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An I n t e r a c t i v e  Fuzzy S a t i s f i c i n g  Method 

f o r  Mul t i ob j ec t i ve  Nonlinear  Programming Problems 

Masatoshi Sakawa*, Toru Yumine* and B i t o s h i  Yano** 

Abs t r ac t  

I n  t h i s  paper,  we p r e sen t  a  new i n t e r a c t i v e  fuzzy s a t i s f i c i n g  method f o r  

s o l v i n g  mu l t i ob j ec t i ve  non l inea r  programming problems by cons ide r ing  t h a t  

t h e  dec i s ion  maker (DM) has  fuzzy goa l s  f o r  each of t h e  o b j e c t i v e  

func t ions .  The fuzzy goa l s  of t h e  DPI a r e  q u a n t i f i e d  by e l i c i t i n g  

corresponding membership f u n c t i o n s  through t h e  i n t e r a c t i o n  wi th  t h e  DM. 

A f t e r  determining the  membership f u n c t i o n s ,  i f  t he  DM s p e c i f i e s  h i s  

r e f e r e n c e  membership va lues ,  t h e  Tchebycheff norm problem is  so lved  and t h e  

DM is suppl ied with t he  corresponding Pa re to  opt imal  s o l u t i o n  and t h e  

t rade-off  r a t e s  between t h e  membership func t ions .  Then by cons ide r ing  t h e  

c u r r e n t  values  of t h e  membership func t ions  a s  w e l l  as t h e  t rade-off  r a t e s ,  

t h e  DM responds by updat ing  his r e f e r e n c e  membership va lues .  I n  t h i s  way 

t h e  s a t i s f i c i n g  s o l u t i o n  f o r  t h e  DM can be der ived  e f f i c i e n t l y  from among a  

P a r e t o  opt imal  s o l u t i o n  set by updat ing  h i s  r e f e r ence  membership values .  

On t he  b a s i s  of t h e  proposed method, a  t ime-sharing computer program i s  

w r i t t e n  and an i l l u s t r a t i v e  numerical example is demonstrated t oge the r  wi th  

t h e  computer outputs .  
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1. Introduction 

An application of fuzzy approach to multiobjective linear programming 

problems was first presented by Zimmermann [14] and further studied by 

Leberling [7] and Hannan [5]. Following the maximizing decision proposed 

by Bellman and Zadeh [l] together with linear, hyperbolic or piecewise 

linear membership functions, they proved that there exists an equivalent 

linear programming problem. 

However, suppose that the interaction with the decision maker (DM) 

establishes that the first membership function should be linear, the second 

hyperbolic, the third piecewise linear and so forth. In such a situation, 

the resulting problem becomes a nonlinear programming problem and cannot be 

solved by a linear programming technique. 

In order to overcome such difficulties, Sakawa [9] has proposed a new 

method by combined use of bisection method and linear programming method 

together with five types of membership functions; linear, exponential, 

hyperbolic, hyperbolic inverse and piecewise linear functions. This method 

was further extended for solving mu1 tiobj ect ive Linear fractional and 

nonlinear programming problems [ 10, 11 1. 

In this paper, assuming that the DM has fuzzy goal for each of the 

objective functions in multiobjective nonlinear programming problems, we 

present a new interactive fuzzy satisficing method. After determining the 

membership functions for each of the objective functions through the 

interaction with the DM, if the DM specifies his reference membership 

values, the Tchebycheff norm problem is solved and the DM is supplied with 

the corresponding Pareto optimal solution and the trade-off rates between 

the membership functions. Then by considering the current values of the 

membership functions together with the trade-off rates, the DM responds by 



updating his reference membership values and the satisficing solution for 

the DM can be derived efficiently from among a Pareto optimal solution 

set. On the basis of the proposed method, a time-sharing computer program 

is written in FORTRAN and an illustrative numerical example is demonstrated 

along with the computer outputs. 

2. Interactive fuzzy satisficing decision making 

In general, the multiobjective nonlinear programming (MONLP) problem 

is represented as 

T 
min f(x) (fl(x), f2(x),*-, fk(x)) 

subject to x E X 5 E" 

where fl, ..., fk are k distinct objective functions of the decision 

vector x and X is the feasible set of constrained decisions. Here, it 

is assumed that all f i, 1 , .  . k are convex and differentiable and 

constraint set X is convex and compact. 

Fundamental to the MONLP is the Pareto optimal concept, also known as 

a noninferior solution. Qualitatively, a Pareto optimal solution of the 

MONLP is one where any improvement of one objective function can be 

achieved only at the expense of another. 

Usually, Pareto optimal solutions consist of an infinite number of 

points, and some kinds of subjective judgement should be added to the 

quantitative analyses by the DM. The DM must select his compromise or 

satisficing solution from among Pareto optimal solutions. 

In order to determine the compromise or satisficing solution of the 

DM, there are three major approaches : 



(1  ) goa l  programming [2 ,  61 

( 2 )  i n t e r a c t i v e  approach [3 ,  4,  8, 12, 13, 151, 

( 3 )  fuzzy approach [ 5 ,  7 ,  9-11, 141. 

Each of t he se  approaches has i t s  own advantages and d isadvantages  r e l a t i v e  

t o  the  o t h e r  approaches.  Therefore ,  i n  t h i s  paper ,  we propose a  new 

i n t e r a c t i v e  fuzzy s a t i s f i c i n g  method by i n c o r p o r a t i n g  t h e  d e s i r a b l e  

f e a t u r e s  of both t h e  goa l  programming methods and t h e  i n t e r a c t i v e  

approaches i n t o  t h e  fuzzy approaches. 

I n  a  minimizat ion problem, a  fuzzy goa l  s t a t e d  by t h e  DM may be t o  

achieve " s u b s t a n t i a l l y  less" than A. This  type of s ta tement  can be 

q u a n t i f i e d  by e l i c i t i n g  a  corresponding membership func t ion .  

I n  order  t o  e l i c i t  a  membership func t ion  
pfi 

(x )  from the  DM f o r  each 

of t he  o b j e c t i v e  f u n c t i o n s  f i ( x ) ,  we f i r s t  c a l c u l a t e  t h e  i n d i v i d u a l  

minimum min and maximum 
f i  f p x  

of each o b j e c t i v e  f u n c t i o n  f i ( x )  under 

g iven  c o n s t r a i n t s .  By t ak ing  account of t h e  c a l c u l a t e d  i n d i v i d u a l  minimum 

and maximum of each o b j e c t i v e  func t ion ,  t he  DM must determine h i s  

s u b j e c t i v e  membership func t ion  p ( x ) ,  which i s  s t r i c t l y  monotone 
i 

dec reas ing  fucn t ion  wi th  r e spec t  t o  f i (x) .  Here, i t  is assumed t h a t  

0 
p (x)  = 0 i f  f i ( x )  f i  and 

1 0 
(x)  = 1 i f  f i ( x )  < f i ,  where f i  i s  

f ,  
I A 1 a  worst a ccep tab l e  l e v e l  f o r  f i (x )  and f i  i s  a  t o t a l l y  d e s i r a b l e  l e v e l  

min and f r x .  f o r  f i (x )  w i t h i n  f i  

Af t e r  de te rmin ing  t h e  membership func t ions  f o r  each of t he  o b j e c t i v e  

func t ions ,  the DM is asked t o  spec i fy  h i s  r e f e r e n c e  membership va lues  f o r  

a l l  t he  membership func t ions .  For t h e  DM'S r e f e r e n c e  membership va lues  
A 

pfi 
, i=1,2, . . . ,k,  t he  corresponding Pa re to  op t imal  s o l u t i o n  which i s  i n  a  

s ense  c l o s e  t o  h i s  requirement ( o r  b e t t e r ,  i f  t h e  r e f e r e n c e  membership 

va lues  a r e  a t t a i n a b l e )  is obtained by s o l v i n g  t h e  fo l lowing  Tchebycheff 

norm problem. 



min max 
x  E X  i = l ,  ..., k 

o r  equ iva l en t ly  

min v  
V. xEX 

A 

sub jec t  t o  - ( x ) ~ v ,  i r l . 2  ,..., k. 
r f i  r f i  

The r e l a t i o n s h i p s  between t h e  opt imal  s o l u t i o n s  of t h e  Tchebycheff 

norm problem and t h e  Pa re to  opt imal  concept of t h e  MONLP can be 

cha rac t e r i zed  by t h e  fo l lowing  theorems. 

Theorem 1. I f  x* is a  unique opt imal  s o l u t i o n  t o  t h e  Tchebycheff norm 

problem ( 3 ) ,  then  x* i s  a  Pa re to  op t imal  s o l u t i o n  t o  t h e  MDNLP. 

Theorem 2. I f  x* E X is  a  Pare to  opt imal  s o l u t i o n  t o  t h e  MONLP wi th  

0  < rf (x*) < 1 hold ing  f o r  a l l  1, then  x* i s  a  unique opt imal  
i 

s o l u t i o n  t o  t h e  Tchebychef f  norm problem (3) .  

I f  x*, an opt imal  s o l u t i o n  t o  (31, i s  not unique,  then we can test 

t h e  Pa re to  o p t i m a l i t y  f o r  x* by so lv ing  t h e  fo l lowing  problem: 

max 2 E~ 

x€x 1-1 

sub jec t  t o  f i (x )  + = f i (x*) ,  0  (1-1,. . . ,k) .  

Le t  be an op t imal  s o l u t i o n  t o  (4).  I f  a l l  ri - 0,  then x* i s  a  

Pa re to  opt imal  so lu t ion .  I f  a t  l e a s t  one E > 0 ,  i t  can e a s i l y  be shown 
i 

t h a t  x is a  P a r e t o  op t imal  so lu t ion .  

The DM must now e i t h e r  s a t i s f y  wi th  t h e  c u r r e n t  Pa re to  opt imal  

s o l u t i o n ,  o r  update  h i s  r e f e r ence  membership values .  I n  o rde r  t o  he lp  t h e  



DM express  h i s  degree of p r e f e r ence ,  t rade-off  in format ion  between a  

s t and ing  membership func t ion  
Yf l  

( x )  and each of t h e  o t h e r  membership 

f u n c t i o n s  is  very u se fu l .  Such a  t rade-off  between pf ( x )  and 
1 

f o r  each 1 , 2 , . . . , k  i s  e a s i l y  ob t a inab le  s i n c e  i t  i s  c l o s e l y  r e l a t e d  t o  

the  s t r i c t  p o s i t i v e  Lagrange m u l t i p l i e r s  of t he  Tchebycheff norm problem. 

Let  t he  Lagrange m u l t i p l i e r s  a s s o c i a t e d  with t he  c o n s t r a i n t s  of t h e  

Tchebycheff norm problem be denoted by Xi ,  i=1 ,2 , .  . . ,k. I f  a l l  Xi > 0 

f o r  each i ,  then it can be proved t h a t  t he  fo l lowing  express ion  holds .  

So f a r  we have considered a  minimizat ion problem and consequent ly  

assumed t h a t  the  DM has a  fuzzy goa l  such a s  "f i (x)  should be  

s u b s t a n t i a l l y  less than ain.  

I n  t h e  fo l lowings ,  we f u r t h e r  cons ider  a  more genera l  case  where t h e  

DM has two types of fuzzy goa l s ,  namely fuzzy goa l s  expressed i n  words such 

a s  "f i (x)  should be i n  t h e  v i c i n i t y  of bin (fuzzy equa l )  as w e l l  a s  

"f i (x)  should be s u b s t a n t i a l l y  less than  ain (fuzzy min) a r e  assumed. 

Therefore ,  t h e  problem t o  be solved is 

fuzzy min f i (x )  ( i  E I )  

fuzzy  equa l  f i (x )  ( i  E f )  

s u b j e c t  t o  x  E X 

where I u 7 = {1,2, .  . . ,k ] .  

I n  o rde r  t o  e l i c i t  a  membership func t ion  from the  DM f o r  a  fuzzy goa l  

l i k e  "f i (x)  should be i n  t h e  v i c i n i t y  of bin,  i t  is obvious t h a t  we can 



use  d i f f e r e n t  f u n c t i o n s  t o  t he  l e f t  and r i g h t  s i d e s  of bi. A f t e r  

determining the membership func t ions  f o r  two types of fuzzy  g o a l s ,  i f  t h e  

DM s p e c i f i e s  his r e f e r e n c e  membership va lues ,  t h e  Tchebycheff norm problem 

i s  solved. 

Now, we in t roduce  t h e  concept of WPare to  op t imal  s o l u t i o n s  which a r e  

def ined  i n  terms of membership func t ions  i n s t e a d  of o b j e c t i v e  func t ions .  

D e f i n i t i o n  1. A d e c i s i o n  x* is s a i d  t o  be an &Pare to  op t imal  s o l u t i o n  

t o  ( 6 ) ,  i f  and only i f  t h e r e  does not e x i s t  ano the r  x  E X s o  t h a t  

(x)  2 p (x*),  i= l , . . . , k ,  wi th  s t r ic t  i n e q u a l i t y  ho ld ing  f o r  a t  l e a s t  
pfi fi 

one i. 

Note t h a t  t h e  set of Pa re to  opt imal  s o l u t i o n s  is a  s u b s e t  of t h e  set 

of &Pareto optimal s o l u t i o n s .  

Using the  concept of W P a r e t o  o p t i m a l i t y ,  t h e  fo l l owing  theorem, which 

is s i m i l a r  t o  Theorem 1 and 2 ,  can be obta ined  under s l i g h t l y  d i f f e r e n t  

condi t ions .  

Theorem 3. x* X i s  an &Pare to  opt imal  s o l u t i o n  t o  (61,  i f  and only 

i f  x* is a  unique opt imal  s o l u t i o n  t o  (3) .  

S imi l a r  t o  t h e  minimizat ion case ,  a  numerical test of &Pare to  

o p t i m a l i t y  f o r  x* can be peformed by so lv ing  t h e  fo l lowing  problem: 

max 1 ci 
xd(  i=l 

s u b j e c t  t o  

Let  ; be an opt imal  s o l u t i o n  t o  (7 ) .  I f  a l l  ci = 0, then  x* i s  an W 

P a r e t o  optimal s o l u t i o n .  I f  a t  l e a s t  one E: > 0 ,  x becomes an W P a r e t o  
i 

opt imal  so lu t ion .  



Following the  above d i s c u s s i o n s ,  we can now c o n s t r u c t  t he  i n t e r a c t i v e  

a lgor i thm i n  order  t o  d e r i v e  t he  s a t i s f i c i n g  s o l u t i o n  f o r  t h e  DM from among 

the  (M-) Pa re to  opt imal  s o l u t i o n  s e t .  The s t e p s  marked wi th  an a s t e r i s k  

involve  i n t e r a c t i o n  wi th  the  DM* 

S tep  1. Ca lcu l a t e  t he  i n d i v i d u a l  minimum and maximum of each o b j e c t i v e  

func t ion  under given c o n s t r a i n t s .  

S tep  2*. E l i c i t  a  membership func t ion  from t h e  DM f o r  each of t h e  

o b j e c t i v e  func t ions .  

S tep  3. S e t  a l l  t he  i n i t i a l  r e f e r ence  membership va lues  equa l  1, .. 
i=e ' ,  l l f i  

1 ( i=1,2, . . . ,k) .  

S t e p  4. For t h e  r e f e r ence  membership va lues  s p e c i f i e d  by t h e  DM, t h e  

Tchebycheff norm problem is so lved  and the  (M-) Pa re to  o p t i m a l i t y  test i s  

performed. 

S tep  5" .  The DM is supp l i ed  w i t h  t h e  corresponding (M-) Pare to  op t imal  

s o l u t i o n  and the  trade-off r a t e s  between the  membership func t ions .  I f  t h e  

DM is s a t i s f i e d  wi th  t h e  c u r r e n t  membership va lues  of t h e  (M-) P a r e t o  

opt imal  s o l u t i o n ,  s top.  Otherwise,  t h e  DM must update h i s  r e f e r e n c e  

membership va lues  by cons ide r ing  t h e  c u r r e n t  va lues  of t h e  membership 

f u n c t i o n s  toge ther  with t h e  t rade-off  r a t e s  between the  membership 

f u n c t i o n s  and r e t u r n  t o  Step 4. Here i t  should be s t r e s s e d  f o r  t h e  DM t h a t  

any improvement of one membership func t ion  can be achieved only a t  t h e  

expense of at  l e a s t  one of the  o t h e r  membership func t ions .  

3. An i n t e r a c t i v e  computer program and an i l l u s t r a t i v e  example 

Fuzzy s a t i s f i c i n g  d e c i s i o n  making processes  f o r  m l t i o b j e c t i v e  

non l inea r  programming problems inc lude  e l i c i t i n g  a  membership func t ion  f o r  

each of t he  ob j ec t ive  f u n c t i o n s  and r e f e r ence  membership va lues  from the  

DM. Thus, i n t e r a c t i v e  u t i l i z a t i o n  of computer f a c i l i t i e s  is h igh ly  



recommended. Based on the  method descr ibed  above, we have developed a  new 

i n t e r a c t i v e  computer program. Our new package inc ludes  g r a p h i c a l  

r e p r e s e n t a t i o n s  by which t h e  DM can f i g u r e  t he  shapes of h i s  membership 

f u n c t i o n s ,  and he can f i n d  i n c o r r e c t  assessments o r  i n c o n s i s t e n t  

e v a l u a t i o n s  promptly,  r e v i s e  them immediately and proceed t o  t h e  next  s t a g e  

more e a s i l y .  

Our program i s  composed of one main program and s e v e r a l  subrout ines .  

The main program c a l l s  i n  and runs  t h e  subprograms with commands i n d i c a t e d  

by t h e  u se r  (DM). Here we g i v e  a  b r i e f  explana t ion  of t h e  major commands 

prepared i n  our  program. 

(1) MXNMAX: Displays t h e  c a l c u l a t e d  i n d i v i d u a l  minimum and maximum of 

each of t h e  o b j e c t i v e  func t ions  under t h e  given c o n s t r a i n t s .  

( 2 )  MF: E l i c i t s  a  membership func t ion  from t h e  DM f o r  each of t h e  

o b j e c t i v e  func t ions .  

(3)  GRAPH: Depicts  g r a p h i c a l l y  t h e  shape of t h e  membership func t ion  f o r  

each of t h e  o b j e c t i v e  func t ions .  

Derives  t h e  s a t i s f i c i n g  s o l u t i o n  f o r  t h e  DM from among the  

(M-) P a r e t o  op t imal  s o l u t i o n  set by updat ing  t h e  r e f e r ence  

membership va lues .  

( 5 )  STOP: E x i s t s  from t h e  program. 

I n  our  computer program, t h e  DM can s e l e c t  h i s  membership func t ion  i n  

a  s u b j e c t i v e  manner from among t h e  fol lowing f i v e  types of f u n c t i o n s ;  

l i n e a r ,  exponent ia l ,  hype rbo l i c ,  hyperbol ic  i n v e r s e  and piecewise l i n e a r  

func t ions .  Then t h e  parameter va lues  a r e  determined through t h e  

i n t e r a c t i o n  with t he  DM. Here, except  f o r  hyperbol ic  f u n c t i o n s ,  i t  is  

(4) GO: 

0  
assumed t h a t  pf,(x) = 0  i f  f i ( x )  f i  and pf , (x)  = 1 i f  

I I 

f i ( x )  2 f 1  where f o  is a  worst  a ccep tab l e  l e v e l  f o r  f i ( x )  and f1  is 
i ' i i 

a  t o t a l l y  d e s i r a b l e  l e v e l  f o r  f i ( x ) .  



( 1 )  L inear  membership func t ion :  

The l i n e a r  membership func t ion  can be determined by ask ing  t h e  DM t o  

s p e c i f y  the  two p o i n t s  f y  and f: w i t h i n  f r  and f;in. 

( 2 )  Exponent ia l  membership func t ion :  

0  0  u (XI = a i [ l  - exp (- bi ( f i (x)  - f i ) / ( f :  - f i ) ) l  (9) 
i 

The exponen t i a l  membership func t ion  can be determined by ask ing  the  DM t o  

1 O O m 5  and f i w i t h i n  f y x  min s p e c i f y  the t h r e e  p o i n t s  f i ,  f i  and f i  , 

where f; r e p r e s e n t s  t h e  value of f i ( x )  such t h a t  t he  degree  of 

membership f u n c t i o n  (x )  i s  a. 
fi 

( 3 )  Hyperbol ic  membership func t ion :  

The hype rbo l i c  membership func t ion  can be determined by ask ing  t h e  DM t o  

s p e c i f y  the  two po in t s  f:*25 and f y o 5  wi th in  f y X  
min and f i  . 

(4) Hyperbol ic  i nve r se  membership func t ion :  

The hype rbo l i c  i nve r se  membership func t ion  can be determined by a sk ing  the  

O m 5  w i t h i n  f y X  O 0*25 and f i  DM t o  s p e c i f y  the  t h r ee  p o i n t s  f i ,  f i  and 

f y n .  

( 5 )  Piecewise l i n e a r  membership func t ion :  



Here,  i t  is  assumed t h a t  pf ( x )  = t i r f i (x )  + sir f o r  each segment 
i 

'ir-1 5 f i (x)  5 giro 
The piecewise l i n e a r  membership f u n c t i o n  can be 

determined by ask ing  t h e  DM t o  s p e c i f y  t h e  degree of membership i n  each of 

m i  n  
s e v e r a l  va lues  of o b j e c t i v e  f u n c t i o n s  w i th in  f  rx and f i  . 

We now demonst r a t e  t he  i n t e r a c t i o n  processes  us ing  our computer 

program by means of an i l l u s t r a t i v e  example which is designed t o  t e s t  t h e  

program. 

Consider t h e  fo l lowing  m u l t i o b j e c t i v e  dec i s ion  making problem. 

fuzzy min f l ( x )  ,= x l  + (x2+512 + (x3-60l2 

= (x1+20)2 + (x2-55)) + (x3+20) 2  fuzzy  min f 2 ( x )  

fuzzy equa l  f3 (x )  = (xl-2012 + (x2-1012 + (x3-30) 2  

s u b j e c t  t o  x  f X - {(x1 ,x2 ,  
2  2  

x  ) l x l+  x2 + x3 2 100, 0  2 xi 5 10, i = 1 , 2 , 3 ]  2  

I n  applying our computer program t o  t h i s  problem, suppose t h a t  t h e  

i n t e r a c t i o n  with t he  hypo the t i ca l  DM e s t a b l i s h e s  t he  fo l lowing  membership 

f u n c t i o n s  and corresponding assessment values  f o r  the  t h r e e  o b j e c t i v e  

f u n c t i o n s .  

0  1  
f l :  l i n e a r ,  ( f l ,  f l )  = (3700, 2525) 



0*25 f:g5) = (3800, 3500) f2: hyperbolic, (f2 , 

I 
0 1 

left: linear, (f3, f3) = (800, 1100) 

[ right: exponential, (f!, f!~~, f:) = (1300, 1250, 1100) 

In Appendix, the interaction processes using our computer program are 

shown with the aid of some of the computer outputs. In this example, at 

the second iteration, the satisficing solution of the DM is derived. 

4. Conclusion 

In this paper, we have proposed an interactive fuzzy satisficing 

method in order to deal with the fuzzy goals of the DM in multiobjective 

nonlinear programming problems. In our interactive scheme, after 

determining the membership functions, the satisficing solution of the DM 

can be derived by updating his reference membership values based on the 

current values of the membership functions together with the trade-off 

rates between the membership functions. Furthermore, (M-) Pareto 

optimality of the generated solution in each iteration is guaranteed. 

Based on the proposed method, the time-sharing computer program has been 

written to facilitate the interaction processes. An illustrative numerical 

example demonstrated the feasibility and efficiency of both the proposed 

technique and its interactive computer program under the hypothetical DM. 

However, applications to real-word problems m s t  be carried our in 

cooperation with a person actually involved in decision making. From such 

experiences the proposed technique and its computer program must be 

revised. 
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Appendix Interact ive  fuzzy s a t i s f i c i n g  dec is ion making processes  

COMMAND : 
=GO 

I N I T I A T E S  A N  I N T E R A C T I O N  W I T H  A L L  THE I N I T I A L  REFERENCE 
MEMBERSHIP VALUES ARE 1 

( KUHN-TUCKER CONDITIONS S A T I S F I E D  

O P T I M A L  SOLUTION TO THE TCHEBYCHEFF NORM PROBLEM 
FOR I N I T I A L  REFERENCE MEMBERSHIP VALUES 

MEMBERSHIP I O B J E C T I V E  FUNCTION 
-----------------------------+---------------------------- 

M ( F I  = 0 . 5 7 5 6 1 4 1 3 2 0 D + 0 0  I F( I) = 0.30236533950+04 
M < F 2 )  = 0 . 5 7 5 6 1 4 1 3 2 0 D + 0 0  1 F(2) = 0 . 3 4 1 6 7 6 9 2 4 9 0 + 0 4  
M < F 3 )  = 0 .5756141320D+OO I F(3) = 0.97268423960+03 

M-PARETO O P T I M A L I T Y  TEST 
< KUHN-TUCKER CONDITIONS S A T I S F I E D  

E P S (  1)- 0. 
E P S <  2)= 0. 
E P S (  3)= 0. 

TRADE-OFFS AMONG MEMBERSHIP FUNCTIONS 
- D M < F 2 ) / D M < F I )  = 0 . 2 8 5 3 5 8 2 8 1 1 D + 0 1  
- D M < F 3 ) / D M < F I )  = 0 . 2 1 0 9 3 5 4 6 3 2 D + O i  

GRAPH OF THE TRADE-OFFS 
00000 : - D M ( F 2 ) / D M ( F I )  
X X X X X  : - D M < F 3 ) / D M < F I )  

1.00+---------1---------1--------------- + 
! 0 I 
I I 

I X  I 

! I 
I 0 ! 
I X  ! 
! I 

I ! 
! I 

0.50- - 
I ! 

! X  ! 
I 0 ! 
I I 

! X  I 

I I 

! 0 I 

I X  ! 
I I 

ARE YOU S A T I S F I E D  WITH THE CURRENT MEMBERSHIP VALUES OF 
THE PARETO OPTIMAL SOLUTION ? 
=NO 



ARE YOU S A T I S F I E D  W I T H  T H E  CURRENT MEMBERSHIP VALUES O F  
T H E  PARETO O P T I M A L  S O L U T I O N  ? 
=YES 

THE FOLLOWING VALUES ARE YOUR S A T I S F I C I N G  S O L U T I O N  : 

.......................................................... 
MEMBERSHIP I O B J E C T I V E  F U N C T I O N  

COMMAND : 
=STOP 


