfy
Fx = px (34)

and therefore be a right eigenvector of #. There is only one such eigenvector
in S,,., which is denoted by u: the corresponding eigenvalue & is the dominant
eigenvalue of #. From the correspondence between (30) and (28) it follows that

all orbits of (26) in the state space S, converge tou
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4. We shall use a canonical method to link the difference equation
v = F(v) (35)
with the differential equation

v=Fv-v . (38)

Such an extension to continuous time cannot always be justified, of course. But

if the generation length is 1 (say) then (35), or v — v = F(v) — v, implies that

v(1) = v(0) = F(v(0)) - v(0)

If the generations are not distinct, but blend into each other, then the increase

v(1/n) —v(0) in time 1/n is approximately (1/7n)(F(v(0)) - v(0)), or

¥(8t) =¥(0) - p(y(0)) - v(0)

At

which, in the limit, implies (36).

3.3 Multitype branching and the selection equation

The relationship between branching processes and the selection equation
is summarized in Figure 1. If we start with a discrete multitype branching pro-
cess Z(n ), then the values of the expectation Y(n) satisfy Y(n) = M™Y(0), where
M is the mean value matrix described in Section 2.1.2. Thus Y(n) may be
obtained by iteration from the difference equation®* y' = My. This equation can

be transformed into the selection equation in two ways:

(i) by first passing to continuous time, i.e., to the differential equation y = Vy

(with V= M -~ /), and then normalizing, as in (26), which leads to
x=Vx-x(1-Vx) (37)
(ii) by first normalizing the difference equation, thereby obtaining

X =

1
T s Mx (38)

on S, . and then passing to continuous time, which yields

*This difference equation is similar to the discrete-time model given by Demetrius (1983a).
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1

x=(Mx-x(1-Mx)) T s

(39)

Multiplying the right-hand side of (39) by the factor 1 - Mx (which does not
depend on i and is always strictly positive on S,,) corresponds to a change in

velocity. The orbits of (39) are the same as those of
x=Mx-x(1-Mx) . (40)

Since V = M - Id, equations (39) and (40) are identical on S,,. Both are of the

same form as Eigen's selection equation.

The previous discussion took a discrete process as the starting point. If,
however, we begin with a continuous Markovian multitype branching process
Z{t), (t = 0), we can either reduce it (by discretization) to the discrete branch-
ing process Z(n), or else obtain Y(t) = M(¢)Y(0) for the expectation values
Y(t) = E{Z(t)} (where M(t) is again the mean value matrix: M(1) = M). Y(¢) is

then the solution of the linear differential equation

y = Ay . (41)
where
A =lim —LLM tt_jd
t -0

is the infinitesimal generator of the semigroup M(t), and M(t) = e Normali-

zation yields
x = Ax — x(1 + AX) (42)

on S,,. This equation generally has different dynamics to (40), but the asymp-
totic behavior is the same. Indeed, A and m = e have the same eigenvectors.
Thus uis the global attractor for both (40) and (42).

3.4 The reliability of the deterministic equation

We have seen Lhat there are three simple ways of getting from branching
processes to an essentially unique version of Eigen's selection equation. There
remains the question of whether such a reduction from a stochastic to a deter-
ministic system is of any practical use. The first impression may be that it

brings no obvious advantages. Indeed, going from the random variables to their
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expectations can be quite misleading, because the variances grow so rapidiy.
This can be verified most easily for the single-type branching process. If m and

o2

are the mean and variance, respectively, of the number of descendants of a
single individual in the first generation, then the corresponding mean and vari-
ance in the n-th generation grow in the supercritical case (m > 1) according to
2 m"gm“ —12
m(m -1)

n

m and o

. (43)
so that the ratio of the dispersion (i.e., the root of the variance) to the mean
converges to a positive constant. Thus the "window’ of probable values of the
random variable is rather large. (For a critical process, the situation is even
worse: the mean remains constant and the variance increases to infinity.) The
situation is similar in the multitype case. Here the variance and correlation
formulae are rather complicated (see Harris, 1961, for the discrete and Athreya
and Ney, 1972, for the continuous case) but the result is, once again, that the
second moments grow so fast that the averages tell us virtually nothing. Nor-
malization changes this, however. The transition from expectations to relative
frequencies cancels the fluctuations. More precisely, if the process does not go
to extinction, then the relative frequencies of the random variables
% = %
Zy+ -+ 2,

converge almost surely to the values u; (i = 1,...,m). These are also the limits

of the relative frequencies of the expectations

Yi
Y1+ - tyY,

In this sense, the deterministic selection equation yields a description of the
stochastic evolution process which is more reliable than that given by the
dynamics of the non-normalized means. The qualitative aspects of the selec-

tion equation represent the "variance free" part of the deterministic approach.

3.5 "Freezing in" of fluctuations

We should stress here that the initial fluctuations in a supercritical
branching process are "frozen in". In order to clarify what we mean by this, let

us compare two symmetric random walks on a finite set {0,1,...,N] of integers,
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where one of the random walks has absorbing boundaries and the other
reflecting boundaries. In both cases the mean remains constant, and the vari-
ance converges to some positive value. In the absorbing case, however, the ini-
tial fluctuations play a decisive role. Sooner or later, the walk reaches a boun-
dary and from then on remains "frozen in”. In the reflecting case, on the other
hand, the initial fluctuation will be "forgotten" after a sufficiently long time has
elapsed. With this example in mind, we say that the initial fluctuations in a sto-

chastic process X, are frozen in if for every ¢ > 0 and for all n > N we have

Var (X}

Prob{ E{X]

<el XN]> 1-¢ ,
provided that N is sufficiently large. In this sense the "deterministic” model
(i.e.. the sequence E{X, }) is fairly reliable if we wait sufficiently long before
starting observations, because by this time the fluctuations will have subsided.
It is easy to check that the above statement also holds for supercritical
branching processes. It is only necessary to note that for given (large) k >0,
with probability 1 —¢g, either Xy =0 or Xy >k if N is sufficiently large. If
Xy =0, then Var {X § = O for all n = N; if X, > k, then from (43) we have

Var {X3 (1' 1
B} k mm-D

which is smaller than ¢ provided that k is sufficiently large.

4. THE ERROR THRESHOLD

The parameter A, the dominant eigenvalue of the mean value matrix M,
plays a crucial role in the branching process in that extinction is certain iff
A < 1. This relation provides both an interpretation and a generalization of

Eigen's error threshold relation, as we shall presently see.

4.1 Single-type branching

Let us first consider a single type of macromolecule. In each generation, a
polynucleotide yields o copies before it "dies” by hydrolysis. Here ¢ is an

integer-valued random variable with probability distribution

Plo=m} =q,: m =0,12,.. (44)
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and expectation
o= ) mq, - (45)
m=

We shall assume that the polymer is a chain consisting of v nucleotides and
that there is a fixed probability p of a single nucleotide being copied correctiy®.
The assumption of some constant, single-component accuracy of replication p
which is independent of the molecule type and its position in the sequence is, of
course, an oversimplification. However, this assumption may be justified on
physical grounds — for details see Eigen and Schuster (1978) and Schuster
(1981).

In this case the probability that a given copy is exact is p¥, and the proba-
bility that X, the number of correct copies in one generation, is equal to some

integer k, is

PiX =k} = ()p*(1 -p)™*

where m is the total number of copies and m = k. The mean number of correct

copies is therefore

i kEPiX =k} = i 2 qm(;"-)kpl-'k (1 _pv)m—k =
k=0 k=0 mak

fd m

2 I 2 k({n)p"k(l _pv)m—k =
m =0 k=0

m
rY kZIO mg,, =p'c

From the relation A < 1 extinction is certain iff
pYo<1 (48)

and hence there is a strictly positive probability of indefinite survival iff

U< logg _logao (47)
-logp  1-p °

*In order to avoid confusion with the notation used elsewhere in this paper, we have chosen the
letter “p” to represent single-digit accuracy of replication. In our previous publications we have
generally used ¢ for this quantity (Eigen and Schuster, 1678).
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where the approximation holds when 1 —p (the probability of an inaccurate
copy) is small. For fixed > 1, this means that the maximum length of a
polynucleotide is inversely proportional to the probability of a replication error
in one of its components. If this length is exceeded, long-run survival is impos-

sible.

The probability of extinction g is the smallest positive solution of
$(s)=s (48)

where % (s) is the probability generating function for the random number X of

correct copies, i.e.,

$(s) = i P{X = k sk
k=0

Under the previous assumptions,

8(s)= 3 T g, (Mp* (1 -pY™EE
k=0 mzk

S gn T () (e (1 -pY)m

m=0 ksm

i.e.,

#5)= T gmlt-p*1 =)™ (49)

4.2 Single-type branching — a variant case

In order to link this theory with current experimental work on polynucleo-
tide replication, it is useful to introduce a slight modification. It should be
recalled that the lifetime of a polynucleotide is not a well-defined constant but
rather a random variable which, to a first approximation, has an exponential
distribution. On the other hand, the replication time is fairly well defined, at
least under appropriate boundary conditions. 1t is therefore convenient to view

this time, rather than the actual lifetime, as the length of a generation.

Let us assume, then, that in unit time, the molecule either survives (with
probability w) and produces a copy (which is accurate with probability p¥), or is

hydrolysed (with probability 1 —w). The survival probability w is constant if
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there is no "aging” under the experimental conditions. A given molecule thus
yields 0, 1 or 2 molecules of the same type after one unit of time with probabili-
ties 1 —w, w(l—pY) and wpV, respectively. The mean is w(1+pY). We therefore
have a non-zero probability of survival to infinite time iff equation (47) is
satisfied, where the constant g now denotes w/ 1 —w. The probability of extinc-

tion is easily computed from (48):

q =min[1, _1y] . (50)
op

4.3 Multitype branching

So far we have considered only one type of molecule. However, the same
results also hold in a multitype situation if the possibility of "back mutations"

is excluded, i.e., if mutations from [J (j # 1) to I, can be neglected.

In the general case, i.e., allowing all types of mutation to occur, it can be
difficult to estimate the dominant eigenvalue A. We refer the reader to Thomp-
son and McBride (1974) and Eigen and Schuster (1979) for some useful inequali-

ties.

The 2¥ x 2¥ matrix M introduced by Swetina and Schuster (1982) provides
an interesting example. In a somewhat simplified version of the replication
problem only two classes of components (or digits), say 0 and 1, are considered.
The polymer is thus a sequence of v such digits and, in general, we are dealing
with 2Y different sequences. We shall assume that IJ has replication rate 4
and that the mutation rate from IJ to [; depends only on the Hamming distance

k between the two sequences — this is the minimum number of single-digit

mutations needed to transform IJ into . The elements of the matrix M can
then be expressed by
m; = ApR(1L-p)* (51)

It 4 =4 ( =2,3,...2Y), if A;>» A and if (1-p)? can be neglected, then
second-order perturbation theory (see Eigen and Schuster, 1979; Thompson and
McBride, 1974) yields

1 2v
A+ S TR g vy LSy pk() )k g gy
1 kz=:2 Mgy (4-1)p” kz--:l g :
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Again, the condition for positive survival probability reduces to (47).

4.4 Complementary replication

The basic mechanism of polynucleotide replication does not lead directly
to copies of the templates. From the pairing rules (G «» C and A « U or
A « T) for the individual nucleotides, it is clear that complementary copies act
as intermediates. This mechanism is common in the replication of viral RNA
and has been studied in great detail using kinetic methods (Biebricher et al.,
1983). The two complementary polynucleotide sequences are usually called
plus strands and minus strands (J* and /-, respectively). We can now apply our
previous theory with some slight modifications. Let [1"....,[,: and [1'[,; be
the different types of plus and minus strands in the reactor. The matrix of
mean values M is then a 2m x 2m matrix of the form

w= 6]
It is easy to check that the non-vanishing eigenvalues of } are just the square
roots of the non-vanishing eigenvalues of UV (or VU). Thus, the dominant
eigenvalue of # is the square root of the dominant eigenvalue of UV. In partic-

ular, if replication is error-free, i.e., if

Af 0 AT 0

0 A 0 A
are diagonal matrices, the dominant eigenvalue of ¥/ is

max {\ANNT 4 = 1,...m]

~ From equation (1), the deterministic rate equations for the concentrations

+ - + - ;
z;” and z;~ of [;" and /;” are given by

N Sy ¢
T =ENT -y

- - _ i=1l..,n (52
=N -z )
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where p = T (\fz;” + ATz;*)
This set of equations was first analyzed by Eigen (1971). It can easily be
checked that

xi+]' i 7\:'(-"'-1'-)2 _)‘i-(zi+)2 o z* ) )\1’_.]
=) (z7)? llm) N

and hence that

1
Ii+ R E_ 2

zm A

(53)

In the limiting case z;” = z;* - (\;Y/ \,)1/2 and setting Z; = z;* + z;~ we have
T, = 2NN -5 (TF VAT

which is just the Eigen selection equation for direct, error-free copying, and

leads to the extinction of all pairs L*, [~ for which v/)\;*A;” is not maximal.

4.5 The deterministic error threshold

Equation (47) is very similar to the error threshold relation

log o,
<
—log p

(54)

derived for the deterministic model by Eigen (1971), Eigen and Schuster (1979)
and Swetina and Schuster (1982). In this case, the molecular species I, is
assurmed to be the master sequence (which means by definition that my, >my

for alli # 1) and the parameter o, is its superiority, which is defined by

Ay

g, = ———— 55
17 A+ E_, (55)

Here E_l is the mean excess productivity (number produced minus number

hydrolysed) of molecules other than the master sequence, i.e.,

m )l
E—l = E:z xi] (56)

'an (4 - D)z,
i=2
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It is instructive to compare the derivation of (47) with that of (54). Ine-

quality (54) is a consequence of
@, >0t (57)

where @,,, the rate of accurate replication of molecules of type /,, is again p".

Equation (57) is derived from
wy > E_y {(58)

andwy; = 4,@y; —~ D)
This last inequality states that the value function, i.e., the rate of produc-
tion of accurale copies of the master sequence /,, is higher than the average

production rate of all copies {(accurate and inaccurate) of all other molecules.

This need not always be true. Let us consider an almost trivial but,
nevertheless, illustrative example. Setting 4, =3, A;=43=4, @;;=1,
Qoo = Q33 = @23 = @33 = 1/ 2, and all other Qij values and the degradation rate

constants I, equal to 0, we obtain

[3 0 o

M= lo 2 2]

022
This leads to w,, =3 and E_l = 4. If the zero terms are replaced by (more real-
istic) small, non-vanishing terms, (58) is still violated. However, relation (58)
clearly holds in physically meaningful situations when the mutation terms are
small. In particular, in the limiting case where all the mutation rates vanish
(and all the @z are 1), relation (58) is an obvious consequence of w,; > w;; for
i # 1, i.e., of the assumption that /; is the master species. It should, however,
be noted that E_l (and 0,) are generally functions of z (see Swetina and Schus-

ter, 1982).

It is natural to evaluate w,; and E_l at the equilibrium state u. However,
in the case with no mutations we have u; =0 fori=2,..,m, so that £_, is not

properly defined. In this case we consider lim E_l. which exists and is equal to
oo

the second largest diagonal term. Thus relation (58) also holds under these

conditions.

The deterministic error threshold is based on the assumption that, under

selection, the rate of production of accurate copies of a molecular species
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becomes equal to the mean total productivity of all other species. The master
species will always replicate with a fidelity above the error threshold provided
that the mutation terms of all other species are sufficiently small. The stochas-
tic error threshold is based on the probability of extinction. Thus, the require-
ment to operate above the stochastic threshold is always a stronger condition

than the corresponding requirement in the deterministic case.

5. COMPLEXITY

In this section we shall introduce another parameter called the complez-
ity, which, like the dominant eigenvalue, is a function of the matrix of mean
values M.

5.1 The parameter A

We assume once again that the process is positively regular and write

- My (59)

The matrix P = (p;;) is Markovian. Let m = (7;) denote the stationary distribu-
tion of the Markov chain. The complezity of the branching process is then
defined by

== 2 m; Py log py; . (80)
i
There is a simple relation between H and the dominant eigenvalue A, which
is given by
logA=H-V¥ , (61)

where

(82)

ij

The entropy-like parameter H defined by (60) represents the frequency of
mutations back to the "wild type”. The positive regularity of the process

ensures that A is strictly positive.
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5.2 An illustrative example

As in the case of the dominant eigenvalue J, it is generally difficult to com-
pute H exactly if we allow all types of mutations to occur. However, an explicit
expression can be obtained from the Swetina—Schuster matrix (47) with
Ay=A>1land 4 =1forj= 2,...,2Y. H measures the degree to which correct
and erroneous digits are incorporated in the polynucleotide, and assumes its

maximum value when p = 1/2. In this case

_ v
A= ‘42# . (63)

The corresponding stochastic matrix P has all rows equal: they are given by the

vector
I v v V]
A[f] | [i]v | [i] s [:_] (64)

Using (63), (64) and (80), we have

A
H=—-|————log A +log (4 ~-1+2¥
[A—1+2"] & el )

We note that A decreases with sequence length v, while H increases with v.

5.3 Genealogies

We define a genealogy as a sequence (Ik,,)n- k, € {1....m] such that j isa
direct copy (accurate or inaccurate) of k-1 forn =1.2,.... Demetrius (1983b)
has used the Shannon—McMillan theorem on entropy (see, e.g., Billingsley,

1965) to show that the set of all genealogies generated by a given individual

after a sufficiently long time n falls into two classes: a class .S, in which each
genealogy occurs with a high probability, and a class S, in which each geneal-
ogy occurs with an arbitrarily low frequency. The elements of S, are called typ-

ical genealogies.



-26 -

Let Ny(n) denote the number of genealogies generated up to time n, and
Ny(n) the number of typical genealogies. It is known (cf. Demetrius, 1983a,b)
that

Ng(n) ~ A (65)

Ny(n) ~efih (66)

Tuljapurkar (1982) used the notion of Kullback distance to show, in the context
of the Leslie model of age distributions, that A yields a measure of the rate at
which a population converges to its stable distribution. Thus the complexity H

yields biologically useful information which is not contained in A.

6. CONCLUSIONS

The theory of multitype branching processes has been shown to provide an
appropriate basis for the description of replication in biophysics. The main
results derived from the deterministic differential equations of conventional
chemical kinetics are valid, on the average, for the corresponding stochastic
processes. This is basically a consequence of the important principle by which
the initial fluctuations are "frozen in". After a transition period the supercriti-
cal multitype branching process either leads to extinction or the total popula-
tion size becomes very large. In the former case there are no fluctuations,

while in the latter the law of large numbers becomes applicable.

Both stochastic and deterministic treatments of replication with errors
yield error threshold relations which state that the maximum lengths of faith-
fully replicated sequences are roughly inversely proportional to the single com-
ponent error rate. The stochastic threshold turns out to be a stronger condi-

tion than the deterministic relation.
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