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This paper considers the problem of minimizing a quasi- 

differentiable function on a set described by equality- 

type quasidifferentiable constraints. Necessary condi- 

tions for a minimum are derived under regularity condi- 

tions which represent a generalization of the well-known 

Kuhn-Tucker regularity conditions. 
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1. Introduction 

In this paper we consider the problem of minimizing a 

quasidifferentiable function [2,5] subject to equality-type 

constraintswhichmay also be described by quasidifferentiable 

functions. A regularity condition is statedwhich in the smooth 

case is similar tothe first-order Kuhn-Tucker regularity condition. 

Sufficient conditions for this regularity qualification to be 

satisfied are then formulated in terms of sub- and superdif- 

ferentials of the constraint function. We also consider cases 

where the quasidifferentiable constraint is given in the form 

of the union or intersection of a finite number of quasidif- 

ferentiable sets: analytical representations of the cone of 



feasible directions (ina broad sense) are obtained for such 

cases. Necessary and sufficient conditions for a minimum of 

a quasidifferentiable function on an equality-type quasidif- 

ferentiable set are proved, as are sufficient conditions for 

a strict local minimum. A method of finding steepest-descent 

directions in the case where the necessary conditions are not 

satisfied (but under some additional natural assumptions) is also 

given. 

The theory is illustrated by means of examples, some of 

which cannot be studied using the Clarke subdifferential or 

other similar constructions. 

Let h be a locally Lipschitzian function which is quasidif- 
- 

ferentiable on En , and Dh (x) = [ - ah (x) ,ah (x) ] be its quasidif- 
ferential at x E En . Then the directional derivative of h 

is given by 

= max (v,g) + min (w,g) . 
*ch (x) wfsh(x) 

Let 

Assume that the set R is non-empty and contains no isolated 

points. 

For every x E R set 



It is clear that yo(x) is a closed cone which depends on h . 
It is not difficult to check that 

+ - 
Y0(x) = U [cone (ah(x)+v) n (-cone)+(ah(x) + w)l. (3) 

vfah(x) 

*zh(x) 

Here and elsewhere cone A is understood to refer to the conical 

+ 
hull of set A , and cone A to the cone conjugate to cone A . 
Example 1. Let R = ix E E2 1 h (x) = 0 1 , where 

h(x) = max {O,hl(x), h2(x)l 

Let xo = (0,O) E E~ : it is clear that xo E R . It is not 

difficult to show that we can take the pairs of sets 

as quasidifferentials of functions hl, h2 and h at xo . Here 

coAdenotes the convex hull of set A . Then we have 



For any x E R introduce the closed cone 

The cone r(x) is called the cone of feasible directions (in a 

*broad sense) of set R at x . 
We say that the regularity condition is satisfied for 

function h at x E R if 

Note that in Example 1 the regularity condition is satisfied 

at x=xo . 

2. Sufficient conditions for the regularity qualification to be 

satisfied 

From the definition of a quasidifferentiable function it 

follows that the directional derivative is a continuous, positively 

homogeneous function of direction g and is defined on En . 
We shall use the following notation. Define 



+ - - ah(x) , hx(g) - max (v,g) , h;(g) - min (wtg) , hx(4) = ag 
v E ~  h (x) - w ~ 8 h  (x) 

- 
where Dh(x) = [ ah(x) , ah(x)l is a quasidifferential of h at 

+ 
x . Then hx(g) = hx(g) + hi(g) . 

We shall now find a quasidifferential of function hx(g) at 

+ 
point g E E~ . Since function h (g) is finite and convex on 

X 

En , and function is finite and concave on En , the sets 

can be taken as subdifferentials and superdifferentials of 

functions hi (g) and hi (g) , where 

Theref ore 

Note that at point g=O an arbitrary quasidifferential of 

function h at x can be taken as a quasidifferential of function 



hx . For all other points g E E we have n 

The converse is also true: any quasidifferential of function 

h at point g=O is a quasidifferential of function h at x . 
X 

Theorem 1. If the function hx(g) has no strict local extrema 

on y (x) then the regularity condition is satisfied for func- 
0 

tion h at point x E 0 . 
Proof. Since the function h(x) is assumed to be locally Lip- 

schitzian, the following inclusion (see [ 3  ] ) holds: 

We shall now try to prove the opposite. Choose an arbitrary 
- 
g E yO(x) and assume that r(x) . Since the function h is 

continuous (see [ 2 ] ) ,  there exists a positive number a such 
0 

that for every a E (O,ao] and any g E S (g) , g # , the 
"0 

inequality h(x+ag) # 0 holds and sign h (x+ag) = constant . 
(Here Sr(z) = {v E En(lv-zl S r .) 

Let us first assume that for alla E (0 ] and g E Sa (g) , g#g , ' "0 0 
the inequality 

holds. Since 

h(x+ag) = h(x) + ahx(g) + o(a,g) 



and 

thenwi thou t  l o s s  of g e n e r a l i t y  w e  can assume t h a t  

hx(g)  2 0  = hx(4 )  W g  E S (g) . From t h e  assumptions of t h e  
"0 

theorem t h e  f u n c t i o n  hx(g)  has no s tr ict  l o c a l  minimum a t  4 
and t h e r e f o r e  i n e q u a l i t y  ( 9 )  is  not  s a t i s f i e d .  

I n  t h e  same way it can be shown t h a t  t h e r e  e x i s t s  an a l  > 0 

such t h a t  f o r  every a  E (0 ,  a l  ] and any g  E S (g) g#4 t h e  " 1 
i n e q u a l i t y  h(x+ag)  < 0 is a l s o  n o t  s a t i s f i e d .  The c o n t r a d i c t i o n  

means t h a t  yo ( x )  C T (x)  and t h u s  proves t h e  theorem. 

Theorem 2 .  I f  t h e  f u n c t t o n  h  has  a  q u a s i d i f f e r e n t i a l  - - 
Dh(x) = [ a h ( x )  - ,- a h ( x ) ]  a t  x  E R s u c h  t h a t  -ah(x)  - n a h ( x )  = 4 , 

t h e n  t h e  f u n c t i o n  h  s a t i s f i e s  t h e  r e g u l a r i t y  c o n d i t i o n  a t  

p o i n t  x  . 
Proof.  Since 0  E y o ( x )  , it fo l lows  from t h e  p r o p e r t i e s  of a  

quas id i f  f e r e n t i a l  of func t ion  hx (g )  a t  0  (see ( 8 )  ) and t h e  

assumptions of t h e  theorem t h a t  n e i t h e r  t h e  necessary cond i t ion  

f o r  a  minimumnorthat  f o r  a  maximum is s a t i s f i e d  f o r  quas id i f -  

f e r e n t i a b l e  f u n c t i o n  hx on En a t  any p o i n t  g  E En . Thus, it 

fo l lows  from Theorem 1 t h a t  f u n c t i o n  h  s a t i s f i e s  t h e  r e g u l a r i t y  

cond i t ion  a t  p o i n t  x  , and Theorem 2 i s  proved. 

This  r e g u l a r i t y  condi t ion  is  f i r s t - o r d e r  and t h e r e f o r e  it 

possesses  a l l  t h e  d e f i c i e n c i e s  c h a r a c t e r i s t i c  of f i r s t - o r d e r  

cond i t ions .  



W e  s h a l l  now cons ide r  an example i n  which t h i s  cond i t i on  

i s  no t  s a t i s f i e d .  

Example 2 .  Let  

where 

Then .Q = co{-1 , l )  . 
The f u n c t i o n  h i s  smooth and ach ieves  i t s  minimum va lue  on 

E l  a t  every p o i n t  x  E R . I t  i s  c l e a r  t h a t  t h e  r e g u l a r i t y  

cond i t i on  i s  s a t i s f i e d  a t  every  p o i n t  o f  t h e  se t  R except  f o r  

p o i n t s  -1 and +I . A t  t h e s e  p o i n t s  yo ( x )  = E l  , r ( 1  ) = -g and 

r ( - 1 )  = g , where g 1 0  . 
Let hi , i E I=1:N , be l o c a l l y  ~ i p s c h i t z i a n  f u n c t i o n s  which - 

are q u a s i d i f f e r e n t i a b l e  on En , and l e t  Dhi ( x )  =[ ahi ( x )  , ahi ( x )  1 

be t h e i r  q u a s i d i f f e r e n t i a l s  a t  x  E El . S e t  



( a )  A s s u m e  t h a t  R = n Ri . Then 
i E I  

where h ( x )  = max { l h i ( x ) l  I i E  I }  . 
I n  t h e  case where t h e  set Q i s  non-empty and f u n c t i o n  h  

s a t i s f i e s  t h e  r e g u l a r i t y  c o n d i t i o n  a t  some p o i n t  x  E  Q , w e  have 

where 

+ - + 
T(v,w) = cone ( a h ( x )  +v) n [ (-cone) ( a h  ( x ) + w )  1 

( b )  L e t  us  now c o n s i d e r  t h e  case where  Q i s  t h e  union of a  

f i n i t e  number of  q u a s i d i f f e r e n t i a b l e  sets: 



Then 

where 

h(x) = min {lhi(x)I 1 i E I} . 

If, in addition, the regularity condition is satisfied by func- 

tion h at point x E Q , then 

r(x) = y0(x) = u yi0(x) = u T(vitwi) I 
iEI (x) iEI (XI 

where I(x) = {i E I I x E Q) . 

3. Necessary conditions for a minimum of a quasidifferentiable 

function on an equality-type quasidifferentiable set 

Let quasidifferentiable functions f and h be locally Lip- 

schitzian on En and let 

be their quasidifferentials at some point x E Q . Assume also 

that the set Q is described by relation (2) . We shall consider 
the following problem: 

Find 

min f(x) . 
xEQ 



Theorem 3 ( s e e  [ 6 ] ) .  I f  x* i s  a  s o l u t i o n  t o  ( 1 2 )  and i f  

* r C r (x  ) i s  a  convex  cone t h e n  

Theorem 4. Assume t h a t  f u n c t i o n  h s a t i s f i e s  t h e  r e g u l a r i t y  
* * 

c o n d i t i o n  a t  some p o i n t  x E R . Then for  x t o  be a  minimum 

p o i n t  o f  f on R i t  i s  n e c e s s a r y  t h a t  

-d f (x*)  c n [ i f  (x*) - T + ( V , W ) I  . 
vEah (x*) 

w€zh (x*) 

* 
Proof.  Let  x be a minimum po in t  of funct ion  f on R . Then 

it fol lows from Theorem 3 and (3 )  t h a t  

Note t h a t  

+ - * 
T ( v , w )  = c 1  cone(ah(x*)  +v) - cone (ah (x  )+w) 

* - * 
Inc lus ion  (14) holds f o r  every v E a h ( x  and w E a h ( x  , and 

t h e r e f  o r e  

This  completes t h e  proof .  



I f  s e t  R is  d e s c r i b e d  by ( 1 0 )  and func t ion  h  s a t i s f i e s  t h e  
* * 

r e g u l a r i t y  cond i t ion  a t  some p o i n t  x  E Q , then  f o r  x  t o  be 

a  minimum p o i n t  of f  on R it i s  necessary t h a t  

- * - a f ( x  ) c + 
* n -  * [ i f  (x*)  - c l  ( 2 T (vi,wi))'1 . 

v l E i h l  ( X  ,w,Eah, (x  i E I  ..... * - * 
vNEihN(x , w N ~ a % ( x  1 

I f  set R is  desc r ibed  by ( 1 1 )  and f u n c t i o n  h  s a t i s f i e s  t h e  
* * 

r e g u l a r i t y  cond i t ion  a t  some p o i n t  x  E R , t h e n  f o r  x  t o  be 

a  minimum p o i n t  of f  on Q it is necessary  t h a t  

- 
n * 

-af(X*) c * X- [ a f ( x  - ) - T + ( v i t w i ) ~  . 
i E I  ( X  ) viE2hi(x ) 

wi€dhi (x*) 

* 
A p o i n t  x  f o r  which cond i t ion  (13) i s  s a t i s f i e d  w i l l  be c a l l e d  

an inf-stationary point of  func t ion  f  on set  R . 
Example 3. L e t  f u n c t i o n  f  be s u p e r d i f f e r e n t i a b l e  on E2 ( i . e . , .  

- 
such t h a t  it has  a  q u a s i d i f  f e r e n t i a l  of t h e  form Df ( x )  =[ ( 9  1 , a f  (x )  ! ) 

a t  each x  E  E2 . The set  R is  descr ibed  by t h e  r e l a t i o n  

R = { x = ( x ( ' ) ,  x ( ~ ) )  E  Eg h ( x )  = 01 , where h ( x ) = ( l x ( ' )  ~ + x ( ~ )  / . 
Consider t h e  p o i n t  xo = ( 0 , O )  . W e  have 

I t  i s  easy t o  check t h a t  



n T+(v,w) = cone (co{ (-1 ,-I) , (1 ,-I) 1) . 
+ah (x0) 

wESh (xo) 

It is clear that function h satisfies the regularity condition 

at xo . Therefore for xo to be a minimum point of f on it is 

necessary that 

- 
a f ( ~  ) c cone (co{(-1,-1) (1,-111) 

0 

u .  Steepest-descent directions 

Assume that point x is not an inf-stationary point of 

quasidifferentiable function f on quasidifferentiable set $2 , 

and that f satisfies the regularity condition at x . 
We shall now find a steepest-descent direction of function 

f on 0 at point x . 
First compute 

go = arg min 
ag figl=l 

We have 

0 > min Xk.L = mi, min max (z,g)= 
ugtl=l ag I I ~ I I = I  w ~ 6 f ( ~ )  ZE~~(X)+W - 
gEr (XI gEr (XI 

- - gin min max (z,g)= 
*af(~) I ~ H = I  ZE~~(X)+W 

*yo (x) 



= gin min min - min Az-tl) = 
wfaf (x) vl€ah(x) - wl~ah(x) ~ ~ a f  - (x) +W 

t€T+(V' .wl) 

= - max min 
wfaf(x) ZE~~(X)+W - 

- - 
Let zoE?f (x)+wo . woEaf(xo) . voEah(xo) . wdEah(x) t O ~ + ( v 1  rwl 

be such that 

I z ~ - ~ ~ U  = max min Iz-tll . 
wf3f (XI z ~ a f  - (x) +W 
wl~zh (X) t€~+(v' r ~ ' )  

vlEah(x) - 

direction of quasidifferentiable function f on set 0 (described 

by (2)) at point x . This steepest-descent direction ray not 

be unique. 

5. Sufficient conditions for a strict local minimum 

If quasidifferentiable functions f and h are directionally 

differentiable at x E En . then 



where 

A s s u m e  t h a t  t h e  convergence descr ibed  by (15) is  uniform with 

r e spec t  t o  g E E~ , iqll=l . 
Denote by r (w ,v ' ,w ' )  t h e  r a d i u s  of t h e  l a r g e s t  b a l l  centered  

a t  t h e  o r i g i n  which can be i n s c r i b e d  i n  t h e  se t  

where w E df ( x )  , w '  E z h ( x )  , v '  E - ah (x )  . Let 

r ( x )  = min r ( w , v ' , w ' )  . 
*af 

v '€ah - (x) 
w ' ~ d h  (x)  

Theorem 5. I f  s e t  R i s  d e s c r i b e d  by  (2), p o i n t  xo E R and 

- 
- a f ( x 0 )  C i n t  n [ a f ( x o )  - T + ( V ' ~ W ' ) I  t 

v tEah(x0)  - 

t h e n  

u min 
ag 

= r ( x o )  > 0 . 
gEy0 (x0 



Proof.  I f  i n c l u s i o n  (16) i s  s a t i s f i e d  a t  xo E R , then f o r  
- 

every w E a f ( x o )  , v '  E - a h ( x o )  , w '  E Zh(x we have 0 

min max (v ,g )  = r ( w , v l , w ' )  . 
g w ( v l  , W I )  v ~ a f ( ~ ~ )  - +W 

UgA=l 

But s i n c e  

then 

a f ( x 0 )  
rnin - - 

~ E Y  0 (xo a g  

ng1=1 

min min max (vrg)  = min min 
'€ah (xo)  1 , ) vEaf (xO)  +W & j f ( x o )  w t ~ z h ( x 0 )  v  - 

- - ;in min min r ( w , v l  , w l ) = r ( x o )  
6 a f ( x 0 )  v 1 ~ d h ( x 0 )  W I E Z ~ ( X ~ )  

I t  i s  clear t h a t  r ( x o )  > 0 , t h u s  proving t h e  theorem. 

Theorem 6. I f  i n c l u s i o n  (16) i s  s a t i s f i e d  a t  xo E R , t h e n  

x  i s  a  s t r i c t  l o c a l  minimum of f  on R and t h e r e  e x i s t  numbers 0 

E > 0 and 6 > 0 such t h a t  



Proof.  Take 2 > 0 and set  ( see  [ 1 ] ) 

The set  A_(xo)  C E i s  c l e a r l y  compact, and i f  2 = 0 then 
E 

n 

( x O )  = y ( x  ) fl Sl ( 0 )  . I t  follows from Theorem 5 t h a t  t h e r e  0 0 

e x i s t s  an r ( x o )  > 0 such t h a t  

V min 
ag 

= r ( x o )  > 0 , 
+Ao (xo)  

and t h e r e f o r e  w e  can f i n d  > 0 and ;(x0) > 0 such t h a t  

a f  (x,) - 
min 

ag 
= r ( x o )  > 0 . 

(xo 
E 

Fix  6 > 0 and choose an a r b i t r a r y  x E Q n S6 ( x O )  . I f  X=llx-xol 

1 and g=- (x-xo) then X 

a f  (xO)  0 ( A  ,g )  
f  (x)  - f  (xo)  = 

l g  
+ X i 

where 

uniformly with r e s p e c t  t o  g , igll=l . S e t  t=min E , 7 r ( x 0 )  . 1 1 -  1 
Then t h e r e  e x i s t s  a 6 > 0 such t h a t  

\ I 



Given such a 6 , equations (17) are valid for any x E R n S6 (xO) . 
This gives us 

- - 
where E = r(xo) - r . 
Example 4. Consider the same function f and set R as in Example 

3. If the inclusion 

- 
af(xo) c int cone ( 0 - 1 - 1  , (1,-1)~) 

is satisfied at xo = (0,O) E R , then xo is a strict local 

minimum point of function f on set R . 

6. Reduction to the unconstrained case 

Consider the function 

s t  
where f = inf f(x) . Function F is quasidifferentiable on En . 

xER 

It is clear that if a point xo is a solution to problem (12) 

then xo is also a minimum point of F on En . We shall now write 

down a necessary condition for F to have a minimum on En at xo . 



Since 

aF(x0) = CO{A,B~C) - 

where 

and 

then the following result holds. 

Pr.oposi.tion. - F o r  a point x E !il to be a minimum point of f o n  !il 
0 

it is necessary that 

Remark. In some cases condition (19) is a worse requirement for 

an extremum than condition (13). This can be illustrated by 

means of an example. 

Example 5. Consider the same function h as in Example 3: 



Let xo = (0,O) . It is not difficult to check that 

and 

However, inclusion (20) implies that any quasidifferentiable 

function f satisfies (19) (the necessary condition for a 

minimum on the set R) at the point xo= (0, 0) . 
Theorem 7. If functions f and h are quasidifferentiable, the 

corvergence in (15) is uniform with respect to g E E Ugll=l , n - 
and -aF(xo) C int cF(xo) , then xo E R is a strict local minimum 

point of f on the set R described by (2). 

The proof is analogous to that of Theorem 1 1  in [ 4 ]  . 
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