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PREFACE

The difficult problem of minimizing a function subject to
equality-type constraints is of considerable importance in
mathematical programming. 1In this paper, the author considers
the case in which both the function to be minimized and the
function describing the set over which minimization is to be
performed are quasidifferentiable.

This paper is a contribution to research on nondifferen-
tiable optimization currently underway within the System and
Decision Sciences Program.
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This paper considers the problem of minimizing a quasi-
differentiable function on a set described by equality-
type quasidifferentiable constraints. Necessary condi-
tions for a minimum are derived under regularity condi-
tions which represent a generalization of the well-known

Kuhn-Tucker regularity conditions.
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1. Introduction

In this paper we consider the problem of minimizing a
quasidifferentiable function [2,5] subject to equality-type
constraints whichmay also be described by quasidifferentiable
functions. A regularity condition is stated which in the smooth
case is similar to the first-order Kuhn-Tucker regularity condition.
Sufficient conditions for this regularity qualification to be
satisfied are then formulated in terms of sub- and superdif-
ferentials of the constraint function. We also consider cases
where the quasidifferentiable constraint is given in the form
of the union or intersection of a finite number of quasidif-

ferentiable sets: analytical representations of the cone of



feasible directions (in a broad sense) are obtained for such
cases. Necessary and sufficient conditions for a minimum of

a quasidifferentiable function on an equality-type quasidif-
ferentiable set are proved, as are sufficient conditions for

a strict local minimum. A method of finding steepest-descent
directions in the case where the necessary conditions are not
satisfied (but under some additional natural assumptions) is also
given.

The theory is illustrated by means of examples, some of
which cannot be studied using the Clarke subdifferential or
other similar constructions.

Let h be a locally Lipschitzian function which is quasidif-
ferentiable on En , and Dh(x) = [Qh(x),Sh(x)] be its quasidif-
ferential at x € En . Then the directional derivative of h

is given by

280 . max (v,e) + min (w,q) . (1)
El vE€dh (x) wEadh (x)
Let
Q= {x € Enlh(x) =0} . (2)

Assume that the set  is non-empty and contains no isolated
points.

For every x € Q set



It is clear that Yo(x) is a closed cone which depends on h .

It is not difficult to check that

Yo(x) = U [cone” (3h(x)+v) N (-cone) ¥ (3h(x) + w)]. (3)
vEdh (x)

w€5h(x)

Here and elsewhere cone A is understood to refer to the conical
hull of set A , and cone+ A to the cone conjugate to cone A .
Example 1. Let @ = {x € E2|h(x) = 0} , where

(1) _(2)

x = (x ' X ) € E2

h(x) = max {O,h1(x), hz(x)}

h,(x) = ~x)2 - x2 a2 4y
Let Xy = (0,0) € E2 : it is clear that X €Q . It is not

difficult to show that we can take the pairs of sets

Dh, (xy) = [{(0,4)} , {(0,0)})

Dh(xo) = [CO{(0’4) r (012)} r {(Olo)}]

as quasidifferentials of functions h1, hz and h at Xg - Here

co A denotes the convex hull of set A . Then we have



U [cone+(v) N (econe)+(5h(x0))] =

Yaq(xn)
070 VGQh(xo)

U (A,0) =E
AEE1

7 x 10} .
For any x € Q introduce the closed cone

T(x) ={g € En|3 A> 0, {x b ox;=x , x,#x , x,€Q (4)

X, = X
1

g g=Agn)-.
I, ~x] 0’ 0

The cone T(x) is called the cone of feasible directions (in a
broad sense) of set Q at x .
We say that the regularity condition is satisfied for

function h at x € Q if

MN'x) = YO(X) . (5)

Note that in Example 1 the regularity condition is satisfied

at x=x0 .

2. Sufficient conditions for the regularity qualification to be

satisfied

From the definition of a quasidifferentiable function it
follows that the directional derivative is a continuous, positively
homogeneocus function of direction g and is defined on En .

We shall use the following notation. Define



oh (x) + - _ .
h (g) = === , h_(g) = max (v,g9) , h_(g) = min (w,qg)
x 9 g X vE€dh (x) X wEdh (x)
where Dh(x) = [dh(x) , dh(x)] is a quasidifferential of h at

+ -
x . Then h (g) = h_(9) + h (g) .
We shall now find a quasidifferential of function hx(g) at
point g € En . Since function h;(g) is finite and convex on

E, , and function h;(g) is finite and concave on E_ , the sets

ah’(g) = cof{v|v € R'(x)} , 3hy(q) = {0} ,

(6)

ah_(g) = {0} , dh_(g) = colw|w € R (x)}

can be taken as subdifferentials and superdifferentials of

functions h;(g) and h;(g) , where

R*(x) = {v € 3h(x) | (v,9) = h} ()]}
R (x) = {w € 3h(x)|(w,g) = h (9} .
Therefore
Dh(g) = [3h}(g) , dh_(9)] . (7)

Note that at point g=0 an arbitrary quasidifferential of

function h at x can be taken as a quasidifferential of function

r



hx . For all other points g € En we have

3h_(g) C 3h(x) , 3h_(g) C 3h(x) . (8)

The converse is also true: any quasidifferential of function
hx at point g=0 is a quasidifferential of function h at x .
Theorem 1. If the funetion hx(g) has no strict local extrema
on Yo(x) then the regularity condition is satisfied for func-
tion h at point x € Q .

Proof. Since the function h(x) is assumed to be locally Lip-

schitzian, the following inclusion (see [3]) holds:
F(x) Cygy(x) .

We shall now try to prove the opposite. Choose an arbitrary
§ € yo(x) and assume that § & T(x) . Since the function h is
continuous (see [2]), there exists a positive number ao such
that for every a € (0,a,] and any g € Sao(a) , g #9g , the
inequality h(x+ag) # 0 holds and sign h(x+ag) = constant .
(Here Sr(z) = {v € En|ﬂv-zﬂ <r}.)

Let us first assume that foralla € (0,a,] and g € S (3), g#9 .

0
the inequality

h(x+ag) > 0 (9)
holds. Since

h(x+ag) = h(x) + ahx(g) + o(a,qg)



and

a~+0

then without loss of generality we can assume that
h (g) 2 0 = h_(9) Vg € sao(a) . From the assumptions of the
theorem the function hx(g) has no strict local minimum at §
and therefore inequality (9) is not satisfied.

In the same ﬁay'it can be shown that there exists an a, >0
such that for every a € (0,a1] and any g € Sa (§) ’ g#a , the

inequality h(x+ag) < 0 is also not satisfied.1 The contradiction
means that Yo(x) C I'(x) and thus proves the theorem.
Theorem 2. If the function h has a quasidifferential
Dh(x) = [dh(x) ,_Sh(x)] at Xx € @ such that -3h(x) N gh(x) =¢ ,
then the function h satisfies the regularity condition at
point X .
Proof. Since 0 € Yo(x) , it follows from the properties of a
quasidifferential of function hx(g) at 0 (see (8)) and the
assumptions of the theorem that neither the necessary condition
for a minimumnor that for a maximum is satisfied for quasidif-
ferentiable function hx on En at any point g € En . Thus, it
follows from Theorem 1 that function h satisfies the regularity
condition at point x , and Theorem 2 is proved.

This regularity condition is first-order and therefore it
possesses all the deficiencies characteristic of first-order

conditions.



We shall now consider an example in which this condition

is not satisfied.

Example 2. Let

0} ,

Q= {x € E1|h(x)

where

(x-1)2 , X > 1

h(x)

A
—

0 ’ -1 € x

(X+1)2 ’ X < -1 -

Then Q@ = co{-1,1} .

The function h is smooth and achieves its minimum value on
E1 at every point x € @ . It is clear that the regularity
condition is satisfied at every point of the set Q2 except for

points -1 and +1 . At these points Yo(x) = E r(1) = -g and

1 ?
''(-1) =g , where g 2 0 .

Let h, , i € I=1:N , be locally Lipschitzian functions which
are quasidifferentiable on En , and let Dhi(x)=[§hi(x), ahi(x)]

be their quasidifferentials at x €EE Set

] -
Q; = {x €E_ | h,(x) =0},

ahi(x)
={qg € -
Yio=)9 S E | —Bg— < 9 -



(a) Assume that Q = N Q. . Then
. i
i€r
Q= {x € E, | h(x) = 0}, (10)

where h(x) = max {|hi(x)| | 1 €1} .
In the case where the set Q is non-empty and function h

satisfies the regularity condition at some point x € @ , we have

r'(x) = YO(X) = N Yio(x) = N U T(v.,wi) =
i€r i€I v;€dh, (x)
wieahi(x)
= U T(v1,w1,...,vN,wN) ’

v Eah1(x);w1€ah1(x)

:
VE2hy (x) ;W €Fhy (x)

- where
T(v,w) = cone” (5h(x)+v) N [(-cone)+(gh(x)+w)]
T(V., )W, reee, Vo, ,W,.) = N T(v,,w.) .
1 1 NN i€I i" i

(b) Let us now consider the case where  is the union of a

finite number of quasidifferentiable sets:

R = U Q. . (11)
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Then

Q= {x €E | h(x) 0} ,
where

h(x) =min {|[h;(x)| | 1 € T} .

If, in addition, the regularity condition is satisfied by func-

tion h at point x € Q , then

'(x) = y,(x) = U v.,(x) = U T(v,,w.) ,
0 i€r (x) 0 i€r(x) %
where I(x) = {1 €I | x € Q} .

3. Necessary conditions for a minimum of a quasidifferentiable

function on an equality-type quasidifferentiable set

Let quasidifferentiable functions f and h be locally Lip-

schitzian on En and let
DE(x) = [3f(x) , 3£(x)] , Dh(x) = [dh(x) , dh(x)]

be their quasidifferentials at some point x € Q . Assume also
that the set Q is described by relation (2) . We shall consider
the following problem:

Find

min f(x) . (12)
x€Q
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Theorem 3 (see [6]). If x* is a solution to (12) and <f

*
I CT(x ) 28 a convex cone then

Saf(x™) c af(x) -1t .

Theorem 4. Assume that function h satisfies the regularity
. * * ..
condition at some point x € . Then for X to be a minimum

point of £ on Q 2t is necessary that

Sfxy ¢ n L [3Ex) - TV (v,w ] . (13)
vEdh (x )

wEdh (x )

*
Proof. Let x be a minimum point of function f on Q@ . Then

it follows from Theorem 3 and (3) that

S3f(x") CAf(x) - TH(v,w) , v € dh(x) , w € 3h(x) . (14)

Note that
T (v,w) = cl (cone(gh(x*)+v) - cone (Qh(x*)+w0) .

Inclusion (14) holds for every v € Qh(x*) and w € gh(x*) » and

therefore
_Sf(x*) C n ., [gf(x*) - (v, w)]
vEdh(x )
wEdh (x)

This completes the proof.
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If set @ is described by (10) and function h satisfies the
: * *
regularity condition at some point x € Q@ , then for x to be

a minimum point of £ on © it is necessary that

-3f(x") C N o Gy f) -l (T Thv e .
v,€3h, (x ) ,w,€h, (x ) i€1

If set 2 is described by (11) and function h satisfies the
* *
regularity condition at some point x € Q , then for x to be

a minimum point of £ on @ it is necessary that

- * * +
-3f(x ) C N N [af(x ) - T (v,,w)] .
1€1(x") v ,€h, (x*) ol

wieahi(x )

A point x* for which condition (13) is satisfied will be called
an inf-stationary poinﬁ of function f on set Q .

Example 3. Let function f be superdifferentiable on E, (i.e.,"’

2
such that it has a quasidifferential of the form Df(x)=[{0},5f(x)l)

at each x € E The set (@ is described by the relation

5 -
Q= {x=(x(1), x(z)) € E, | h(x) = 0} , where h(x)= |x(1)|+x(2) .
Consider the point Xy = (0,0) . We have
Qh(xo) = co{(2,2) , (-2,2) , (0,0)}
3h(x,) = col(=1,-1) , (1,-1)} .

It is easy to check that
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Yalxy) = U (A, =|A]) ,
070 AEE
:
N 1 (v,w) = cone (col(-1,-1) , (1,-1)}) .
vEdh(x,)
wesh(xo)

It is clear that function h satisfies the regularity condition

at x Therefore for x, to be a minimum point of £ on Q it is

0"
necessary that

Ef(xo) C cone (co{(-1,-1) , (1,-1)}) .

u. Steepest-descent directions

Assume that point x is not an inf-stationary point of
quasidifferentiable function f on quasidifferentiable set Q ,
and that f satisfies the regularity condition at x

We shall now find a steepest-descent direction of functiocn
f on @ at point x .

First compute

g .
0 hgl=1 9g
g€r (x)
We have

0 > min -i2%51-= min min max (z,9) =
Igl=1 g Igl=1 we€df(x) z€If(x)+w
g€T (x) g€T (x)

= min min max (z,9) =

wedf (x) Iglh=1  zEIf (x)+w
gGYO(x)
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min min min (= min Iz-tl) =
wEdf (x) v'Edh(x) w'€dh(x) 2€9f(x)+w

t€T+(v',w')

- max min Rz-tl .
wed £ (x) 2€3f (x) +w

v'€dh(x) . t€TT(v',w')
w'€5h(x)

- = .
Let z Géf(x)+w0 ’ woeaf(xo) ’ VOGQh(xo) , w'€h(x) , tOET (v',w')

0 0

be such that

ﬂzo-toﬂ = max min lz-tl
wedf (x) 2z€If (x)+w

w'€dh (x) teT¥ (v',w')

v'€dh(x)
Zo ~ %
Then the direction 99 = -( ) is a steepest-descent
ﬂzo - tO“

direction of quasidifferentiable function f on set @ f{described

by (2)) at point x . This steepest-descent direction may not

ke unique.

5. Sufficient conditions for a strict local minimum

If quasidifferentiable functidns f and h are directionally

differentiable at x € En_, then
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f(x+ag) = £(x) +(,_2§éil.+ o (a,q)
h(x+ag) = h(x) +cx—2%é§l-+ 01(a,g) '
where
o(a,q) o 2aled) 0 . (15)
o ' o

a~+0 o-+0

Assume that the convergence described by (15) is uniform with
respect to g € E_ , fgl=1 .
Denote by r(w,v',w') the radius of the largest ball centered

at the origin which can be inscribed in the set

Af (x) + w ~ T+(v',w') ’

where w € sf(x), w' € sh(x) » V' € dh(x) . Let
r(x) = ®min  r(w,v',w')
wEd f (%)
v'€dh (x)
w'€5h(x)

Theorem 5. If set Q is described by (2), point X € Q and
-9f(x,) C int N [3f(xy) - TH(v W], (16)
V'GQh(xo)
w'Gah(xo)
then
af (x)
min _a_g_ = r(xo) >0

gGYO(xo)
Igl=1
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Proof. If inclusion (16) is satisfied at X, € Q , then for

every w € 5f(x0) , v € Qh(xo) , W' € gh(xo) we have

min max (v,g) = xr(w,v',w') .
geET(Vv',w") VEQf(x0)+w

fTgh=1

But since

Yo(xo)-_- U T(V'IW') ?
V'Egh(xo)
w'eah(xo)
then
af(xo)
min 3 -
g€y, (%) 9
Igh=1
min min min min max (v,g9) =
w€5f(x0) w'EEh(xo) v'EQh(xo) E}(V',w') vegf(x0)+w
gh=1 .
= min min min - r(w,v',w')=r(x,)
wEdf (x,) V'E3h(x,) w'Edh(xj)

It is clear that r(xo) > 0 , thus proving the theorem.
Theorem 6. If inclusion (16) is satisfied at X, € Q , then

X. 18 a strict local minimum of £ on Q and there exist numbers

0
€ > 0 and 6§ > 0 suech that

f(x) 2 f(xo) + elx - x0" Vx €an Sd(xo)
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Proof. Take € > 0 and set (see [1])

ah(xo)
ag

A
™

AE(XO) ={9 € E_ ’ lgl=1 , ‘

The set A~(x0) - En is clearly compact, and if € = 0 then
€
Ao(xo) = Yo(xo) n S1(0) . It follows from Theorem 5 that there

exists an r(xo) > 0 such that
af(xo)

min — = r(x.) > 0,
ger(xo) 99 0

and therefore we can find € > 0 and f(xo) > 0 such that

af(xo)
min — 35
geA_(x,) E
€

f(xo) >0 .

Fix § > 0 and choose an arbitrary x € Q N Sé(xo) . If X=ﬂx-x0|

and g=€%(x-x0) then

Af(x,) o(Ar,9)
f(x) - f(xo) = A 39 + 7y
(17)

dh(x,) o,(x,9)

— g - \T x ]
where

o(x,9) 01(2/9)

Y o, y 0
A-=+0 A-+0

uniformly with respect to g , lIgl=1 . set f=min§g,%rf(xo)§ .

Then there exists a § > 0 such that
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max

o, (A,q9)
‘M‘ ) _1__) < £ VYAE(0,8] . (18)

A

Given such a § , equations (17) are valid for any x € @ N Sd(xo) .

This gives us
£(x) - f(x4) 2 Ix - xoﬂe ’
where € = ;(XO) - T .
Example 4. Consider the same function f and set Q as in Example
3. If the inclusion

5f(x0) C int cone (co{(=1,-1) , (1,-1)1})

is satisfied at Xy = (0,0) € @ , then X is a strict local

minimum point of function f on set Q .

6. Reduction to the unconstrained case

Consider the function
F(x) = max {f(x) - £ , h(x) , =h(x)} ,

%
where £ = inf f(x) . Function F is quasidifferentiable on En .
xX€Q

It is clear that if a point X, is a solution to problem (12)
then Xq is also a minimum point of F on En . We shall now write

down a necessary condition for F to have a minimum on En at Xq -
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Since
IF (x,) = co{a,B,C} ,
where
A = 3f(xy) - 3h(xy) + 3h(xy)
B = 23h(x,) - 3£(x)
¢ = -23h(x,) - £ (x,)
and

aF(x,) = 3f(xy) + 3h(xg) = 3h(xg) .

then the following result holds.

Proposition. -For apointx, € Q to be a minimum point of £ on Q

0

it 18 necessary that
-3 c
aF(xo) QF(xo) . (19)

Remark. In some cases condition (19) is a worse requirement for
an extremum than condition (13). This can be illustrated by
means of an example.

Example 5. Consider the same function h as in Example 3:

h(x) = ,|x1| + xz‘ , X = (x(1) , x(Z)) € E,
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Let x0 = (0,0) . It is not difficult to check that

3h(x,) - dh(xy) = co {(1,1) , (-1,1) , (3,3) , (-3,3)]
23h(x,) = co {(0,0) , (4,4) , (=4,4))
and
3h(x,) - 3h(x,) C 23h(xy) - (20)

However, inclusion (20) implies that any quasidifferentiable
function f satisfies (19) (the necessary condition for a
minimum on the set 1) at the point x0=(0,0) .

Theorem 7. If functions £ and h are quasidifferentiable, the
convergeéce in (15) s uniform with respect to g € E Igl=1 ,
and —SF(xo) C int QF(xo) , then X € Q 18 a strict local minimum
point of £ on the set Q deseribed by (2).

The proof is analogous to that of Theorem 11 in [4] .
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