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An Interactive Fuzzy Satisficing Method

for Multiobjective Nonlinear Programming Problems

Masatoshi Sakawa*, Toru Yumine* and Hitoshi Yano**

Abstract

In this paper, we present a new Interactive fuzzy satisficing method for
solving multiobjective nonlinear programming problems by considering that
the decision maker (DM) has fuzzy goals for each of the objective
functions. The fuzzy goals of the DM are quantified by eliciting
corresponding membership functions through the interaction with the DM.
After determining the membership functions, if the DM specifies his
reference membership values, the Tchebycheff norm problem 1s solved and the
DM is supplied with the corresponding Pareto optimal solution and the
trade-off rates between the membership functions. Then by considering the
current values of the membership functions as well as the trade-off rates,
the DM responds by updating his reference membership values. In this way
the satisficing solution for the DM can be derived efficiently from among a
Pareto optimal solution set by updating his reference membership values.

On the basis of the proposed method, a time-sharing computer program is
written and an illustrative numerical example is demonstrated together with

the computer outputs.
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1. Introduction

An application of fuzzy approach to multiobjective linear programming
problems was first presented by Zimmermann [l14] and further studied by
Leberling [7] and Hannan [5]. Following the maximizing decision proposed
by Bellman and Zadeh [1] together with linear, hyperbolic or piecewise
linear membership functions, they proved that there exists an equivalent
linear programming problem.

However, suppose that the interaction with the decision maker (DM)
establishes that the first membership function should be linear, the second
hyperbolic, the third piecewise linear and so forth. In such a situation,
the resulting problem becomes a nonlinear programming problem and cannot be
solved by a linear programming technique.

In order to overcome such difficulties, Sakawa [9] has proposed a new
method by combined use of bisection method and linear programming method
together with five types of membership functions; linear, exponential,
hyperbolic, hyperbolic inverse and pilecewise linear functions. This method
was further extended for solving multiobjective Linear fractional and
nonlinear programming problems [10, 11].

In this paper, assuming that the DM has fuzzy goal for each of the
objective functions in multiobjective nonlinear programming problems, we
present a new interactive fuzzy satisficing method. After determining the
membership functions for each of the objective functions through the
interaction with the DM, if the DM specifies his reference membership
values, the Tchebycheff norm problem is solved and the DM 1is supplied with
the corresponding Pareto optimal solution and the trade-off rates between
the membership functions. Then by considering the current values of the

membership functions together with the trade-off rates, the DM responds by



updating his reference membership values and the satisficing solution for
the DM can be derived efficiently from among a Pareto optimal solution

set. On the basis of the proposed method, a time-sharing computer program
is written in FORTRAN and an illustrative numerical example is demonstrated

along with the computer outputs.

2., Interactive fuzzy satisficing decision making

In general, the multiobjective nonlinear programming (MONLP) problem

is represented as
min £(x) § (£,(x), £,(x),0er, £,GT (1)
subject to x € X c EP

where fl""’ fy are k distinct objective functions of the decision
vector x and X 1is the feasible set of constrained decisions. Here, it
is assumed that all f;, i=l,...,k are convex and differentiable and
constraint set X 1is convex and compact.

Fundamental to the MONLP is the Pareto optimal concept, also known as
a noninferior solution. Qualitatively, a Pareto optimal solution of the
MONLP is one where any improvement of one objective function can be
'achieved only at the expense of another.

Usually, Pareto optimal solutions consist of an infinite number of
points, and some kinds of subjective judgement should be added to the
quantitative analyses by the DM. The DM must select his compromise or
satisficing solution from among Pareto optimal solutions.

In order to determine the compromise or satisficing solution of the

DM, there are three major approaches:



(1) goal programming (2, 6],
(2) 1interactive approach [3, 4, 8, 12, 13, 15],
(3) fuzzy approach [5, 7, 9-11, 1l4].
Each of these approaches has its own advantages and disadvantages relative
to the other approaches. Therefore, in this paper, we propose a new
interactive fuzzy satisficing method by incorporating the desirable
features of both the goal programming methods and the interactive
approaches into the fuzzy approaches.

In a minimization problem, a fuzzy goal stated by the DM may be to
achieve "substantially less™ than A. This type of statement can be
quantified by eliciting a corresponding membership function.

In order to elicit a membership function Mg (x) from the DM for each

i
of the objective functions fi(x), we first calculate the individual

minimum f?in

and maximum frax of each objective function fi(x) under
given constraints. By taking account of the calculated individual minimum
and maximum of each objective function, the DM must determine his
subjective membership function Mg (x), which is strictly monotone
i
decreasing fucntion with respect to fi(x). Here, it is assumed that
u, (x) =0 1if £ (x) > f0 and y, (x) =1 1if £, (x) < fl, where fo is
fi i = 7 fi i = "1 i
a worst acceptable level for fi(x) and fi is a totally desirable level
for f,(x) within fmin and f£02X,
i i i
After determining the membership functions for each of the objective
functions, the DM is asked to specify his reference membership values for
all the membership functions. For the DM's reference membership values
He o i=1,2,...,k, the corresponding Pareto optimal solution which is in a
i
sense close to his requirement (or better, if the reference membership

values are attainable) is obtained by solving the following Tchebycheff

norm problem.



min max {uf - Mg (x)}, (2)
X €X i=l,...,k 1 1

or equivalently

min v
v, x€X
(3)
subject to u, -y, (x) <v, 1=1,2,...,k.
fi fi =

The relationships between the optimal solutions of the Tchebycheff
norm problem and the Pareto optimal concept of the MONLP can be
characterized by the following theorems.

Theorem 1. If =x* 1s a unique optimal solution to the Tchebycheff norm
problem (3), then x* is a Pareto optimal solution to the MONLP.
Theorem 2. If x* € X 1is a Pareto optimal solution to the MONLP with

0 < ufi(x*) <1 holding for all i, then x* is a unique optimal
solution to the Tchebycheff norm problem (3).

If x*, an optimal solution to (3), is not unique, then we can test

the Pareto optimality for x* by solving the following problem:

k
max z €y
xeX 1i=]

(4)

subject to fi(x) + g, = fi(x*), € 20 (d=1,...,k).

i

Let x be an optimal solution to (4). If all g = 0, then x* is a
Pareto optimal solution. If at least one N > 0, 1t can easily be shown
that x 1s a Pareto optimal solution.

The DM must now either satisfy with the current Pareto optimal

solution, or update his reference membership values. In order to help the



DM express his degree of preference, trade-off information between a

standing membership function He (x) and each of the other membership

functions is very useful. Such ; trade-off between Mg (x) and ufi(x)
for each i=1,2,...,k 1is easily obtainable since it is closely related to
the strict positive Lagrange multipliers of the Tchebycheff norm problem.
Let the Lagrange multipliers associated with the constraints of the
Tchebycheff norm problem be denoted by Xi, i=1,2,...,k. If all Ai >0

for each 1, then it can be proved that the following expression holds.
—aufi(x)/aufl(x) = Al/Ai, i=2,...,k. (5)

So far we have considered a minimization problem and consequently
assumed that the DM has a fuzzy goal such as “fi(x) should be
substantially less than ai“.

In the followings, we further consider a more general case where the
DM has two types of fuzzy goals, namely fuzzy goals expressed in words such
as "f;(x) should be in the vicinity of b;" (fuzzy equal) as well as
"fi(x) should be substantially less than a;" (fuzzy min) are assumed.

Therefore, the problem to be solved is

fuzzy min fi(x) (1 € I)
fuzzy equal £, (x) (1 e1) (6)
subject to x € X

where I uI = {1,2,...,k}.
In order to elicit a membership function from the DM for a fuzzy goal

like "f;(x) should be in the vicinity of b,", it is obvious that we can



use different functions to the left and right sides of b;. After
determining the membership functions for two types of fuzzy goals, if the
DM specifies his reference membership values, the Tchebycheff norm problem
is solved.

Now, we Introduce the concept of M-Pareto optimal solutions which are
defined in terms of membership functions instead of objective functions.

Definition 1. A decision x* 1is said to be an M-Pareto optimal solution

to (6), 1f and only 1if there does not exist another x ¢ X so0 that
ufi(x) 2 ufi(x*), i=l,...,k, with strict inequality holding for at least
one 1.

Note that the set of Pareto optimal solutions 1is a subset of the set
of M-Pareto optimal solutions.

Using the concept of M-Pareto optimality, the following theorem, which
is similar to Theorem 1 and 2, can be obtained under slightly different
conditions.

Theorem 3. x* X 1is an M-Pareto optimal solution to (6), if and only
if x* 1is a unique optimal solution to (3).
Similar to the minimization case, a numerical test of M-Pareto

optimality for x* can be peformed by solving the following problem:

k
max | €y
xeX 1i=]
subject to (7)

Mg (x) - €, = ufi(x*), € 20 (d=1,...,k).

Let x be an optimal solution to (7). If all e = 0, then x* 15 an M-

Pareto optimal solution. If at least one € > 0, x becomes an M-Pareto

optimal solution.



Following the above discussions, we can now construct the interactive
algorithm in order to derive the satisficing solution for the DM from among
the (M~) Pareto optimal solution set. The steps marked with an asterisk
involve interaction with the DM.

Step 1. Calculate the individual minimum and maximum of each objective

function under given constraints.

Step 2*. Elicit a membership function from the DM for each of the
objective functions.

Step 3. Set all the initial reference membership values equal 1,

i.e., =1 (i=1,2,...,k).

Ufi
Step 4. For the reference membership values specified by the DM, the
Tchebycheff norm problem is solved and the (M-) Pareto optimality test 1s
performed.

Step 5*. The DM is supplied with the corresponding (M-) Pareto optimal
solution and the trade-off rates between the membership functions. If the
DM is satisfied with the current membership values of the (M~) Pareto
optimal solution, stop. Otherwise, the DM must update his reference
membership values by considering the current values of the membership
functions together with the trade-off rates between the membership
functions and return to Step 4. Here it should be stressed for the DM that

any improvement of one membership function can be achieved only at the

expense of at least one of the other membership functions.

3. An interactive computer program and an illustrative example

Fuzzy satisficing decision making processes for multiobjective
nonlinear programming problems include eliciting a membership function for
each of the objective functions and reference membership values from the

DM. Thus, interactive utilization of computer facilities is highly



recommended. Based on the method described above, we have developed a new
interactive computer program. Our new package includes graphical
representations by which the DM can figure the shapes of his membership
functions, and he can find incorrect assessments or inconsistent
evaluations promptly, revise them immediately and proceed to the next stage
more easily.
Our program is composed of one main program and several subroutines.
The main program calls 1n and runs the subprograms with commands indicated
by the user (DM). Here we give a brief explanation of the major commands
prepared in our program.
(1) MINMAX: Displays the calculated individual minimum and maximum of
each of the objective functions under the given constraints,

(2) MF Elicits a membership function from the DM for each of the

objective functions.
(3) GRAPH: Depicts graphically the shape of the membership function for

each of the objective functions.

(4) Go: Derives the satisficing solution for the DM from among the
(M-) Pareto optimal solution set by updating the reference
membership values.

(5) sToP: Exists from the program.

In our computer program, the DM can select his membership function in
a subjective manner from among the following five types of functions;
linear, exponential, hyperbolic, hyperbolic inverse and piecewise linear
functions. Then the parameter values are determined through the
interaction with the DM. Here, except for hyperbolic functions, it is
assumed that Mg (x) =0 if fi(x) 2 fg and Mg (x) =1 if

i i

fi(x) < fi, where fg is a worst acceptable level for f;(x) and fi is

a totally desirable level for f,(x).
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(1) Linear membership function:
0 1 0
be (0 = 16,0 = €171 - ). (8)

The linear membership function can be determined by asking the DM to

specify the two points fg and fi within frax and f?in.
(2) Exponential membership function:
e (x) = a,[1 - exp {- b (£, (x) - fo)/(f1 - fo)}] (9)
fi i b R | i i i

The exponential membership function can be determined by asking the DM to

0 0.5 1
1 fi and fi within f

where f; represents the value of fi(x) such that the degree of

max and fmin

specify the three points f i i

membership function g (x) is a.

(3) Hyperbolic membership function:

Mg (x) = (1/2) ténh((fi(x) - bi)ui) + (1/2). (10)

The hyperbolic membership function can be determined by asking the DM to

specify the two points f2.25 and fS.S within f?ax and f?in.
(4) Hyperbolic inverse membership function:
-1
Mg (x) = aitanh ((fi(x) bi)ui) + (1/2). (11)

The hyperbolic inverse membership function can be determined by asking the

0 £0.25 g £9°° within £72%

1 &y 1 g and

DM to specify the three points f

min
fi -

(5) Piecewise linear membership function:
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Ny

e (x) = ) aij|fi(x) - gij| + B f, (x) + v, (12)
i i=1

Here, it is assumed that Mg (x) = tirfi(x) + L for each segment
i

8ir-1 < fi(X) < 8y, The piecewise linear membership function can be
determined by asking the DM to specify the degree of membership in each of
several values of objective functions within f?ax and f?in.

We now demonstrate the interaction processes using our computer
program by means of an illustrative example which is designed to test the
program.

Consider the following multiobjective decision making problem.
2 2 —£0y2
fuzzy min £1(x) = x“ + (x2+5) + (x3 60)
fuzzy min fo(x) = (x1+20)2 + (x2-55)2 + (X3+20)2

fuzzy equal f4(x) = (x=20)% + (x,=10)% + (x4-30)?

2, 2 2
subject to x € X = {(xl,xz,x3)|xl+ x, + Xq < 100, 0 € x

2 < 10, 1=1,2,3}

i
In applying our computer program to this problem, suppose that the

interaction with the hypothetical DM establishes the following membership

functions and corresponding assessment values for the three objective

functions.

£t linear, (£, £1) = (3700, 2525)
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f,: hyperbolic, (fg'zs, fg's) = (3800, 3500)
0 1
left: 1linear, (f3, f3) = (800, 1100)
f3
0 0.5 1
right: exponential, (f3, f3 R f3) = (1300, 1250, 1100)

In Appendix, the interaction processes using our computer program are
shown with the aid of some of the computer outputs. In this example, at

the second iteration, the satisficing solution of the DM is derived.

4, Conclusion

In this paper, we have proposed an interactive fuzzy satisficing
method in order to deal with the fuzzy goals of the DM in multiobjective
nonlinear programming problems. In our interactive scheme, after
determining the membership functions, the satisficing solution of the DM
can be derived by updating his reference membership values based on the
current values of the membership functions together with the trade-off
rates between the membership functions. Furthermore, (M-) Pareto
optimality of the generated solution in each iteration is guaranteed.
Based on the proposed method, the time—sharing computer program has been
written to facilitate the interaction processes. An illustrative numerical
example demonstrated the feasibility and efficiency of both the proposed
technique and its interactive computer program under the hypothetical DM.
However, applications to real-word problems must be carried our in
cooperation with a person actually involved in decision making. From such
experiences the proposed technique and its computer program must be

revised.
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Appendix Interactive fuzzy satisficing decision making processes

COMMAND :
=G0

INITIATES AN INTERACTION WITH ALL THE INITIAL REFERENCE
MEMBERSHIP VALUES ARE 1

( KUHN-TUCKER CONDITIONS SATISFIED )

OPTIMAL SOLUTION TO THE TCHEBYCHEFF NORM PROBLEM
FOR INITIAL REFERENCE MEMBERSHIP VALUES

—— P S —— T S W S S e G G T G — S S Gy g VED S —p G e G — Y SM G M e SN — . . S S S G Gy G S G - -

——— —— ——————— — i —— — i S S - i S " e S e —— = > — —— . — f— —— G — - — T W ——f———

1

+
0.57561413200+00 1 F(1)

1

1

M(F1) = = 0.30236533950+04
M(F2) = 0.57561413200+00 F(2) = 0.34167692439D+04
M(F3) = 0.5756141320D+00 F(3) = 0.9726842396D+03
X 1) = 0. X 2) = 0.67741599570+01

X¢ 3) = 0.6287594057D+01

M-PARETO OPTIMALITY TEST

( KUHN-TUCKER CONDITIONS SATISFIED )
EPSC 1)= 0.
EPS( 2)= 0.
EPS( 3)= 0.

TRADE-OFFS AMONG MEMBERSHIP FUNCTIONS
-DM(F2) /DM(F1) 0.2853582811D+01
-DM(F3)/DM(F1) 0.2109354632D+01
GRAPH OF THE TRADE-OFFS
00000 : -DM(F2)/DM(F1)
XXXXX ¢ -DM(F3)/DM(F1)
3

1.004+-——==—-—- b e Vo +
t 0 t
' '
¢ x J
t t
! 0 !
' x t
] ]
' !
! # !
0.50- -
! !
! X !
' 0 !
! !
' X '
' !
! 0 '
! X !
! !
0. e ——————— e ———— . } o e e o o e e +
O. 0.25 0.50 0.75 1.00

ARE YOU SATISFIED WITH THE CURRENT MEMBERSHIP VALUES OF
THE PARETO OPTIMAL SOLUTION ?
=NQO



ARE YOU SATISFIED WITH THE CURRENT MEMBERSHIP VALUES OF
THE PARETO OPTIMAL SOLUTION ?
=YES

THE FOLLOWING VALUES ARE YOUR SATISFICING SOLUTION :

MEMBERSHIP

I OBJECTIVE FUNCTION
M(F1) = 0.5490868946D+00 1 F(1) = D.3054822899D+04
M(F2) = 0.6190868946D+00 1 F(2) = 0.3367376043D+04
M(F3) = 0.5990868946D+00 1 F(3) = 0.9797260684D+03
X¢ 1) 0. X 2) = 0.7179716029D+01

X¢ 3) = 0.6088244174D+01

COMMAND
=STOP



