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PREFACE 

Many of today's most significant socioeconomic problems, such as slower 
economic growth, the decline of some established industries, and shifts in pat- 
terns of foreign trade, are international or transnational in nature. But these 
problems manifest themselves in a variety of ways; both the intensities and the 
perceptions of the problems differ from one country to another, so that inter- 
country comparative analyses of recent historical developments are necessary. 
Through these analyses we attempt to identify the underlying processes of 
economic structural change and formulate useful hypotheses concerning 
future developments. The understanding of these processes and future pros- 
pects provides the  focus for IIASA's project on Comparative Analysis of 
Economic Structure and Growth. 

Our research concentrates primarily on the empirical analysis of interre- 
gional and intertemporal economic structural change, on the sources of and 
constraints on economic growth, on problems of adaptation to sudden changes, 
and especially on problems arising from changing patterns of international 
trade, resource availability, and technology. The project relies on IIASA's accu- 
mulated expertise in related fields and, in particular, on the data bases and sys- 
tems of models that have been developed in the recent past. 

This paper is concerned with the solution algorithm of a nonlinear mul- 
tisectoral model. The model has been developed at IIASA and falls into the class 
of so called computable general equilibrium models. The economic theoretical 
properties of the model, a s  well as some results of simulations based on it, have 
been reported elsewhere. 

An atoli Smyshlyaev 
Project Leader 

Comparative Analysis of 
Economic Structure and Growth 
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ON THE SOLUTION OF A COMPUTABLJ?, 
GENERAL EQUILIBRTUM MODEL 

Jdzsef Sivak, Arnbrus Tihanyi and Ern6 Zalai 

The 1960s and 1970s were characterized by relatively rapid economic 

growth and growth itself became a major concern for economic policy makers. 

Also during this period, national economic planning in the socialist and 

developing countries became an increasingly sophisticated resource allocation 

exercise. Planners, interested in various alternatives for allocating resources 

and in the resulting efficiency gains, were soon able to call upon large-scale 

linear models of the input-output and programming types.' 

In these planning exercises, price and relative cost considerations were 

left outside of the models themselves and a single decision-making unit (and 

often a single criterion) was generally assumed. These obvious weaknesses and 

the often exaggerated but close relationship between the principles of 

mathematical programming and Walrasian general equilibrium theory led to  

'see, for example, Korna? (1074), Manne (1074), and Taylor (1075) on the use of these models in plan- 
ning. 



the emergence of computable general equilibrium models in the field of 

economic policy analysis and planning. 

The growing number of publications in this field clearly demonstrates that  

we are witnessing a shift in the methodology concerned with the repercussive 

processes in a national economy. Apart from Johansen's (1959) pioneering 

study, it suffices to mention here just a few representative examples, such as 

Bergman and Pdr (1980), Dervis e t  al. (1982). Dixon e t  al. (1982), and Kelly e t  

al. (1983). Scarf's (1973) algorithm designed for computing fixed points 

(equilibria) gave tremendous impetus to the development of later more effi- 

cient solution algorithms. 

In this paper we are concerned with one specific model developed by Zalai 

(1980) and, in particular, with its solution technique. This model was designed 

for planning purposes and particular emphasis was laid on some of the concep- 

tual aspects of adopting such models for central planning. These, however, are 

not the subject of the present paper. 

There is no single prototype model in the field of applied general equi- 

brium analysis and there are no global algorithms among the solution tech- 

niques. Although Scarfs algorithm for finding a fixed point has enabled users 

to solve general equilibrium models, i t  is known that  fixed-point algorithms can 

only be used for solving rather small models. Thus larger models must be 

solved using various heuristic methods. 

Our experience with a solution technique based on Newton's iteration 

method is presented later in the  paper. Another, rather common technique is 

to  solve the model in question using a series of linear programming problems. 2 

I t  is frequently useful to analyze the mathematical structure of each problem 

so as to  discover the most appropriate and efficient solution techniques. We fol- 

lowed essentially this approach when solving the tentative model developed for 

the Hungarian economy. 

2 ~ e e ,  for example, Manne o t  al. (lQBO), Ginsburgh and Waelbroeck (lQBl), and Pdr st al. (1982). 



2. MATHWTICAL CHARACTEXRATION OF THE MODEL TO BE SOLVED 

2.1. The Equation System 

As mentioned in the Introduction, we analyzed the solution possibilities of 

the model outlined in Zalai (1980). The original description of the model, 

including the list of variables and parameters. can be found in Appendix I. The 

model is a nonlinear equation system a n d  throughout our discussion we will 

refer to the  equations by the numbers given in Appendix I. Thus, for example, 

eqn. (20) refers to Z, = Zu + qd. Some of the functional forms were not 

specific in this version, notably the production capacity functions. Therefore 

eqns. (8), (11). and (12) had to be made concrete by adopting Cobb-Douglas-type 

production functions. Instead of the original relations we employed eqns. (F6), 

(F?), and (Fa), whose derivation is documented in Appendix 11. Before present- 

ing the solution algorithm adopted we will briefly characterize the mathemati- 

cal structure of the model. 

First of all, we call attention to the fact that the model is linearly homo- 

geneous in a set  of variables. More precisely, there is a group of variables z 

such that if (zo,yo) is a feasible solution of the model, then (Xzo,yo) is also a 

feasible solution for any positive A. Therefore, the usual problem of numeraire 

or normalization appears in this model too. There a re  several alternative ways 

to handle this problem. The logic of the solution algorithm we adopted sug- 

gested fixing total consumption expenditure (E) a t  some arbitrary level, which 

we did as follows: 

This could thus be added as an additional constraint to the model described in 

Appendix I; alternatively (as we did), E can be treated as a constant parameter 

rather than a variable. 

The resulting equation system specifying the relationships between the 

variables of the model is presented in Table 1. From now on, this system of 

equations is considered to be the mathematical basis of the model, and any 

mention of "the model" refers to this system. 







2.2. The Sys tern of Constraints 

Let E denote the system of equalities in the model and let e EE denote an 

equality of the system. E is the union of its finitely-many disjoint subsets 

EkCE, k E K  A l 1 ,  2. ..., 33 1, and E is specified by specifying Ek, k E K .  Note that  - 
the "serial number" ~ E K  in e cEk means that e belongs to the  class of equa- 

tions Ek and, in turn,  the classification E = u Ek shows that  we will handle the 
keK 

equalities in Ek(k E K )  in the same way. We will speak, somewhat imprecisely, 

about the "k th equality" when referring to the I Ek 1 equalities in Ek, purely for 

the sake of simplicity. 

Using the notation K1 12, 4, 5, 6, 7, 25, 26, 27, 301 and K2 A K\ Kl yields: - - 

We now discuss the mathematical relations specified by the equalities e EE 

in more detail. Let Q denote the set  of mathematical objects in which the 

mathematical relations between some groups of elements are se t  up  in the 

model specification. Let q E Q  denote an element in Q .  Partition se t  Q into two 

disjoint subsets Q UU K then for every q EU we say that  q is a "parameter" - 
or an "exogenous variable" (these are essentially synonyms), and for every q EV 

we say that  q is an "endogenous variable." 

Using different symbols for each endogenous variable q EV implies the par- 

tition of set V into disjoint classes I! A u 5 such that  the  classes are  identified 
- LEL 

by the following I L I = 33 symbols: 

- - 
- aF w, EE, E , X , & + l ,  Mr, Md. C ,  Zr, .?&, K , I ,  M ,  C, L, E, R, Pn+1, M,, - aL ' 

Using the notation L1 4 I ,  V,, Vd. EE. E ,  9. Rl Pn+ll and L2 4 L\LI~ we - - 

obtain 

LEL,* 151 = ~ ; L E L , ~ I V ; )  = n ;  



Distinction between any two elements in class Ff, L E L ~  is obtained by a set  of 

indices Ind t l ,2 ,.... n j in the mathematical specification such that  zi denotes 

the i t h  element of the subset XSV, (XI = n,  where I . (  denotes the cardinality 

function. 

As for the class V of objects q EQ, the specification implies a classification 

U 4 U Uj such that the classes are identified by the following 1 rl = 33 symbols: - 

a,  6, S ,  k, i. &, A. plE, pJr, P$? P$'< t~ 6, Fir. F,"I, C, t ,  B d .  
- 

8,, 8,. 0,, m,O, mz, (p,, ( p d ,  c ,  F ,  o, w ,  6, E. 

Using the notation rl g la ,%] ,  - rz 4 I K , Z . U , E ~ ,  and r3 A R (r lurz)  we obtain - - 

Relations (2.1)-(2.3) mean that  the mathematical specification is a formal- 

ization of the 1 E ( = 465 relations that  hold in the set  of the  ( U ]  + I V I  = 1704 

mathematical objects associated with economic concepts in the model. 

Next, we add the following remarks to the relations (2.1)-(2.3). coupled with 

the specification in Appendix 11: 

Assume that an appropriate se t  H ~ S R "  of "feasible inputs" is given for 

the computable values of objects in class V .  

The computable values of the objects in V can be obtained by solving 

the system of equalities E  in the model specification. The economic 

interpretation of the object in V -- in accordance with the  relations 

formalized in E  -- assumes the existence of a set H V s ~ I V I ,  referred to 

as an "acceptance region." 



Thus the mathematical meaning of the relations in E is as follows. A group 

of equalities indexed by k EK] can be considered as the formal definition of a 

real-valued mapping, and the group of equations indexed by k E K ~  can be con- 

sidered as a formal definition of a mapping f k with range Im f k sRn.  Therefore 

the system of equations E can be considered as a definition of a mapping 

F:HvxHV + R I ~ I  where Dom F L R ' ~ ~  , lm F S R ~ ' ~  

Thus, the  mathemat i ca l  speci f icat ion of the mode l  has the following concise 

form:  

where O denotes the "zero element" in the space in question. The details of this 

specification are shown in Table 1. The left-hand column of the table presents 

the definitions of the  mappings f k  according to the equalities E k s E  in Appendix 

I .  The order of presentation of the endogenous variables F/; is determined by 

the order of appearance of the groups of variables in the definitions of map- 

pings f k ,  enumerated in the normal way, k = 1,2 ...., 33. 

Returning to the  actual mathematical specification of (2 .5 )  shown in Table 

1, note tha t  i t  is impossible to obtain a "closed form of the implicit function 

v :Hv + RIEl satisfying equality F ( u , u )  = Q, even if an input set  Hv that  is, in 

principle. consistent is given. Thus the characterization of the set  Hu or the  

investigation of the consistency of the model must be based on various tenta- 

tive computations using various inputs of ~ E R ~ ~ ~ ~ .  The aim of each such com- 

putation is to obtain a solution to the equation F(ug , u )  = @ with a fixed value of 

u,. Such an investigation needs an effective algorithm for obtaining the  solu- 

tions to equality F(U, , v )  = 0 for any input of u c H U  that is "in principle con- 

sistent.'' 

3 Since our system of equations is too large, common computational tech- 

niques cannot be used for its solution. However, the special s tructure of the 

system of equations specified enabled us to develop a special decomposi t ion 

'see for example Ortega and Rheinboldt (1970). 



method;  using this method, we can reduce the solution of the complete system 

of nonlinear equations to the solution of several smaller systems of nonlinear -- 
and in some cases even linear - equations. 

Before discussing the details of the computational method, we stress tha t  

the meaning of the  specification in Table 1 is independent of both the order of 

the indices in the  table and the order of the  endogenous variables in the head 

of the table. Thus, one can freely permute both the indices of the equations 

and the  variables. Regarding the special s tructure of the system of equations, 

we can obtain the arrangement in Table 2 by permuting both the  equations and 

the endogenous variables appropriately. The well-structured "diagram of vari- 

able appearance" shows clearly the block diagonal s t ruc ture  of the s y s t e m  of 

equations s tudied .  I t  is this special kind of s tructure tha t  enables us to solve 

the system using a decomposition method. 

3. THE SOLUTION A L G O ~  

The first goal of the  tentative computation was to  investigate the con- 

sistency of the  model. More precisely, we allowed a rather  large degree of free- 

dom in the choice of the  values of the  objects in VSQ (endogenous variables), 

i.e., we assumed only those restrictions tha t  follow directly from the mathemat- 

ical specification (in Table 2) for the  se t  Hv.  For example, the  object EEEV in 

the model can be interpreted as the  level of the household excess expenditure, 

and thus  EE 2 - 0 should hold. 

Observe tha t  the restrictions. such as 0 5 - # 5 - 1. k 2 0. .?$ 2 - 0, etc.. on 

the  values of the  parameters and the  endogenous variables indexed by k E K  do 

not ensure that,  for  any vector v satisfying equality F ( U ~  ,v)  = @ with a 

vector u, E R ~ ~ ~ ~  fulfilling the  mathematical restrictions, component EE of vec- 

tor v satisfies the  inequality EE - ) 0. Therefore we tried t o  use inputs u, E R ~ ~ ~ ~  

such that  the solution v c H V  to the equation F(uo ,v)  = @ was appropriate (as 

regards "rather general" sets Hy). To achieve this, we utilized various con- 

sistent data bases obtained by previous model ~ o r n ~ u t a t i o n s . ~  

4 ~ e e  Augusztinovics (1981). Boda st ai. (1982) giv ia  detailed description of the inputs of the model. 







The computation can be performed as follows. Given a vector uo E R ~ ~ ~ ~  and 

the mapping 

F :Hv$ R I  E l  ( 3 . 1 )  

defined by equality F (v )  - F(u0 , v ) .  find a vector v cHV such that F(v)  = 0. 

As mentioned in Section 2, problem (3 .1)  can be solved by a decomposition 

technique. This is due to the special s tructure of the domain H ~ S R I V I  of the  

mapping F and its range Im (F)sRIEI. Using the notation 

according to Table 2, F : H ~  + RIB\ can be defined as follows: 

$ 1 ) : ~ 6 1 ) ~ ~ $ 3 )  + RIM1'I; 

$ - ( ~ ) : H ~ ~ ) ~ H $ ~ ) X H J ~ )  + Rlf i ' l ;  

$ 3 ) : ~ 6 1 ) ~ ~ $ 2 )  + RId3) 1 

where 

dl) 4 I(l3).(~~).(~~).(~~).(~).(9).(12).(16),(1?).(33).(32).(30)j; 

If  the element vcHI: is a solution to the system of equations F(v) = 0,  then, 

using the notation v 4 - ( V ( ~ ) . V ( ~ ) , V ( ~ ) ) E H ~ ~ ) X H ~ ~ ) X H ~ ~ ) ,  we require 



Thus Table 3 can  be considered t o  be t h e  scheme of t he  decomposition 

method for solving problem (3 .1 ) .  Technically, this method .Is a n  iterative pro- 

cess, which, given any "error parameter"  e*  > 0 and  a n  initial value 

v@) vd3) €Hi3), successively yields finitely-many (n = 0.1 ..... N) members  of - 

t h e  series 

Table 3. 



respect  t o  the  j th  component of variable vi3)€ Approximat- 

ing it, compute the  value of t he  quotient 

where ej  is t he  j t h  unit  vector in space R ~ .  The values of 

A , ( U ~ ~ )  + for j = 1.2.3.4 can be obtained using (3.4)-(3.6). 

Step 5: Since we now have a technique for obtaining both t h e  value 

bn(vi3)) of mapping 4 : ~ ; ~ )  + I? and i t s  Jacobian matr ix 

J, (vi3)): R~ + we can use Newton's i terat ion method: 

Actually, this completes the  description of t he  method for solving 

problem (3.1), since element v i y l  Ep(3) can  be an  input to - 
Step 1 in the iteration. 

S e p  6: The Fact t ha t  the  process terminates  after performing finitely- 

many steps is guaranteed by checking whether inequality 

I (& ( 1  < E *  holds (see Step 3), i.e., whether t h e  inequalities 

I I < I I V $ ~ ) I I ~ ~ ~ I I U ; %  I I / ( \ V A ~ ) I I  > (1 -&* * )  (3.9) 

hold, where &** is t he  so-called "parameter  of convergence" of t he  

process. 

I t  is obvious tha t  t he  method described above is only one possible tech- 

nique for solving problem (3.1) (or  more precisely, for solving t h e  system of 

equations). And of course, a s  mentioned earlier, we have no  method for decid- 

ing whether the  system of equations (3.1) has  any solution or  not. This ques- 

tion can be answered by performing the  procedure above. The ideas outlined 

can also be utilized in the  solution of other  systems of equations tha t  have a 

decomposable s t ructure.  ' 



Having obtained an element U ~ ~ ) E ~ ( ~ ) ,  the method works as follows: 

Step 1 :  Obtain the element u,(l)~p(l),  which is the value of the implicit 

function u ( l ) : ~ 4 ~ ) *  Hb1) defined by 

a t  argument u ( ~ )  - uA3); and denote vA1) - 4 v(l)  (uA3)). 

s tep 2 On obtaining elements vd3) and u,(l), obtain the element 

which is the value of the implicit function u ( ~ ) : H J ~ ) x H ~ ' ) *  HJ2) 

defined by 

a t  argument (v('),v(')) 4 - (vA3), vdl)); and denote: 

s tep 3: Equalities (3.6) hold by definition for elements 

V ~ ~ ) E H ~ ~ ) . ~ , ( ' ) E X ~ ~ ~ , V ~ ~ ~ E H ~ ~ ~ ,  where 

The process terminates if 1 )  4 1 ( < c' holds. The ZIT(&') 4 n itera- - 
tions done yield a so-called E'-approximating solution 

v 4 (v,('),u,(~),v,(~)) satisfying inequality I  ( F(v ) I  I  < c' for the  sys- - 
t em of equations F(v) = 8 (cf. (3.3) above). 

S e p  4: Calculate the computational approximation of the Jacobian matrix 

of the mapping 4:k'A3)* R~ defined in an appropriately small 

(e.g.. with radius 2p') vicinity V A ~ ) C H J ~ ) C R ~  of point u A 3 ) ~ ~ J 3 )  a t  

vi3). The ( i . j ) th entry of the 4x4 Jacobian matrix J, is the first 

partial derivative of the i t h  component of mapping 4 with 



When actually solving the problem, we first studied the actual structure of 

the model and then modified and rationalized the steps of the general algo- 

rithm so that the computation became e a ~ i e r . ~  Now we present details of these 

modifications. 

The'first significantly special feature of the model is that  the subproblem 

(3.4), which is to be solved in Step 1, is in principle analogous to the original 

problem (3 .1) .  Observe that ( 3 . 1 )  requires that we find an element v E R ~ ~ ~ ,  

which can be obtained by solving the system of equations F ( u 0 . v )  = 8 with a 

given element ir uo E R ' ~ ~ ~ ;  and (3 .4)  requires that r e  find an element - 

v,!')€RZo, which can be obtained by solving the system of nonlinear equations 

dl)(v(').vp)) = @ with a given element v @ )  h_ - vi3)!5)ER(. From this i t  follows 

directly that, bearing in mind the structure of the system of equations, we need 

an appropriate decomposition method for solving subproblem (3 .4) .  Using the 

notation gl)(v(')) A - - T ( ' ) ( I J ( ' ) , V ~ ~ ) )  and v ( l )  A - - ( v ( ' ~ ~ ) . ~ ( ~ ~ ~ ) . v ( ' * ~ ) , v ( ' ~ ~ ) ) .  we need to 

solve the equation gl)(v(l)) = 8 (this problem is shown in Table 4). To solve it 

we must, for example, obtain the components of solution v('): 

v ( l s 1 )  - g(a,PD') €Pi 

aF 8F v ( ' g 2 )  g - (Q, z ~ ) ~ P n ;  

This method is an iterative algorithm whose "scheme" is shown in Table 5. 

5 ~ h e  method was implemented on the computer of OTSzK (the Computing Center of the Hungarian 
National Central Planning Board) by several colleagues, including Lajos Laszlo, Sigitas Povilaitis, and 
Laszlo Zecld. 



Table 4. 



Table 5. 

Given an initial value v(l14) A - vdl14) and an error  parameter c:, the method 

involves the following steps: 

S e p  1.1: Obtain a solution v ( l n l )  = vA1*') to the  equation F ( ' ~ l ) ( v ( ~ ~ ~ ) )  = O 

S e p  1.2 On obtaining vAlt4) and v A ~ ~ ' ) .  obtain a solution v(l12) 4 - to the  

equation F(1*3)(u&191),v (192),2/k114)) = e- 

S e p  1.3 Obtain a solution ~ ( ' 1 ~ )  A - - vklls) to the equation 

dlB3)(v (183) ,vk184) )  = 0. 

S e p  1.4: Obtain a value - A - F ( 1 ~ 4 ) ( v ~ ~ 1 ) , v ~ ~ 2 ) . v ~ ~ 3 ) , v  rn ( 1 1 4 ) ) ~ ~ 1  ln  + 1 .  If 

I J A ~ )  I I 5 r ( ; ) ,  then the process terminates; and, having performed 

~ ( c * )  - m iterations, it yields an &(:I-approximating solution 

v ( v 1 1 , v 1 2 , u 1 3 , v 1 4 )  - to the  equation f l l ) (v ( l ) )  = B. If 



1 1  A:) I I > E;). then obtain a value ~ 2 ~ : ) ~  ER" and continue to the 

steps below. 

Step 1.5 Obtain the Jacobian matrix Jm of the mapping A('):R~' + R20 at  the 

point 1121'). (Use Steps 1.1-1.4.) 

Step 1.6: Obtain a value ~2.:)~ by the formula vkll:)l & 212.') - J-'A$) m 

according to Newton's iteration process. In order that the process 

should terminate in finitely-many steps, besides checking the ine- 

quality 1 IA:)~ ( < in Step 1.4, check whether or not the follow- 

ing inequalities hold: 

However, as is frequently the case, there is still "a fly in the ointment": 

-- F'irst, at each i t e~a t i on  (m 5 ~ ( r * ) )  the system of non l i nea~  equalities 

F(113)(v(1*3),v$*4)) = 8 must be solved. Since this system is fairly large, 

consisting of 3n = 57 nonlinear equalities in unknown v ( 1 * 3 ) ~ 5 7 ,  it 

might seem doubtful whether it is possible to find an effective solution 

technique. 

Second, though this is not so important, to perform Step 1.5, i.e., to 

obtain a matrix approximating the  Jacobian matrix J,, we must per- 

form the computation in Steps 1.1-1.4 for n + 1 = 20 initial values a t  

each ( m  = 0 , l  ,..., M) iteration. And this means that, to solve subprob- 

lem F(l)(v(l)) = 8, we must  solve the system of equations in 57 un- 

h o r n s  at least ( n  + z)M(E;)) times. Considering that  this algorithm 

is a "subroutine" of the original'problem (3.1). we must therefore solve 

the system of equations in 57 unknowns a t  least 5 ~ ( r * ) ( n  + 2 ) ~ ( r ( ; ) )  

times during the tentative computation, causing a considerable 

increase in the run time required for the solution. 



These two observations forced us to examine the question of how to find an 

"efficient" computational algorithm for performing Step 1. (We do not propose 

to discuss the details of this mathematical investigation here.) 

Alter due consideration, we chose a method different from the decomposi- 

tion technique represented by Steps 1.1-1.6 and developed for solving subprob- 

lem (3.4). This alternative approach is due to Andras Pdr, who, having done 

some computation with models similar to the one we were actually studying, 6 

called our attention to some remarkable methods of reduction. Namely, using 

Banach-Qchonow's fized-point theorem, one can see that the solution of the 

s y s t e m  of equations d l ) ( v ( l ) )  = 8 can  be based on the conh-active property of 

the mapping A(~):R" + -, Rn + defined by implicit functions 

u ( 1 * 2 ) : ~  + 1 -+ ~ 4 7 1 ,  v ( l * 3 ) : ~  + -, and the mapping f i 1 s 4 ) : ~ l l n  + -, Rn + 

Thus we solve the problem in S e p  1 using an i terative process with an initial 

value v(ll4) = ~ 6 1 0 ~ )  chosen appropriately. Using the values v~111) .v~102) .v~113)  

obtained in Steps 1.1-1.3 and using the element v(la4) 4 v $ * ~ ) E R  I,  the  m th - 
iteration obtains the element uile:)l - A F ( 1 ~ 4 ) ( v ~ * 1 ) . v ~ ~ 2 ) . u ~ ~ s ) , ~ ~ t 4 ) )  

The solution of the problem in Step 2 is not difficult since, using the nota- 

tion 2 ( v )  - 2 ( u 1 , 2 , u 3 ) ,  the system of equations has the  form 

$2)(u(2)) = 8; and, being a system of linear equations, this system can be solved 

by inverting its coefficient matrix. 

When implementing the  tentative computation, we utilized the fact t h a t  

the  matrix representation of the linear mapping g2):R -, R, which is presented 

in Table 2, contains a lot of empty cells with a special structure (a quasi- 

triangular matrix). Using the Gaussian elimination method, we reduced the  

solution of the system of linear equations s2)(v(2))  = 0 t o  inverting an 

(n + l )x (n  + 1) matrix. 

We do not wish to describe here the more trivial steps of the computation. 

Note, however, that some reduction can be achieved in the method used for the 

tentative computation by modifying i t  further.' We have not ourselves 

'see ~ e r ~ r n . k  and P6r (1980). 

'The modifications that either were applied or could be applied in the future were pointed out and 



implemented these modifications to date, since we do not think that  the com- 

putation time needed to perform Step 2 is unduly long in comparison with the 

total computation time for the algorithm. But if others wish to  develop or 

extend the model, or to develop a dynamic version of it, they should carefully 

consider the efficiency of the solution techniques used and then take into 

account the  further reduction possibilities mentioned above. 

The solution algorithm outlined above, as we have explained, exploits to a 

great extent the special mathematical features of the model. I t  is in general a 

rather difficult problem to check whether a large computable general equili- 

brium model has any solution, and if so, whether it is unique or not. There are 

no efficient global algorithms yet available, unlike the situation for linear pro- 

gramming models. The development of special solution algorithms for a partic- 

ular class of models therefore seemed the most suitable approach. 

Despite the model-specific feature of the solution algorithm discussed, i t  

still allows for several modifications of the model specification. Some of these 

necessitate minor revisions of the algorithm. We will not discuss here the  vari- 

ous alternative spcifications that can be solved by the same algorithm, but we 

will illustrate the possible extension of the algorithm with just one example. 

In some simulations based on the discussed model, the ruble trade flows 

(4,. Mi?, and &) were held constant. This meant that  these variables became 

constant parameters, and consequently some equations had to be dropped, 

while others assumed an altered meaning. The real problem, which made i t  

impossible to use directly the algorithm described above, was caused by the 

change in the determination of the ruble import share variables (T~ and q). 

These were no longer relative price dependent variables; and therefore i t  was no 

longer possible to determine their values, simultaneously with those of the 

relative prices, in Step 1. But, fortunately, minor revision of the algorithm and 

the use of simple iteration techniques were enough to overcome this problem. 

Starting with some initial values for these share variables, we constantly 

updated them after each step of a full iteration and terminated the process 

with additional constraints that assured their convergence. 

built into the computer program oi the model by Lajos Laszlo and Sigitas Povildtis. 



Thus, the above example shows that the simple algorithm developed can be 

modified even for some cases that basically alter the mathematical structure of 

the model. These possibilities are, however, limited. Therefore, there is still a 

great need for the development of more general, global, and a t  the same time 

efficient techniques. 
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APPENDIX I: FORMAL STATEMENT OF THE MODEL 

M o g e n o u s  Variables 

Xi gross output in sector j = 1,2, ..., n 

Mi,. Mid competitive ruble and dollar irriport of commodity 
i = 1,2, ..., n 

4j use of domestic-import composite commodity i = 1,2, ..., n 
in sector j = 1,2, ... n,n + 1 

q * q r l &  total, ruble, and dollar export of commodity i 

%+I total gross investments 
I total net  investments at  base price level - - 
4. M . ~ , &  total, ruble, and dollar noncompetitive import of commo- 

dity i = 1,2, .... n - 
Mi j use of noncompetitive import commodity i = 1,2, ..., n in 

sector j = 1,2 ...., n,n + 1 - 
ci total private and public consumption of noncompetitive 

import commodity i = 1,2, ..., n 

K j  capital used in sector j = 1,2, ..., n 

Lj labor employed in sector j = 1.2, .... n 

Sj  (optimal) user cost of labor and capital per unit of output in 
sector j = 1,2, ..., n 



user cost of labor in sector j = 1,2, ..., n 

net rate of return requirement (tax) on labor 

user cost of capital in sector j = 1.2, ..., n 
net rate of return requirement (tax) on capital 

share of ruble import in total noncompetitive import of 
commodity i = 1,2, ..., n 

proportions of competitive ruble and dollar imports of com- 
modity i = 1,2, ..., n 
domestic seller price of commodity j = 1,2, .... n produced 

dollar export price of commodity j = 1.2. ..., n 
exchange rate of rubles and dollars 

average domestic price of noncompetitive import of com- 
modity i = 1,2, ..., n 

average price of domestic-import composite commodity 
i = 1.2. ..., n 
total consumption expenditure 

excess expenditure level 

total consumption a t  base price level 

Ezogenous Variables and Rzrameters 

Si capital replacement rate in sector j = 1.2, ..., n 

6, depreciation rate in sector j = 1.2, ..., n 

K total capital stock 

L total labor 

parameters in the export functions 

negative reciprocal of dollar export demand elasticities in 
sector i = 1.2, ..., n 

world market export and import prices of commodity i 
(ruble-dollar, competitive-noncompetitive import) 

target surplus or deficit on dollar and ruble foreign trade 
balance 

aii input coefficient of domestic-import composite commodity 
i = 1,2 ,..., n in sector j = 1,2 ,..., n.n + 1 



parameters in the determination of the area composition of 
the noncompetitive import of commodity i = 1,2, ..., n 

parameters in the import functions, i = 1,2, ..., n 

fixed (base) amount of total consumption of commodity 
i = 1,2. ..., n 

fixed structure of excess consumption of commodity 
i = 1,2, ..., n 

real consumption net  investment ratio 

wage coefficient in sector j = 1,2, ..., n 

Balancing Equations 
Intermediate Commodities 

Noncompetitive Imports - 

Primary Factors 

Trade Balances 

n n - WI-  2 [Z[P$& - C PZIM,~ - pa M , ~  = D~ 
i =l i = l  i = l  

Technological Choice 



hnport and Ezport hnct ions  
Noncompetitive Imports 

Competitive Imports 

Exports 

Fhal Demand Equations 



Prices and Costs 

Wj = (1 + W)wj j = 1.2. ..., n 
Q, = (6, + R)Pn+l j = 1.2 ,...,n 



This  paper was o r i g i n a l l y  prepared under t h e  t i t l e  "Modelling 
f o r  Management" f o r  p r e s e n t a t i o n  a t  a  Nate r  Research Cent re  
(U.K. ) Conference on "River  P o l l u t i o n  Con t ro l " ,  Oxford, 
9 - 1 1  A s r i l ,  1979. 



APPENDIX 11: MATHEMATICAL TRANSFORMATION OF THE 
PRODUCTION RELATIONS 

Consider the  economic interpretation of the equalities 4 = q(L,,I$) 
( j  = 1.2, ..., n )  (these equalities are denoted by (8) in the description of the 
model). The j t h  equality, which is called the production function, represents 
the relations between the output (3) of the j t h  "producerw--in this case, of the 
" j t h  coordination sectoru--the labor (Lj) employed to obtain this output, and 
the capital (Kj) used in sector j. To study the consequences of the theoretical 
assumptions behind the production function, we need to discuss the mathemat- 
ical specification of the mapping 5 : ~ :  -. R+ in (8). 

To make the implementation of the model easier, we restrict our investiga- 
tion to "production relations" that can be represented by first-order homogene- 
ous functions, q, and we use Cobb-Douglas-type functions 5 in the first tenta- 
tive computations. Thus we assume that (8) has the form 

where tj and (, (j = 1.2 ...., n )  are real parameters such that <j > 0 and 
0stj , .1.  

We now examine the "behavioral" rules of the j t h  producer. Symbols Y/j 
and Q, (j = 1.2, ..., n )  denote the j t h  producer's costs per unit of output when it 
employs labor 



and uses capital 

respectively. (Here we utilize the fact that the function specified by (F.l) is a 
first-order homogeneous function.) Therefore the j th producer's cost is 
I j  Wj  + k jQj  per unit of output. Producer j ' s  wish to minimize its cost, bearing 
in mind equalities (F.l) and (F.2), can thus be represented by the following 
problem: 

l j  Wj + k jQj  -' min 

subject to  (F-3) 

The behavior of producer j is said to be rational if it chooses the  minimum 
expenditures Lj,% for producing its gross production 5 ;  i.e., if 4 and kj denote 
the solution to  problem (F.2), the  equalities 

L, -4% (j = 1.2 ...., n )  

(F.4) 

% = kj% ( j  = 1,2 ...., n )  

hold. The consequence of such behavior can be seen in the solution of problem 
(F. 3). 

Problem (F.3) can be solved by the Lagrange multiplier method. After sim- 
ple computation, we obtain 

The partial differentiation of equalities (8) with respect to L, and 5 yields 



and 

respectively; moreover i t  yields the relations 

and 

From (F.6) and the two latter relations, we obtain 

I t  is known from the specification of the model that variable 
Sj(j  = 1.2. .... n). the user cost of labor and capital per unit of output in sector j ,  
can be defined by equalities 3 = W j L  + Q-K- (j = 1,2, ..., n) ;  and thus, assum- J J  
ing that  the production functions 5 6 = 1.2. .... n )  are first-order homogeneous 
functions and therefore that  equalities (11) and (12) hold, we need only the  
equalities 

derived from (12). Thus. substituting the equalities (a), ( l l ) ,  and (12) in the  
original specification by the equalities (F.6). (F.?), and (F.8) obtained above, 
respectively, we obtain the system of equations on which our computation was 
based. 


