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1 . I n t r o d u c t i o n  

The t h e o r y  o f  s t o c h a s t i c  d i f f e r e n t i a l  e q u a t i o n s  w i t h  r e f l e c t i n g  

boundary  c o n d i t i o n s  l e a d s  t o  t h e  "Skorohod" p rob lem,  a s  i t  was remarked 

by N .  E l  Ka rou i  and M. Chaleya t -Maure l  i n  [ I 3  1 .  

The Skorohod p rob lem i s  d e f i n e d  a s  f o l l o w s .  Me c o n s i d e r  a  compact 

s u b s e t  K i n  IRn w i t h  nonempty i n t e r i o r  and  a v e c t o r  f i e l d  n  on  t h e  
X 

bounda ry  a K  , n o t  n e c e s s a r i l y  s i n g l e  v a l u e d ,  s u c h  t h a t  nx E sn-I f o r  
-. 

a l l  x  i n  a K  . L e t  a  f u n c t i o n  w E cm+,IRn) h e  g i v e n ,  ~ ( 0 )  E K and 

l e t  x  E C(R+,K) , k E c m + , R n )  . Ue d e n o t e  by l k l t  t h e  t o t a l  v a r i a t i o n  

of  k  on  [ O , t ]  a n d b y  ' a K  
t h e  c h a r a c t e r i s t i c  f u n c t i o n  o f  a K  . 

The p a i r  ( x , k )  i s  c a l l e d  a  s o l u t i o n  t o  t h e  Skorohod problem 

(w,K,nx) i f  f o r  a l l  t > 0 

( i i )  (kit < 

( i v )  k ( t )  = I U S )  d l l i l s  , where  & ( s )  E n ( x ( s ) )  
0 

Tbe e x i s t e n c e  and  u n i q u e n e s s  c f  s o l u t i o n s  t o  (w,K,nx) h a s  been  

f i r s t  c o n s i d e r e d  - v i a  e x p l i c i t  f o r m u l a s  - i n  t h c  p a r t i c u l a r  c a s e  when 

K i s  some h a l f  s p a c e  ( s e e  N .  E l  K a r o u i ,  M. Chaleya t -P laure l  [ I 3  ]  and 

N .  E l  K a r o u i ,  M .  Cha leya t -P l au re l ,  B .  E larecha l  [ 14 ] ) ; t h e  f i r s t  g e n e r a l  

s t u d y  was done  by H .  Tanaka  [ 31 ] i n  t l ~ e  c a s e  when t h e  domain i s  convex 

and v e c t o r  f i e l d  nx i s  no rma l .  



F i n a l l y  P.L. L ions ,  A.S. Sznitman [ 2 4  1 s t u d i e d  t h e  ca se  when 
- 

K = R and t h e  domain R has  some "semi-smoothness" p r o p e r t y  and when 

t h e  v e c t o r  f i e l d  n  i s  smooth : i n  [ 2 4  1 t h e  e x i s t e n c e ,  and t h e  uni-  
X 

queness  f o r  bounded v a r i a t i o n  d a t a  i s  proved and t h e s e  r e s u l t s  a r e  

a p p l i e d  t o  t h e  s o l v a b i l i t y  of  s t o c h a s t i c  d i f f e r e n t i a l  equa t i ons  ( o r  more 

g e n e r a l l y  f o r  d a t a  g iven  by s emimar t i nga l e s ) .  

We want t o  complete t h e s e  r e s u l t s ,  by a  d i f f e r e n t  approach. A s  

u s u a l ,  we have t o  a l l o c a t e  some smoot l~ness  requirement  between t h e  

f u n c t i o n  w and t he  boundary a K  of  R f o r  o b t a i n i n g  e x i s t e n c e .  We 

s h a l l  p rov ide  two types  of compromise : one assumes t h a t  w has  a  

con t i ngen t  d e r i v a t i v e ,  and t h a t  t he  v e c t o r  f i e l d  n  ha s  a  c l o sed  graph 
X 

(Theorem 3 . 3 )  ; t h e  second assumes on ly  t l i a t  w i s  con t inuous  bu t  

r e q u i r e s  more assumptions  on t h e  normal cone t o  K . 

We s h a l l  f o l l ow  a  d i r e c t  approach t o  t h e  Skorohod problem, by 

l ook ing  a t  i t  a s  a  v i a b i l i t y  problem f o r  a  d i f f e r e n t i a l  i n c l u s i o n .  Se t  

c l  u 
hnx 

f o r  x E 3 K  
h > O  

!'(x) := 

f o r  x  E I n t  K 

Th i s  approach c o n s i s t s  i n  l ook ing  f o r  a  p a i r  of  con t inuous  f u n c t i o n s  

(x ,k )  s a t i s f y i n g  f o r  a l l  t > 0 

( i )  x ( t )  E K 

( i i )  ~ ( t )  + k ( t )  = w ( t )  

1 
( i i i )  & ( t )  E Lloc 

( i v )  c ( t )  E r ( x ( t ) )  f o r  almost every t  2 0 



Or equivalently, by eliminating x(*) in the above, we can look for an 

absolutely continuous function k : R+ -t Rn satisfying 

i w(t) - k(t) E K 

1 (ii) G(t) E L~~~ 

(iii) G(t) E r(w(t)-k(t)) for almost all t > 0 . 

This problem is a particular case of a viability problem of the 

following type : 

Let K be a closed subset of Rn , F : K 2Rn be a set valued 
map, xo E K . We are looking for a solution of the problem : 

x(0) = x0 , x(t) E K for all t > 0 . 

Therefore for studying the Skorohod problem, we can use a viability 

theorem providing necessary and sufficient conditions for the existence 

of a solution to (VP), which we now explain ; 

Let T (x) be the contingent cone to K at x (see [ 2  1, [ 4  1) K 
or section 2 of this paper for a definition). Then under some 

continuity assumptions on F the problem (VP) has a solution x(-) 

if and only if the tangential condition 

holds true. 

In this way we obtain an existence theorem for a general set K which, 

may be, could be used for solving stochastic differential equations. 



The outline of this paper is as follows. We shall give in section 2 

some background notes and we shall state in section 3 two main theorems. 

In the fourth section, we specialize the map r(x) to be the normal cone 

to K at x and consider also the case of oblique reflecting boundary 

conditions. We prove the main theorems in the fifth and sixth sections. 

The author would like to thank P.L. Lions for raising up questions 

studied here and many helpful discussions. 

2 . Background notes. 
0 

We denote here by B (B) the open (respectively closed) unit ball 

in R" , by sn-I n 
its boundary, the unit sphere in R . Let K be a 

subset of Rn . 

a) Tangent and normal cones. 

The intermediate tangent cone (of Ursescu) IK(x) to K at x 

is given by 

(2.1) Proposition. The following statements are equivalent 

(ii) for all sequence h. > 0 converging to zero there exist 
1 

a sequence v. €Rn converging to v such that 
1 

x + hivi E K for all i . 



1 (iii) lim T; dK(x+hv) = 0 , where dK(y) := diet(y,K) 
h + 0+ 

(2.2) Definition. The asymptotic tangent cone to K at x is the 

recession cone to IK(x) , which is defined by 

I,"(x) := {u E I~ (x) : U+V E I~(x) for all v E xK(x) 1 

The asymptotic normal cone to K at x is the negative polar cone of 
m 
IK(x) , which is given by 

m 
NK(x) := iP ER" : <p,v> G O  for all v E I;(x)} 

(see [ I 6  ] for further properties). 

(2.3) Remark : The asymptotic tangent cone is a closed convex cone 

contained in the contingent cone of Bouligand 

and containing the tangent cone (of Clarke) 

If aK is smooth (locally a graph of a differentiable function) 
w 

then IK(x) = TK(x) coincide with the usual tangent space to K at x 

and if K is convex these three cones coincide with the tangent cone 
1 cl [ U T; (K-x)] of convex analysis. For x E Int K they are equal 

h > O  
to whole space. 



b) Monotone maps. 

We recall that a set valued map F : K = R" is called monotone if 

for all ni EF(xi) , xi E K  , i=1,2 . 

The set K is called weakly convex if there exists c > 0 such 
Q) 

that the map x + B nNK(x) + cx is monotone. It can be verified that 

this condition is equivalent to the following : 

for all x E aK there exists y €Rn such that 

Geometrically it means that at every point x E aK there exists a 
1 supporting ball of radius - (see [ 8 I ) .  2 c 

weakly convex not weakly convex 

3 . Main results. 

For a function k : R+ +Rn let lklt denote the total variation 

of k on [0,t I .  

Let K be a closed subset of Rn and let aK denote its boundary 

The characteristic function of the boundary aK is defined by 



1 if x E a K  
laK(x) := 

0 otherwise 

Let I' : Rn +Rn be a set valued map whose values r(x) are 

closed convex cones such that r(x) = 10) when x E Int K . 
Consider a function w : R+ -+ Rn such that w(0) E K . 

(3.1) Definition. A pair (x,k) of continuous functions x :R+ + K  , 
k : R+ +Rn is called a solution to the Skorohod problem (w,K,T) if 

for all t > 0 
, 

(i) lklt < '  

(ii) ~ ( t )  + k(t) = ~ ( t )  

where 

First, we do not impose any smoothness assumptions on the boundary 

aK , but we assume that w satisfies a weak smoothness requirement ; 

I For some function a E L 1 
loc 

lim inf UW(S) - w(t) I ]  
s - t  < a(t) 

S + t+ 

Observe that functions of bounded variation satisfy the above property. 



Second , w e  assume only t h a t  w i s  cont inuous,  b u t  t he  p r i c e  t o  

pay i s  t o  r e q u i r e  t h a t  t h e  s e t  K i s  weakly convex ( s e e  s e c t i o n  2 f o r  

t h e  d e f i n i t i o n ) .  

(3.3) Theorem. Assume r has  a  c losed  graph,  w s a t i s f i e s  (+) and 

f o r  some v > 0 , M > 0 and a l l  x  E  aK t h e r e  e x i s t s  a  symet r ic  

p o s i t i v e  d e f i n i t e  mat r ix  A(x) such t h a t  

~ ( x )  2 VI , UA(X) 0 < M and N;(x) C ~ ( x )  r ( x )  

Then the  problem (w,K,r) has  a  s o l u t i o n .  I f  we assume moreover t h a t  

A does n o t  depend on x  and t h a t  t h e r e  e x i s t s  c  > O  such the  map 

x  + Ar(x)  nN + cx i s  monotone, then  t h e r e  e x i s t s  a  unique s o l u t i o n  

t o  ( w , K , ~ )  . 

We s h a l l  prove t h i s  theorem i n  s e c t i o n  5. 

a )  Case when K i s  smooth. 

1 Assume t h a t  t he  boundary 3K i s  smooth (of c l a s s  C ) and w 

s a t i s f i e s  t h e  assumption (*). Le t  n  be t h e  u n i t  o n t e r  normal t o  K 
X 

a t  x  E  8K and NK(x) be t h e  cone genera ted  by n  i . e .  
x S  

NK(x) := U Anx , f o r  x E 3 K .  and NK(x) = {o) f o r  x E I n t K .  
X > O  

Then t h e  graph of NK(*) i s  c lo sed  and s a t i s f i e s  t he  assumptions of  

Theorem 3.3 wi th  A(x) = Id  . Thus i n  t h i s  ca se  t h e  problem (w,K,NK(*)) 

has  a  s o l u t i o n .  

b) Case when K i s  convex. 

L e t  K be convex and l e t  NK(x) be t h e  normal cone t~ K a t  x  

i n  t h e  sense  of convex a n a l y s i s .  Then t h e  s e t  valued map NK(O has a 
a3 

c losed  graph and by s e c t i o n  2 , NK(x) = NK(x) . Moreover NK(*) i s  a  



monotone map. Hence if a function w E C(R+,Rn) is such that the condition 

(*) holds by Theorem 3.3 the problem (w,K,N ( a ) )  has a unique solution. K 

C) Case when w is of bounded variation. 

Assume wEca(+,Rn) and lwlt <' for all t 2 0  , that is the 
d total variation of w on [O,t ] is finite. Then Jrrlt E Lloc and 

therefore w verifies the condition (*). Then Theorem 3.3 implies that 

if r satisfies all assumptions of Theorem 3.3 the problem (w,K,r) 

has a solution. 

The last case suggests another approach for solving the Skorohod 

problem. Namely if w is only continuous we can approximate it by 

smooth functions w. converging almost uniformly to w , Then if r 
1 

satisfies the requirement of (3.3), the problem (wi,K,T) has a solution 

(xiski) . All we need then is the sequential precompactness of 
{(xi.ki)li I in an appropriate topology. To have this precompactness 

property we shall require a monotonicity condition on the map r , 

We say that a cone C CR" has a compact sole if there exists 

a compact X C R ~ \  {o) such that C = U AX (such a X being a 

I1 
A 2 0  

sole" of the cone C , generating C ) , 

(3.4) Theorem. Assume that r has a closed graph and r(x) has a 

compact sole for all s E aK . Assume further that for some v >  0 , 
c > 0 and all x E K there exists a symmetric matrix A(x) such that 

(i) The set valued map x + A(x)r(x) n B + cx is monotone 

(ii) A(x) 2 V I  for all x E aK , A(.) is continuous 



Then for all w E c(R+,Rn) , w(0) E K the problem (w,K, T) has a 

solution. Moreover if A does not dpend on x then the solution is 

unique. 

The proof of this theorem, which is related in many aspects to 

the one of [24 ] is given in section 6. 

4 . Examples of applications. 

Let K be a closed subset of R" , CK(x) be the tangent cone 

(of Clarke) to K at x E K  (see Remark 2.3 for definition and ( 4  1, 

1 7  1 for an exposition). Let N (x) be the negative polar cone of K 
CK(x) . When the boundary aK is of class C' then NK(r) is spanned 

by the unit outer normal to K at x . 

(4.1) Lemma. The set valued function x + NK(x) has a closed graph 

if either one of the following conditions holds 

(i) For all x E aK , NK(x) has a compact sole 

(ii) For all x E K , CK(x) = TK(x) 

Proof. (i) is equivalent to Int CK(x) # 0 . Thus by [28 ] (i) implies 

that the set valued map x + CK(x) is lower semicontinuous. If (ii) 

holds then by [ 8  ] also CK(*) is lower semi continuous. This is 

equivalent to say that the map x -, NK(x) has a closed graph (see [3 I). 

a) Case when r(x) is the normal cone to K at x , 

(4.2) Corollary. Assume that either condition (i) or (ii) of Lenpna 3.1 

holds and that w Ec(R+rn) , w(0) E K  , lwlt < -  for a11 t > O  

(i.e. w is of bounded variation on finite intervals). Then the problem 



(w,K,NK(*)) has a solution. Moreover if the set K is weakly convex 

then there exists a unique solution to (w,K,N~(*)) . 

Proof. The first claim follows directly from the case c) of section 3 

and Lemma 4.1. The weak convexity of K means the monotonicity of map 

x + NK(x) n B + cx for some c > 0 . By ( 8  1 ,  if K is weakly convex, 
Q) 

then TK(x) = CK(x) for all x E K . Thus NK(x) = NK(x) and therefore 

the map x + NK(x) n B + cx is monotone. By Theorem 3.3 then there 

exists a unique solution to (w,K,NK(*)) . 

(4.3) Remark. Assumptions (I), (5) from [24 ] imply that the yector 

field nx considered there is the compact sole of NK(x) and that for 

some c > 0 the set valued map x + N (x) n B + cx is monotone. Hence K 
NK(*) satisfies assumptions of Corollary 4.2. 

We shall give next another application of Theorem 3.3 : 

b) Case of oblique reflecting boundary conditions : 

(4.4) Corollary. Assume 3K is locally the graph of a differentiable 

function and let nx be the unit outer normal to K at x 3K . Let 
y : aK + sn-' be a continuous function such that for some V > 0 and 
all x E aK 

Set ( x  = A x  : A 2 0 and let w E c(R+,Rn) , w(0) E K be such 

that the condition (*) from section 3 is satisfied. Then the problem 

(w,K,r) has a solution. 

Proof. Let { R  i=1,2,. . . ,n be an orthonormal basis of R" and fix - 
00 

x E 3K . By assumptions NK(x) = U Anx . Let pi,qi be orthogonal 
A 2 0  



projections of L on N;(x) and x : { v E R n  : <v,y(x)>CO} 
i 

respectively . Set a. . (x) <y(x),nX> - 1 
1J 

(<pi,pj> + <qi.qj>) . The matrix 
(aij (XI) is symmetric. Let v €Rn and n v , n v be orthogonal 1 2 

projections of v onto x , r 1  ( x  respectively. Then 

A(x)v - ~y(x1.n >-l(nlv + n2v) . It implies that A(x)y(x) = nx 
X 

and for some v' > 0 , A(x) > v'I , IA(x) 1 6 2/v , where v' does not 

depend on x . Hence r satisfies the assumptions of Theorem 3.3 and 

therefore the problem (w,K,r) has a solution. 

5 . Proof of Theorem 3.3. 

We set w(t) = w(0) for all t < O  . It is enough to prove the 
Theorem under the additional assumption that K is bounded. 

From now on we assume that K is compact. Clearly the proof of 

existence will be completed if we show that for all T > Q  there exists 

(x,k) E c([O,T 1 ,  K)X C([O,T 1 ,  R") such that the relations (3.2) 

hold for all t E [O,T 1 .  Fix T > 0 . We shall prove the Theorem in 
several steps. 

Step 1. Assume first that there exists a constant b > 0 such that 

liminf 1-1 < b o r a l  t E [ o , ~ ] ,  
t'+ t+ 

Consider the set 

and the set valued function G from K into the subsets of R" 

defined by : 



Since K is closed, w is continuous and r has a closed graph the 

multifunction G is upper semicontinuous on its domain of definition K . 

Step 2. We claim that for all t E [-1 ,T 1 ,  k E w(t) - K there exists 

a(t) E bB such that 

(1) x ( ( 1  - w t - k  C TK(t,k) 

Indeed by the assumption (*) for all t E [-1,T ] the contingent derivative 

Dw(t) of w at t , defined by 

~w(t) := (p €Rn : (1,~) T 
graph (w) (t,w(t)) 1 

is nonempty. Then by assumption of step 1 there exists a(t) E Dw(t) n b B  . 
By definition of Dw(t) there exists a sequence hi > 0 converging to 

zero such that 

Let v E ~;(v(t)-k) . By section 2 there exists a sequence vi E R" 

converging to v such that w(t) - k + hivi E K . It implies that 
(t+hi , w(t+hi)-w(t)+k-h.v.) 1 1  E K and therefore 

Thus 



Step 3. We claim that the following tangential condition holds 

(5.1) 1 x G t k  T t k  # B 

It is enough to consider the case (t,k) E aK or equivalently 

x := v(t)-k E aK . 
Let ~ ( x )  be as in assumptions of Theorem and define the scalar 

product < , > on Rn setting ~ , q > ~  = <A(x)p,q> . Let 
X 

p(x) = ip ER" : <P,V>~SO for all VEI;(X)I 

that is P(x) is the negative polar cone to IK(x) for the scalar 
-1 w 

product < , >x , which is equal to ~ ( x )  NK(x) . Then, by assumption, 

By a Theorem of Moreau (see for example [ 3 I ) ,  every y E Rn has a 
w 

unique decomposition as y = y1+y2 , y1 E IK(x) , y2 E P(x) , 
<y , y >  = 0 , U Y l l X  d Y l X  ; ly I <lyll . 

1 2 x  2 x X 

The properties of A(x) imply the following estimates : 

and similarly 

Furthermore inclusion (5.2) implies that for all x E aK the following 

holds : 

For all y €Rn there exist 1 

M 
such that y = yI+y2 , ly. 1 <- lyll, i=1,2 . 

1 v 



In particular it implies the existence of a, (t) E 1;(w(t)-k) , 
a2(t) E I'(w(t)-k) such that a(t) = a] (t) + a2 (t) and 

lal(t) 1 <! la(t) 1 . Hence by Step 2, the tangential assumption (5.1) 
is satisfied. 

Step 4. We claim that the problem (w,K,I') has a solution. Indeed 

consider the differential inclusion 

; (1 x G(y) 

y(0) = 0 , y(t) E K for t E [O,T 1 

By the viability theorem, (see Haddad [ 18 I), (5.3) has a solution, i.e. 

there exists an absolutely continuous function y : [O,T I-+ K such that 

;(t> E ( 1 )  x G(y(t)) for all t E [O,T 1 

It implies the existence of absolutely continuous function k : [O,T ]+R" 

satisfying for all t E [O,T 1: 

Let x(t) := w(t) - k(t) . Then (3.2) (i)-(iii) are satisfied and moreover 

Since the multifunction t + r(x(t)) is measurable, there exists a 

measurable selection o on (t : x(t) E a ~ )  such that a(t) E I'(x(t)) n sn-' 
(see [ 33 I ). 



Se t  

Then d l k l t  = ~ c ( t ) l d t  and thus  (3 .2 ) ( iv )  i s  v e r i f i e d .  Hence ( I K , ~ )  

i s  t h e  s o l u t i o n  t o  (w,K,r) . 

Step 5.  We cons ide r  he re  an a r b i t r a r y  f u n c t i o n  w s a t i s f y i n g  t h e  

assumption (*). S e t  

a ( t )  := l i m  i n £  jlw(t') - w ( t )  I1 + 

t '+  t +  t '  - t 

n  - 
, [ a(s)ds] + R  def ined  by and we cons ider  t h e  func t ion  w : 

Then 

- 
w [/:'a(s)ds] - ;[I: a ( s ) d s ]  

< lim inf Iw(t ')-w(t)  I 1 l i m  i n£  .- 
t '  t t '  - t t '  + t +  t '+  t +  or(t) I a ( s ) d s  - a ( s ) d s  
0 0 

By the  prev ious  p a r t  t h e r e  e x i s t  cont inuous func t ions  (x,c) s a t i s f y i n g  

M (3.2) ( i ) - ( i v )  f o r  a l l  r t [O , 1: a( s )ds ]  and ~ i ( r ) l l  C ;  . For a l l  

t E [O,T ] s e t  

M 
Then d ( k l  

C ;  a ( t ) d t  . Clea r ly  (3.2) ( i ) ,  ( i i )  a r e  s a t i s f i e d .  Moreover 

c ( t )  E r ( x ( t ) )  imp l i e s  ( 3 . 2 ) ( i i i ) .  Exac t ly  a s  i n  s t e p  4 we v e r i f y  t h a t  

( 3 . 2 ) ( i v )  ho lds .  



Step 6. (uniqueness). Suppose that A d$ot depend on x and that 

there exists c > 0 such that the map x + Ar(x) n B + cx is monotone. 

Then if (xl,kl) and (x2,k2) are solutions to (w,K,r) we obtain 

- k 1  - k 2 i 2  = dil(t)-~i2(t) , tl(t)-k2(t)> = dt 3 

= <~g~(t)-~C~(t) , ~ ~ ( t 1 - x ~  (t)> . 

By monotonicity, using that Ci(t) E l"(xi(t)) i=1,2 , we have 

Integrating on [O,t ] the above inequality we get 

The Gronwall inequality implies then that 

Hence k = k2 1 and xl = w-k = w-k2 1 = X2 ' 

6 . Proof of Theorem 3.4. 

The last statement (the uniqueness) follows from Theorem 3.3. 

We shall proceed with a proof of existence using results from [24 1 .  
1 Note first that if w E C (R+,Rn) then by Theorem 3.3 the problem 



(w,K,r) has a solution (x ,k )  . Since r(x) has a compact sole which 

does not contain zero for all x E aK we can find s(x) E sn-l and 

p(x) > 0  such that 

<y, s (XI > > P(X) for ell y E r(x) n sn-' 

Because r has a closed graph for all x E aK there exists R(x) > O  

such that 

(x' E aK n (x+R(x)B)) <Y,~(X)> 2 ~ ( ~ 1 1 2  

for all y nsn-I 

As in the proof of Theorem 3.3 it is not restrictive to assume that K 

is compact. Then the boundary aK can be covered by a finite number of 

open balls B(xi,R(xi)) . 
On the other hand the monotonicity of the map x + A(x)r(x) n B t cx 

implies that A(x) T(x) C N; and hence by assumptions 

03 n 
Let w. E C @+,R ) be a sequence converging to w uniformly on 

1 

compacts. By theorem 3.3 there exists a solution (xi,ki) to (wi,K,r) . 
By the results from [ 241 we know that a subsequence { (xij ,k. .) 1 

13 
~ - 

converges to a solution (x,k) of problem (w,K,r) . (To prove it one 
has to use the monotonicity to show the precompactness of set (xiski) ji  

and verify that cluster points of {(xi,ki)Ii are solutions to 

(x,K,C) , see [ 24 1 1. 
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