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FOREWORD 

Part of the 1985 activity of IIASA's Population Program dealt with the analysis of 
hidden heterogeneity in population dynamics. The purpose of heterogeneity anlaysis is to 
explain various phenomena observed in population studies, to develop new insights and 
ideas that help policymakers handle the variety of population problems, and to under
stand how data processing methods should be changed to account for hidden variables 
that influence observed phenomena. 

This paper focuses on some unexpected results in population behavior that are 
artifacts of heterogeneity. The results show that specialists in population studies should 
be careful in interpreting measurements and statistical data processing. 

ANATOL! I. YASHIN 
Acting Leader 

Population Program 



Heterogeneity's Ruses: 
Some Surprising Effects of SelectiOn on Population Dynamics 

JAMES W. VAUPEL and ANATOL! I. YASHIN* 

As a cohort of people, animals, or machines ages, the in
dividuals at highest risk tend to die or exit first. This ctif
ferential selection can produce patterns of mortality for the 
population as a whole that are surprisingly different from 
the patterns for subpopulations or individuals. Naive ac
ceptance of observed population patterns may lead to er
roneous policy recommendations if an intervention depends 
on the response of individuals. Furthermore, because pat
terns at the individual level may be simpler than composite 
population patterns, both theoretical and empirical research 
may be unnecessarily complicated by failure to recognize 
the effects of heterogeneity. 

KEY WORDS: Survival analysis; Unobserved heteroge
neity; Mixed populations; Hazard rates; Mortality; Failure; 
Mixtures of distributions. 

The members of many kinds of populations gradually die 
off or drop out . Animals and plants die. bachelors marry, 
machines break down, the childless give birth, the unem
ployed find jobs. A cohort's rate of death or exit is often 
measured by the so-called force of mortality or hazard rate, 
µ.. At age x and time y, 

µ.(x, y) = - [dp(x. y)ldx]lp(x. y), Y =Yo + x, (I) 

where p(x. y) is the proportion of the cohort born x years 
ago that is surviving at time y and y0 is the year the cohort 
was born. In a homogeneous population, all individuals of 
age x in year y face the same hazard rate µ.(x. y) . A het
erogeneous population consists of various homogeneous 
subpopulations. 

That the patterns of mortality (or exit) in a heterogeneous 
population can differ qualitatively from the patterns of mor
tality in the constituent subpopulations can be neatly illus
trated in the simplest example of a heterogeneous population
namely, a composite population that consists of two ho
mogeneous subpopulations . Indeed, almost all of the dis
tinctive features of heterogeneous populations become 
apparent as soon as the transition is made from a homo
geneous population to a mixed population with two major 
subpopulations . Important research on such mixed popu
lations includes Blumen et al .' s (1955) pioneering work on 
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mover-stayer models of labor mobility, Shepard and Zeck
hauser's (1980) health-care research, and Keyfitz and Litt
man's ( 1980) analysis of mortality. Other applications abound 
in fields as disparate as reliability engineering and econo
metrics; a statistician might broadly classify this research 

as falling within the intersection of survival analysis and 
. studies of mixtures of distributions. 

THE DEVIOUS DYNAMICS OF AGING COHORTS 

Consider first the dynamics of mortality among a cohort 
of aging individuals. Age here could represent time since 
marriage or since release from prison, and death could be 
interpreted metaphorically as divorce or recidivism. Let µ.i(x) 
and /.£2(X) be the hazard rates for the two subcohorts at age 
x and let :U(x) be the observed hazard rate for the entire 
cohort. (Since age and time advance synchronously for a 
cohort, it is not necessary to explicitly consider time y in 
addition to age x; for simplicity, we suppress the argument 
y). The key question of interest is, How does the trajectory 
of jii.x) compare with the trajectories of µ.i(x) and µ,,(x)? 

Let p 1(x) and p 2(x) be the survival functions of the two 
subcohorts : 

p;(x) = exp [ - J: µ.;(t) dt], i = I, 2. (2) 

Define 1T(x) as the proportion of the surviving cohort at age 
x that is in the first subcohort: 

1r(x) (3) 

Clearly, 

/J.(x) = 7T(x)µ. 1(x) + [I - 1T(x)]µ,,(x). (4) 

The dependency of the cohort hazard rate on the subcohorts' 
hazard rates is thus mediated by the changing proportion of 
the population that is in one or the other of the subcohorts. 
Overtime, the observed hazard rate will approach the hazard 
rate of the more robust subcohort. Figures l through 5 
illustrate some specific instances. 

The recidivism rate for convicts released from prison 
declines with time since release (Harris et al. 1981). The 
recidivism rate for former smokers who are trying to stop 
smoking and for former alcoholics who are trying to stop 
drinking also declines with time. Does this imply that the 
hazard of recidivism for individual convicts, smokers, and 
alcoholics declines over time? Not necessarily. As illus
trated in Figure I there might be two groups of individuals, 
the reformed and the incorrigible . For individuals in each 
group. the hazard of recidivism might be constant. The 
observed decline would be an artifact of heterogeneity, a 
ruse. 

© 1985 Amuican Statistical Association 
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Figure 1. The observed hazard rate may decline even though the hazard rates for the rwo subcohorts are constant. The curve for µ was 
calculated from (2) , (3), and (4) using µ., = .06, µ,, = .01, and rr(O) = .8. The curves are shown for values of x from 0 to 75. 

As another example of the same kind of phenomenon, 
consider tooth decay . New caries tend to become less fre
quent with age. Does this mean that adults brush their teeth 
more carefully than children? Not necessarily. Various areas 
on the surface of teeth may sirr.ply differ in susceptibility 
to decay . 

Over the course of the last century , it has taken more and 
more effort (as measured by cost or by feet drilled) to dis
cover a specified amount of oil. Are geologists becoming 
more incompetent? Some insight can be gained by drawing 
an analogy between discovery rates per unit of effon and 
mortality rates per unit of time. It seems likely that the oil 
that is easiest to find and that is contained in the biggest 
fields tends to be found (i.e . , "die") first. Even if geologists 
were steadily becoming more and more expert , this selection 
effect could outpace their growing knowledge and make it 
increasingly difficult for them to discover oil. 

The cohort hazard rate shown in Figure 2a follows the 
"bathtub" shape familiar to reliability engineers (see, e.g. , 
Gnedenlco et al . 1969; Mann et al. 1974; or Barlow and 
Proschan 1975) and reminiscent of some human and animal 
mortality curves. Does this cohort curve imply that the fail
ure rate for a specific device decreases during the infant 
mortality phase, is roughly constant during the useful life 

x 

µ. 

phase . and increases during the wear-out phase> Not nec
essarily. The high initial rate of breakdown could be due to 
a group of lemons. Note that if the population were only 
observed for a sh on time . then the co hon curve would be 
steadily decreasing even though none of the devices or in
dividuals in the population would be experiencing a declin
ing risk of mortality . 

Figure 3 depicts another ruse: the observed hazard rate 
increases steadily , suddenly declines, and then sta11s in
creasing again , albeit at a slower rate . This trajectory is 
produced by two subcohorts that suffer constantly increasing 
hazard rates. The sudden decline in the observed hazard 
rate is produced by the rapid extinction of the frailer sub
cohort . Until the point of decline, the frailer subcohort ex
periences death rates that are relatively low. Then , due to 
the exponential increase in the force of mortality, the death 
rates become sufficiently large that within a few years almost 
all of the frailer subcohon dies . The observed hazard rate 
declines to the level of the hazard rate for the more robust 
subcohort. Since this hazard rate is increasing, the observed 
hazard rate then sta11s to increase as well: the observed 
hazard rate now equals the hazard rate for the more robust 
subcohort because only members of the more robust sub
cohort are still alive . 

b 

x 

Figure 2. The observed hazard rate may decline and then rise even though the hazard rate for one subcohort is rising steadily and mat 
of me olher is constant. The curve forµ was calculated from (2), (3), and (4) using µ., = .14, µ,,(x) = .001 + .0075x, and rr(O) = .5. The 
curves are shown for values of x from 0 to 75. 
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Figure 3. The observed hazard rate may rise steadily, then decline, and then rise again even though the hazard rates tor the two subcohorts 
are steadily rising. The curve forµ. was calculated from (2), (3), and (4) using µ.,{x) = .0001 · exp(.2x), 11-z(x) = .0001 · exp{. Ix), and rr{O) 

.S. The curves are shown tor values of x from O to 75. Note thatµ. and µ;are plotted on logarithmic scales. 

Figure 4 depicts a somewhat subtler ruse: the observed 
cohort hazard rate increases more slowly than the hazard 
rates for individuals in either subcohort. Individuals are, in 
a sense, aging more rapidly than the cohort data show. 
Vaupel et al. (1979), Vaupel and Yashin ( 1983), and Hor
iuchi and Coale (1983) explored various ·demographic im
plications of this effect. 

[n the so-called mover-stayer model (Blumen et al. 1955), 
one group in the population is susceptible to emigration, 
marriage. divorce , some disease and so forth, and the other 
group is immune. If the hazard for the susceptible subcohort 
is steadily increasing, then as shown in Figure Sa the ob
served hazard for the entire population may rise and then 
fall. Divorce rates, for instance. follow this general rising
falling pattern (Rogers 1982). Does this imply that mar
riages are shakiest after a few years of marriage·~ Not nec
essarily, as Figure 5 illustrates. The same basic effect can 
be produced even if one group is not immune but simply 
at low risk. [ndeed the rising-falling partem can be produced 
if the hazard steadily increases for the high-risk group but 
steadily decreases for the low-risk group. For one group, 
marriages strengthen with duration, while for the other, 

In jj 

x 

marriages weaken-<iespite the appearance of the cohort 
curve, there is no "seven-year itch." 

In the five examples illustrated by Figures I through 5, 
the focus is on the deviation of the trajectory of the observed 
hazard rate from chose of the hazard rates for individuals in 
the two subcohorts. Similar ruses may hold for any char
acteristic of an individual that is correlated with an indi
vidual's hazard rate. 

For instance, suppose that individuals of some animal 
species (fluke. say. or perhaps red herring) are either lean 
or fat. Suppose that the fat individuals suffer a higher mor
tality rate. Observations indicate that the average weight of 
3-year-olds is about the same as that of 4-year-olds. Does 
that mean that individual members of the species do not 
gain any weight between the age of 3 and 4? Not neces
sarily-each individual may be gaining weight, but selec
tion of the fatter individuals may hold the average weight 
of the survivi ng individuals approximately constant. 

As another example, imagine an anthropologist who is 
observing a food market where sellers bargain with potential 
customers. The anthropologist discovers the pri<:e of to
matoes to be steadily falling over the course of the day. 

b 
Inµ 

x 

Figure 4. The observed hazard rate may increase more slowly than the hazard rates for the two subcohorts. The curve torµ. was calculated 
from (2), (3), and (4) using µ.,(x) = .01 · exp(.04x), 11-z(x) = .002 · exp(.04x), and rr(O) ~ .B. The curves are shown tor values of x from o to 
75; ii the curve in a were condnued for higher values of x, it would begin rising again and would asymptotically approach µ.,. Note that µ 
and µ, are plotted on logarithmic scales. 
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Figure 5. The observed hazard rate may increase and then decline ff the hazard rate for one subcohort is increasing and the other 
subcohort is immune. The curve for µ was calculated from (2), (3), and (4) using µ, (x) = .002x, µ.,(x) = 0, and Tr(O) = .95. The curves are 
shown for values of x from 0 to 75. 

The initial hypothesis is that tomatoes deteriorate rapidly, 
but by studying a few selected tomatoes, the anthropologist 
discovers that tomatoes do not lose much flavor or texture 
from hour to hour or even from one day to the next. What 
is happening is that the best tomatoes get sold (i.e .. "die") 
first: as the day goes on , the remaining tomato~s tend to be 
the most inferior ones . 

MORTALITY CROSSOVERS 

Figure 6a depicts a so-called mortality crossover. One 
subcohort's hazard rate is lower than the other subcohort' s 
at younger ages, but higher at advanced ages . Numerous 
such crossovers have been discovered in comparisons of 
different national populations and of the same national pop
ulation at different points in time (Nam et al. 1978; Manton 
etal. 1981 ); the effect also occurs for U.S . blacks vs . whites 
(Manton and Stallard 1981 a). Some of these crossovers may 
be due to incorrec1 reporting of the age of death: others may 
be due to differences in life-style or other factors . Some of 
the crossovers may also be. at least in part. artifacts of 
heterogeneity . 

In particular, the cohort curves in Figure 6a might be 
produced by the subcohort curves shown in Figure 6b . The 
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robust subcohorts of each of the two populations face the 
same mortality chances . The frail subcohort of the disad
vantaged population. however, faces higher mortality chances 
than the frail subcohort of the advantaged population. Con
sequently , the frailer members of the disadvantaged popu
lation die off relatively quickly . leaving a surviving population 
that largely consists of the robust subcohort. If this selection 
effect is strong enough. a crossover may be observed for 
the two populations (Vaupel et al. 1979; Vaupel and Yashin 
1983). A crossover can also be produced if the frail and 
robust subcohorts of both populations experience the same 
death rates, but the disadvantaged population has . at birth , 
a larger proportion of frail individuals. 

The relative prevalence of various diseases changes with 
age. Cancer, for example. is more common than heart failure 
at younger ages but less common at older ages. Does this 
imply that any particular individual is more likely to die 
from cancer in youth and from heart disease in old age0 

Not necessarily, as illustrated by Figure 7. A simple model 
(that can readily be made more realistic) might assume that 
everyone faces the same hazard of heart failure , but that 
people differ in their susceptibility to cancer. In Figure 7b , 
the top line gives the hazard rate for individuals at high risk 
of gening cancer, the bonom line gives the corresponding 
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Figure 6. A disadvantaged cohort may appear to suffer lower mortality rates than an advantaged cohort at older ages. The curves for µ, 

and µ,, were calculated from (2), (3), and (4) using µ.,.(x) = .0025 exp(.04x), µ.,,,{x) = .01 exp(.04x), µ.,(x) = .002 exp(.04x), and Tr(O) = 
.7. The curves are shown for values for x from Oro 96. Note that the curves are plotted on logarithmic scales. 
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Figure 7. Observed mortality rates for two causes ol death may appear to intersect. The curve for µ., was calculated from (2). (3), and 
(4) using µ..,c = .01 exp(.04x), µ,,,, = .0025 exp(.04x), and TT(O) = .8. The curve forµ.. is given by ii..(x) = µ,,(x) = .005 exp(.04x). The 
curves are shown for values al x from O to 96. Nate that the curves are plotted on laganthmic scales. 

hazard rate for individuals at low risk of getting cancer, and 
the middle line gives the hazard rate for heart failure. These 
hazard lines produce the apparent crossover in mortality 
rates shown in Figure 7a. Essentially , the incidence of can
cer declines relative to the incidence of heart failure because 
the i;idividuals most susceptible to cancer have died. 

REDUNDANCY AND THE DEATH OF FAMILIES 

Suppose that a machine or device will fail if some specific 
component fails . To guard against this, a component is 
installed in parallel to the original component so that the 
machine will run if either component is operating; the failure 
rates of the two components are independent. Will the failure 
rate of the machine be reduced at all ages? Not necessarily. 
If the two components are heterogeneous in that the second 
component is somewhat less reliable than the original com
ponent, then , as Barlow and Proschan ( 1975) have shown, 
the failure rate of the redundant system will , after some 
age , exceed the failure rate of the original , single-component 
system. Furthermore, as shown by the solid curve in Figure 8, 

µ. 
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Figure 8. The hazard rate for a redundant system may exceed 
the hazard rate of its more reliable component. The curve for jl was 
calculated from (5) using µ.., = .1 and µ., = .05. The curves ara 
shown for x from O ta 64. 
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a system consisting of two components with constant failure 
rates will have a failure rate that first increases and then 
decreases; the levels of the failure rates for the two com
ponents are shown by the dotted lines in the figure. 

At first thought , it may seem rather mystifying that a 
redundant system can be less reliable than a single
component system. A common sense explanation runs as 
follows. The functioning system can be in three possible 
states: both components are working , only the more reliable 
one is working, or only the less reliable one is working. As 
time passes, it becomes more likely that only one of the 
components is still working. If the probability that both 
components are still working is low enough, then the failure 
rate for the system is roughly equal to a weighted average 
of the failure rates of the two components. Thus the failure 
rate of the system can rise to a level between the failure 
rates of the two components. As more time passes, it be
comes increasingly likely that if the machine is still working, 
it is working using the more reliable component. Conse
quently , the failure rate approaches the failure rate of the 
more reliable component. 

Although Barlow and Proschan's example concerns two 
components with constant failure rates , the same effect can 
be shown in more elaborate examples with several com
ponents with changing failure rates. Consider a system with 
i independent components in parallel : the system fails when 
all i components fail. Let p,{x) be the probability that com
ponent i is functioning , at time x, as given by (2) . Because 
the system can only fail when its last functioning component 
fails, the failure rate for the system is 

p,{x) n [l - P;(x)] 

µ(x) = ~/L,{X) I - i~i [I - Pix)] 
j 

(5) 

Some models of human disease processes are based on 
the hypothesis that the body has several lines of defense 
and that some· diseases occur only after all of these lines of 
defense have failed . Thus the formula might also be applied 
to the study of human mortality and morbidity. 

Another application might be in studies of the extinction 
of families: a family unit might be defined as extinct when 
the last member of the unit dies . For example, evolutionary 
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Figure 9. The hazard rate for a family may exceed the hazard 
rate for the more robust member of the family. The curve tor ii was 
calculated from (5) using l'-!(x) = .00333 exp(.2x) and l'->(x} = .01 
exp(.2x). The curves are shown for x from O to 30. Note that the 
curves are plotted on a logarithmic scale. 

biologists study the extinction not only of species but also 
of higher taxonomic levels such as genera, families, and 
orders: A taxon dies when all the species in the taxon become 
extinct (Simpson 1983). As another, simpler example, con
sider a husband and wife who own an annuity that guarantees 
some monthly payment as long as either of them is living . 
If the husband ' s and wife's forces of mortality are inde
pendent of each other and are given by the dotted lines in 
Figure 9, then the hazard rate for the annuity is given by 
the solid curve in Figure 9. As the figure shows, at advanced 
durations the hazard rate for the annuity exceeds the wife 's 
force of mortality. Furthermore, the hazard rate for the 
annuity follows a winding curve that initially rises at a much 
more rapid rate, but eventually at a somewhat slower rate, 
than the force of mortality curves. (The assumption that 
forces of mortality for members of a family are independent 
may be unrealistic; it is not difficult to adjust the calculations 
for a common cause of death .) 

APPARENT FAil..URES OF SUCCESS 

In heterogeneous populations progress sometimes comes 
out looking like failure. Seven such ruses are adumbrated 
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below. 
The apparent gerontological failures that can be produced 

by pediatric success arc illustrated by Figure 10. As shown 
in Figure IOb, a cohort consists of a frail and a robust 
subcohort. Health progress reduces mortality rates, at youn
ger ages, from the solid lines to the dotted lines. As shown 
in Figure I Oa, this does indeed lower monality rates for the 
entire cohort at younger ages. At later ages, however, the 
observed cohort death rate is higher than it would have been . 
The frail individuals saved in childhood are dying at older 
ages. Every individual's life chances are improved at youn
ger ages and are as good as ever at later ages, but observed 
cohort mortality makes it look as if pediatricians are making 
progress, whereas gerontologists are losing ground. 

Consider now another kind of progress, namely, steady 
progress over time in reducing mortality at all ages: 

µ.,{x , y) = µ.,{x, 0) exp( - r)'), i = l, 2, (6) 

where r is the rate of progress. [As before , µ.is defined by 
(I) ; we now explicitly indicate that µ. is a function of time 
y because we are no longer following a single cohort but 
are interested in an entire population over age and time.] 
The observed mortality rate will then steadily decline at age 
zero , but at older ages the pattern may be more complex. 
Observed mortality rates may decline at an increasing rate ; 
they may rise and then fall ; or, as shown on the left side 
of Figure 11 , they may decline, increase, and then decline 
again. 

An intuitive explanation of the pattern of the curve in 
Figure 11 runs as follows. Reductions in mortality rates at 
younger ages permit more individuals from the frailer sub
population to survive to older ages . This influx of frailer 
individuals serves as a brake or counter-current on reduc
tions in mortality rates at older ages. If the influx is small 
enough, progress may still be observed; but if the influx is 
large enough, observed mortality rates may actually in
crease. The size of the influx depends on the absolute mag
nitude of the reduction in mortality rates at younger ages 
(i.e., on the number of lives being saved in the frailer 
subpopulation) and on the chance a frailer individual has of 
reaching older ages . For the curve in Figure 11, the influx 
is small initially because so few frail individuals live to age 
75 ; the influx becomes small again later because then so 
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Figure 10. LDwering mortality rates before some age may incraase observed mortality rates after that age. The solid curve for ii was 
calculated from (2), (3), and (4) using l'-!(x} = .05 exp(.025x}, µ.,(x) = .02 exp(.025x), and "(OJ = .5. For the dotted curves, mortality rates 
befora age 24 were cur in haff. The curves are shown tor values of x from O to 72. Note that the curves are plotted on logarithmic scales. 
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Figure 11. Observed mortality ra1es may follow complex pat
tems over time even though individual mortality rates are steadily 
declining (or become constant) at all ages. The curve for µ. was 
calculated from (6) and a simple generalization of (2), (3), and (4) 
using µ.,(x, Q) = .002 exp(.Q7x), µ,,{x, O) = .0001 exp(.07x), "o = 
.5, and r = .02 until y = 100 and r = O afterwards. The curves are 
shown for values of y from O to 120. 

few deaths occur before age 75. 
Now suppose that progress against mortality ceases: 

µ.,{x. y) = µ.,{x, Yo). i = I, 2, y 2: Yo · (7) 

The observed mortality rate at age zero will then stay con
stant, but as shown on the right side of Figure 11, observed 
mortality rates at older ages will increase before leveling 
off. To understand this phenomenon, consider the cohorts 
aged 50 and 70 in the year progress ceases . Because the 
50-year-olds have benefited from 20 more years of mortality 
progress than the 70-year-olds, there will be more frail in
dividuals among the 50-year-olds than there were among 
the 70-year-olds twenty years ago (when they were 50 years 

·old) . Furthermore, because of the additional 20 years of 
mortality progress, more of these frail 50-year-olds will 
survive to age 70. Thus 20 years hence, when the 50-year
olds are 70 years old , more of them will be from the frailer 
subpopulation than is currently the case. Consequently , the 
observed mortality rate among those furure 70-year-olds will 
be higher than it currently is. 

This implies that when progress is being made against 
mortality , then currently observed mortality rates are lower 
than the mortality rates that would be observed if the current 
rates for individuals persisted or, indeed, merely declined 
at a slower rate of progress than before . Vaupel et al. ( 1979) 
indicated how to calculate the values of mortality rates under 
current health conditions, adjusted for heterogeneity and 
past health progress. 

As explained by Keyfitz and Beekman (1984) . another 
kind of ruse occurs in growing populations. In a population 
that consists of subpopulations with differing mortality rates, 

reductions in mortality rates for all of the subpopulations 
may lead to an increase in the observed mortality rates for 
the entire population. This ruse will occur if the reduction 
in mortality leads to more rapid growth in the size of the 
subpopulations that have high mortality rates. 

As a simple example, consider a population with crude 
death rate d that consists of two stable subpopulations with 
equal crude growth rates and with death rates d1 and d2, d 1 
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being substantially greater than d2• (Because the crude growth 
rates are the same, the birth rates also differ.) If the fim 
subpopulation constitutes a proportion 11' of the total pop
ulation, then 

d = mi1 + (I - 11')d2. (8) 

If the crude death rates of the two subpopulations are re
duced by o1 and Bz, such that o1 is greater than Bz, then the 
crude growth rate for the first subpopulation will start ex
ceeding the crude growth rate for the second subpopulation. 
The first subpopulation will thus constitute a greater and 
greater share of the total population: 11' will approach one. 
Hence the crude death rate will approach d1 - 8,. As long 
as this value is greater than d, the crude death rate will 
increase. 

Since d1 exceeds d2, an equal percentage reduction yields 
o1 greater than Bi, so equal percentage reductions are a 
special case of the situation just described. It is not difficult 
to generalize to n subpopulations· or to the case in which 
the crude growth rates of the subpopulations are different. 
Under a variety of conditions, lowering individual or sub
population death rates in a growing population can result in 
increases in the observed population mortality rate. 

Yet another of heterogeneity's sleights of hand can be 

illustrated by a simple stochastic discrete-state model. Each 
of the members of some population are in one of two states. 
The hazard rates in these two states, µ. 1 and !J.?, are constant 
over time. Moreover, !J.? exceeds µ. 1: the individuals in the 
second state are the frail or debilitated individuals. There 
is a constant transition intensity from state 1 to state 2, 
denoted by A, but there is no transition from state 2 to state 
l. Let ~t) denote the proportion of individuals in state 2 
at time 1. 

If A is smaller than 6.µ. = !J.? - µ. 1, then as shown by 
Petrovski et al. ( 1984) ~t) will approach >Jt:.µ. and the 
observed force of mortality for the population as a whole 
will approach 

jl = A + µ., . (9) 

This is a surprising result because the observed force of 
mortality does not depend on the force of mortality in the 
second state. Any attempt to reduce jl by reducing !J.? will 
fail unless !J.? can be sufficiently reduced so that t:.µ. is less 
than A. Although this is an asymptotic result, to the extent 
that t:.µ. exceeds A the asymptote will be approached in a 
fraction of the life span of the cohort. In an illustrative 
example given by Petrovski et al. (1984) cutting !J.? in half 
hardly alters jl, but cutting A in half reduces jl by 30%: 
prevention can be much more effective than mitigation. 

Consider now a generalization of the model such that A 
depends on IJ.? · In particular, suppose that A(aj increases 
as !J.? decreases . This effect may occur widely: if cigarette 
smoking were made safer (if, say, a cure were developed 
for lung cancer), more people might smoke even though 
they would still face an elevated rate of heart disease; sim
ilarly, if automobiles were made safer, more people might 
drive recklessly (Peltzman 1975; Wilde 1982). If, as before, 
A exceeds t:.µ., then 

jl = A(aj + µ., . (10) 



Consequently, if !J?. decreases, µ. will increase. Making an 
activity safer can increase mortality. 

Consider again a two-state model with constant transition 
rate A from state I to state 2. As before, suppose that the 
hazard rate in the first state is given by a constant µ. 1. But 
now suppose that there are two causes of death in the second 
state, with constant hazard rates IJ'2 and IJ.3· Let nit) rep
resent the proportion of the surviving population in the sec
ond state at time t. The observed hazard rates from the three 
causes of death for the entire population are given by 

µ.,(t) 

il2(1) 

TLJ(t) 

[I - 7r(l)]µ. 1, 

7T(t)µ,,. 

7T(t)µ.,. 

(11) 

(12) 

(13) 

It follows from Petrovski et al. (1984) that ifµ., is decreased, 
then formula (I 0) implies that 7T(I) will increase: more of 
the surviving individuals will be in the debilitated state if 
debilitated individuals are not dying as rapidly as before. 
Hence the observed hazard rate from the second cause of 
death, il2. will increase. In addition , the observed hazard 
rate from the first cause of death, µ. 1, will decrease . Even 
if the three causes of death are independent at the individual 
level, at the population level they are Jinked. 

This result can be generalized to more complex situations 
in wbich mortality rates increase with age, there are several 
causes of death , and there are several different states. In 
particular, it seems likely that in a wide variety of situations , 
reducing one cause of death will result in an increase in the 
observed mortality rate from some other causes and, per
haps, a decrease in the observed mortality rate from some 
remaining causes. Because everyone has to die of some
thing , it is obvious that reducing one cause of death will 
increase the number of people dying from another. The point 
here is deeper: contrary to the commonly made assumption 
of independence among competing causes of death, reduc
ing one cause of death may change the observed force of 
mortality from another cause of death-even if, on the 
individual level , it is true that the two causes of death are 
independent. In a heterogeneous population. a cure for can
cer might raise the mortality rate from heart disease and 
lower it from automobile accidents. 

STATISTICAL INFERENCE 

A variety of methods exist for drawing statistical infer
ences using survival data. Books by Cox and Oakes (1984) , 
Elandt-Johnson and Johnson (1980), Gnedenko et al . (1969), 
Kalbfleisch and Prentice (1980), and Lawless (1982) survey 
different approaches . Recently some attention has been fo
cused on statistical inference when there is hidden hetero
geneity . Manton and Stallard ( 1981 b) reviewed applications 
in mortality and morbidity analyses; Heckman and Singer 
(1984) discussed economic applications . Empirical 'Studies 
include Manton et al. (1981), Heckman and Singer (1982), 
Tuma (1983), and Trussel and Richards (1985). 

As a simple illustration of this area of research, consider 
the following problem. Individuals fall into two unobserved 
subcohorts with constant hazard rates µ. 1 and µ,, . As a result 
of ancillary studies, the values of µ. 1 and µ,, are known. 

Observations are available on age at death for every indi
vidual who died during the observation period. For all other 
individuals, the age at which the individual ceased to be 
observed is known. What is unknown and is to be estimated 
is the proportion . .,.0 , of individuals who are in the first 
subcohort at time zero. 

To motivate this inference problem, consider a disease 
against which an imperfect vaccine has been developed. 
The disease might be encephalitis carried by ticks, and the 
exposed population of concern might be people who work 
outdoors in infested areas, or, perhaps, a population of 
animals being used to study the efficiency of a vaccine that 
is being tested. Vaccinated individuals may remain unpro
tected and at risk level IJ'2 if their immunization response 
is inadequate. Successfully vaccinated individuals are at risk 
level µ. 1, which might be zero. The statistical task is to 
estimate the proportion of individuals who were successfully 
vaccinated, based on data about the incidence of the disease 
in the vaccinated cohort over some period of observation. 

As a second kind of application , suppose that some piece 
of equipment can be manufactured (or perhaps used) in two 
ways: the correct way and a shortcut way. If the equipment 
is made correctly, the hazard of failure is some constant µ. 1; 

otherwise it is µ,, > µ. 1• Time to failure is observed . The 
statistical task is t'J estimate the proportion manufactured 
correctly . 

The likelihood of an observed death time, X;, is simply 
µ,{_x;)jj(x;) , and the likelihood that an individual who does 
not die in the observation period ceases to be observed at 
age xis simply p(x;), whereµ. can be calculated from (2), 
(3) , and (4) and pis given by a formula like (2). Thus the 
likelihood of the data is 

L( 7To) = n j:L{x;)6p(x;), (14) 
jr::.) 

where n is the size of the cohort , x ; is age at death or 
cessation of observation. and o, equals I if the individual 
dies (from the cause being studied) in the observation period 
and equals 0 otherwise . The maximum likelihood approach 
estimates the value of 1To by the value 1T0 that maximizes 
L. Standard computer algorithms are available for this op
timization task. 

This simple example might be generalized in several ways . 
The values of µ. 1 and µ,, might not be known and have to 
be estimated. The hazard rates might depend on time such 
that, say , 

µ.,{x) = a,e";z, i = I , 2, (15) 

and it might be necessary to estimate a; and b;. A vector of 
covariates, w, might be observed for each individual , and 
a proportional hazards model might be assumed of the form 

i =I, 2, (16) 

where f3 is a vector of coefficients to be estimated. The 
references cited at the beginning of this section suggest some 
ways of taclcling these more complicated problems of sta
tistical estimation, but more research is needed on how to 
take into account hidden heterogeneity . 

Such methodological research is especially important be-
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cause even randomization, the statistician's traditional so wee 
of comfort and security, provides no immunity in survival 
analyses from heterogeneity's ruses. Randomized experi
ments are frequently used to control for hidden factors that 
influence the efficacy of some treatment or intervention; in 
the simplest case, the population is divided randomly into 
two groups, one of which receives the treatment while the 
other does not. If, however, the intervention affects survival 
chances, randomization does not preclude systematic bias 
caused by hidden heterogeneity. 

As an illustration, suppose that a population consists of 
frail and robust individuals with hazard rates J.L 1(x) and J.Li(X), 

where J.L 1(x) is greater than J.Li(X) at all ages x; some pro
portion 77\0) of the initial population is frail. Funher suppose 
that the treatment only helps the frail, reducing J.L1(x) at all 
ages by some constant 5 that is less than the difference 
between J.Li(x) and 1-L1(x). Let the expected values of the 
hazard rates for the treated and untreated groups be denoted 
by µ.'(x) and µ.(x), and let B(x) be the difference, µ.(x) minus 
µ.'(x). Fonnulas (2), (3), and (4) imply that B(O) will equal 
77\0)5, but that because both treated and untreated groups 
will increasingly consist of robust individuals, B(x) will 
approach zero as x increases. A naive experimenter with 
too much faith in the powerofrandomized, controlled trials, 
might erroneously conclude that the effectiveness of the 
treatment declines with time. 

As a second illustration, suppose that the population con
sists of two subpopulations with identical hazard rates µi_x) . 
The treatment, however, is only effective for the first sub
population, which makes up some proportion 77\0) of the 
initial population; the treatment reduces the hazard rate for 
this responsive subpopulation to µi_x) minus some constant 
5. As in the situation just described, let B(x) give the dif
ference between the expected hazard rates in the untreated 
and treated groups. Fonnulas (2), (3), and (4) imply that 
8(0) will equal 1T\ 0)5, but that because the treated group 
will increasingly consist of responsive individuals, B(x) will 
approach 5 as x increases. Consequently, in this example, 
a naive experimenter might erroneously conclude that the 
effectiveness of the treatment increases with time. 

Thus even if a treated group and a control group at the 
start of some trial are absolutely identical in their compo
sition--either as the result of some lucky randomization or 
some lucky nonrandom method of assignment-hidden het
erogeneity may result in hazard trajectories for the treated 
and control groups that are misleadingly different from the 
underlying trajectories at the individual level. 

DISCUSSION 

Regardless of how many different attributes are consid
ered, individuals who are grouped together will differ along 
various neglected dimensions. Some of these differences 
will almost certainly affect the individuals' chances of death, 
marriage, unemployment, or other transition . Because of 
this heterogeneity, selection will occur. the surviving pop
ulation will differ from the original population. This in tum 
means that observations of the surviving population cannot 
be directly translated into conclusions about the behavior 
or characteristics of the individuals who made up the original 
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population. The observed dynamics at the population level 
will deviate from the underlying dynamics at the individual 
level. 

Sometimes this is not important. Perhaps the population, 
when classified along various observed factors, is more or 
less homogeneous, so that effects of unobserved hetero
geneity are unsubstantial. 

Sometimes, however, selection is important; and when it 
is, the patterns observed may be surprisingly different from 
the underlying patterns on the individual level. Researchers 
interested in uncovering these individual patterns, perhaps 
to help develop or test theories or to make predictions, might 
benefit from an understanding of heterogeneity's ruses. Be
cause the impact of a policy intervention can sometimes 
only be correctly predicted if the varying responses of dif
ferent kinds of individuals are taken into account, awareness 
of the effects of selection may also help policymakers . 

When should a researcher suspect substantial heteroge
neity? A useful clue occurs when theory and evidence per
taining to individuals suggest a trajectory of mortality that 
diverges from the observed trajectory for the population. 
For instance, human mortality may increase exponentially, 
but observed mortality curves appear to level off at advanced 
ages: the discrepancy suggests heterogeneity (Horiuchi and 
Coale 1983: Manton et al. 1984). Similarly, recidivism rates 
for individuals may be roughly constant, but observed rates 
decline, again suggesting heterogeneity (Harris et al. 1981). 
Another kind of clue may be offered by mortality conver
gences and crossovers: if one cohort is disadvantaged at 
earlier ages, then heterogeneity implies that it will appear 
to be less disadvantaged or even advantaged at later ages 
(Vaupel et al . 1979). Apparent waves in mortality rates over 
time may be a third kind of clue, if theory and ancillary 
evidence suggest a steadier pattern of change. More research 
needs to be done on this key question of how to tell when 
a population is sufficiently heterogeneous that selection 
matters. 

[Rueived February 1984 . Revised February 1985.) 
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