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ABSTRACT 

The f i r s t  p a r t  of this  pape r  is devoted to consideration on the  defini- 
tion of "supremum" in a multi-dimensional Euclidean space. A desirable 
definition is looked f o r  among several  possible alternatives. In the  second 
p a r t  conjugate duality in multiobjective optimization i s  developed. 
Supremum is  defined in t h e  extended multi-dimensional Euclidean space on 
the  basis of consideration in t he  f i r s t  par t .  Some useful concepts such as 
conjugate maps and subgradients are introduced f o r  vector-valued set- 
valued maps. Finally a strong duality result  f o r  a multiobjective optimiza- 
tion problem is proved under a regularity condition. 
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Consideration on Supremum in a Multi-Dimensional 
Space and Conjugate Duality in Multiobjective 

Optimization 

T e t s u z o  l l h n i n o  

1. Introduction 

In this  paper  w e  develop a conjugate duality theory in multiobjective optimiza- 

tion. Conjugate duality has  been fully developed in scalar optimization by 

Rockafellar [I] and provides a unified framework f o r  the  duality theory. The 

au thor  and Sawaragi extended i t  to the  case of multiobjective optimization by 

introducing some new concepts such as conjugate maps and subgradients f o r  

vector-valued, set-valued maps ([2],[3]). Their resul ts  are based on t h e  efficiency 

(Pare to  maximality). Kawasaki refined the i r  resul ts  and obtained a reciprocal  

duality by introducing the  concept of "supremum set" in an  extended Euclidean 

space  ([4],[5]). His supremum is based on the  weak efficiency (weak Pareto maxi- 

mality) of t h e  closure of a set in an extended sense. 

On t h e  o ther  hand, t h e r e  are some o the r  definitions of "supremum" (Zowe [6], 

Gross [7], Nieuwenhuis [B], Brumelle 191, Ponstein [lo] and so on). In t h e  f i r s t  p a r t  

of th i s  paper ,  w e  consider t h e  definition of "supremum" in t h e  multi-dimensional 

Euclidean spaces.  A s  a conclusion, t h e  definition based on t h e  weak efficiency 

seems to be  t h e  most appropr ia te  f o r  ou r  purpose from t h e  mathematical point of 

view. 

In t h e  second p a r t  w e  define t h e  supremum of a set in t h e  extended multi- 

dimensional Euclidean space on the  basis of weak efficiency. W e  also show tha t  o u r  

definition is  almost equivalent to tha t  of Kawasaki [4]. Conjugate maps and subgra- 

dients are defined for vecot-valued, set-valued maps as extensions of ordinary 

conjugate functions and subgradients, respectively. Finally, duality results in mul- 

tiobjective optimization are provided. Since our  definition of supremum is  almost 

equivalent to Kawasaki's, t h e  duality resul ts  finally obtained are similar to his 

resu l t s  in [5]. However, our  approach makes t he  proofs eas ie r  and ref ines  some 

resu l t s  along with some new proper t ies  concerning "supremum". 
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Part I: Consideration on the Definition of Supremum in Rp 

2. Sweral definitions of maximum and saprunurn in RP 

In this section we wi l l  consider several  kinds of definitions of maximum and 

supremum f o r  s e t s  in the  p-dimensional Euclidean space RP (p 21). Though w e  deal 

only with maximum and supremum, analogous resul ts  can be also obtained f o r  

minimum and infimum. 

Let D be  a fixed pointed closed convex cone with the  nonempty inter ior  in RP. 

The r eade r  might imagine the simplest case where D is equal to the  nonnegative 

or thant  R< . W e  use the  following th ree  symbols as inequalities: For y , y '  €RP , 

The relation 2 i s  transitive,  reflexive and antisymmetric; while r and > are transi- 

tive and irreflexive. Note that  2 is equivalent to > and S and 4 are all 

equivalent when p = 1 and D = R+. 

First ,  we consider t he  maximum of a se t  Y in RP.  We must recal l  the  definition 

in the case p = 1: 

~ € ~ c ~ i s a m a x i m u m o f Y - ~ € Y  and G h y  t / y E y  

Since &, S and 4 a r e  equivalent in this case,  we may consider t h r e e  kinds of 

ex tensions. 

Definition 2.1 For YC RP , 

G =max Y - G € Y  and $& W E Y ,  

5 =P-max Y - S € Y  and Gsfy V ~ E Y ,  

G = W - m a x Y - S E Y  and G 4 y  V y E Y ,  

Here note tha t  max Y is a single point, but P n a x  Y and W-max Y a r e  sets.  I t  

is c l ea r  tha t  



We usually call  max Y the  greatest  element of Y end an a rb i t r a ry  y in P-max Y a 

maximal element (efficient o r  Pare to  maximal point) of Y. An element in WP-max Y 

is called a weakly efficient o r  weakly Pare to  maximal point. 

Now w e  tu rn  t o  t he  definition of supremum of Y. If p =1, t h e  supremum of Y, 

sup Y, is defined as the  smallest upper bound f o r  Y, namely. 

I ( i )  G&y trS/cY; and 
f =supY - 

( i i )  if y '&y ~ E Y ,  then yPrG. 

The second condition can be written in t he  contrapositive form: 

t (iiJ)jif y' < 6, then t h e r e  exists y EY such tha t  y' < y . 
A s  in the case of maximum, w e  can consider t he  following t h r e e  kinds of supremum: 

Definition 2.2 For Yc Rp 

( l i )  G&y W E Y ;  and 
f =supY- 

( l i i )  i f y p & y  W E Y ,  then y ' a f .  

( 2 i )  f P y  t r y ~ Y ; a n d  
~ E P  -supY - 

(2 i i  ) if y 'S6 then t h e r e  exists y EY, such tha t  y'S y. (S2) 

( 3 i )  6 U  y t / y ~ Y ; a n d  
Q E W - s u p Y -  

( 3 i i )  if y' <Q , then t h e r e  exists y E Y, such tha t  y' < y. 
(S3) 

Remark 2.1 If we use the  ordering cone D explicitly, these definitions can  

be  rewritten as follows: 

t ( l i )  Yc6-D;  and 
f =supY- 

( 1 4 2 )  if Yc  y ' -D,  then 6 €y'-D. 

I (2 - i )  ( 6 + D \  tO])nY=#; and 
f E P  ( z i i )  Q-D\ I O ~ C Y - D \  to!. 

( 3 i )  (Q + i n t D ) n Y = # ;  and 
Q E W - s u p Y -  ( 3 i i )  Q -intDcY-intD. 

In the  above definitions, sup Y i s  a point, while P-sup Y and W - sup Y a r e  

sets. I t  is  c l ea r  tha t  P - s u p Y c  WP-sup Y. However sup Y i s  not generally con- 

tained in P-sup Y. The f i r s t  definition (S l )  was used by Brumelle [9] and many oth- 

ers. The third definition (S3) was adopted by Nieuwenhuis [8]. 



Noting tha t  

sup Y = max [cl (Y-R+)] 

when p = l , D  = R +  and Y is  bounded above, w e  may obtain o the r  definitions of 

supremum. 

Definition 2.3 Given a set YcRP,  w e  define t he  following: 

sup' Y = max [cl (Y - D)] (S l l>  

P -sup' Y =P -max[cl (Y -D)] (s2')  

. WP-sup'Y=WP-max[c l (Y-D)]  (s3') 

Note tha t  cl (Y -D) = cl (Y - int D). The definitions (S 2') and (S 3') are essen- 

tially equivalent to those given by Gross [7] and Kawasaki [4 1, respectively. 

3. Some properties of several kinds of supremum 

In this  section w e  will study some propert ies  of supremum defined in t he  previ- 

ous section. First ,  w e  may expec t  t ha t  t he  definitions with and without t h e  prime 

"'" are closely related to each other .  

Proposition 3.1 @) f l  Y i s  bounded above, supY =suptY. f l  Y i s  not  

bounded above, n e i t h e r  sup Y n o r  sup' Y ezists .  

(2) WP-supY=WP-suptY=[cl(Y-D)]\(Y-intD). 

(Proof) (1) Easy. (2) The proof of t he  f ac t  

WP -sup Y = [cl (Y -D)]\ (Y -int D) can be  found in Nieuwenhuis [8] (Theorem 1-17). 

Hence w e  will show tha t  WP -supt Y = [cl (Y -D)]\ (Y -intD).  Firs t ,  if 

$ E WP -supt Y = WP -max[cl (Y-D)], then i t  i s  clear tha t  9 E cl (Y -D) and 

$ g Y -int D.  Suppose conversely tha t  9 E [cl (Y-D)]\ (Y -int D) but not 

$ E WP --max[cl (Y-D)]. Then t h e r e  exis ts  y E cl (Y -D) such tha t  $ < y , i.e. 

y E $ + int D. Hence, for sufficiently small E >0, y + EB c $ + intD,  where B is  t he  

unit ball in RP . Since y E cl  (Y -D), t h e r e  exists y '  E Y and d E D such tha t  

y ' - d ~ y  +a. Therefore,  y ' - d E $  +in tD ,  namely y ' - $ E d  + i n t D c i n t D .  This 

implies tha t  $ E Y - int D and s o  leads to a contradiction. Hence 9 E WP -supt Y and 



the  proof is completed. 

Thus w e  need not discriminate between sup Y (resp. W - supY) and sup'Y 

(resp. W P  -sup' Y). 

Remark 3.1 There is no inclusion relation between P -sup Y and P -sup'Y. 

For  example, if Y =  ty  € R e : y l U , y e U  j u 1 y E R ~ : ~ ~ ~ o , ~ ~ = ~  1 and if D =R:, then 

P s u p  Y = I (0 , l )  1 and P -sup'Y = 1 (1 , l )  1. 

The following proposition is  obvious. 

Proposition 3.2 P -sup Y c  W P  -sup Y and P -sup'Yc W P  -sup Y. Moreover 

we have some reLationships between m&mum and supremum. 

Proposition 3.3 01 U sup YE Y, then sup Y = max Y. 

(Proof) The proofs are easy. 

Remark 3.2 The relation Y n P  -sup'Y =P -max Y does not always hold. In 

fact, in t h e  example in Remark 3.1, 

P -maxY =I (0 , l )  1 and W -sup'Y n Y  =#. 

Now w e  shall study some propert ies  of the  definitions given above. I t  seems to 

be better tha t  the  definition of supremum satisfies those properties. The most 

interesting proper ty  is  re la ted to the  existence of supremum and is called t h e  

axiom of continuity of real numbers in t he  case p =1. This axiom asserts tha t  a set 

which is bounded above has  t he  supremum. Namely, if Y is a nonempty set and if 

t h e r e  exists some ER such tha t  cay for all  y EY (i.e. such tha t  Y c  c -D) ,  then 

t h e r e  exis ts  the  supremum of Y. The assumption of boundedness can  also be writ- 

ten  as Y -D+R or Y - intD+R. A s  a n  extension of this  axiom, we have the follow- 

ing theorem: 



Theorem 3.1 For  a nonempty se t  YcRF,  

(1) there e r i s t s  sup Y u a n d  only if there aists y ERP s u c h  t h a t  G a y  fir d l  

y EY; 

(2) P -suptY# # u there ezists G ER' s u c h  t h a t  G & y  fir d l  y EY, a n d  only u 
Y - D f R P .  

(3) P W - s u p Y # # V a n d  on ly  VY-D#RP.  

(Prooi) (1),(2) Not so  difficult. (3) Due to Nieuwenhuis [8] (Theorem 1-10). 

Bemark 3.3 (1) Even when t h e r e  exists €RP such tha t  G a y  f o r  all y E Y, 

P -sup Y may be  empty.. For example, let Y = [ y c R P  :y < 0 j.  Then P -supY = #, 
though Y= -D = O  -D. 

(2) P -supf Y may not b e  empty when Y is not bounded above. For example, if 

~ = f y ~ R ~ : y , + y , = O j  and D=R!, then P - s u p t Y = Y  which is not empty but 

unboundedabove. 

Another interesting and important property of t he  supremum is t he  f ac t  tha t  i t  

divides the  whole real line into two p a r t s  in the  case p =I. This resul t  can b e  

extended t o  the  multi-dimensional case only when w e  consider t he  weak Pa re to  

supremum. 

Theorem 3.2 (Nieuwenhuis [8],  Lemma 1-27) WP -supY # #, t hen  

RP = (WP -sup Y) u (WP -supY + intD) u (WP -sup Y -int D), 

where the three se t s  in the r igh t -hand s i d e  a r e  d is jo in t .  

Corollary 3.1 8 W P  -sup Y # #, t hen  

A s  a counterexample which shows tha t  the  theorem and corollary are not valid 

if we replace WP -sup Y by P -sup Y o r  P -sup'Y, w e  may consider t he  example in 

Remark 3.1. 

Taking these resul ts  into account, w e  may conclude tha t  WP -sup Y is t he  most 

appropriate  as the  definition of supremum of a set Y in RP from the  mathematical 

point of view. Namely, i t  satisfies the  extensions of the  desirable propert ies  of the  



ordinary supremum in the uni-dimensional Euclidear, space. Hence, in the second 

part of this paper, w e  will define the supremum of Y essentially by W -supY and 

develop the conjugate duality in multiobjective optimization. 



Part 11: Conjugate Duality in Multiobjective Optimization 

4. Definition of Supremum in @ 

In this section we redefine the supremum of a s e t  not only in RP but also in the  

extended Euclidean space Ep . In the  ordinary case (p = I ) ,  w e  put sup Y  = + - if Y  

is  not bounded above and supY = -- if Y  is  empty. Moreover these  two imaginary 

points +- and -- a r e  quite useful in optimization theory. Therefore we add +- 
and - t o  the p-dimensional space RP and denote the  extended space  by p. 
These two points satisfy the  following f o r  any y  ERP: 

-<y<-, + -+y=+-  and ---=-. 

Of course we assume that  - (+ -)= -. The sum + --- is not considered, since w e  

can avoid it. 

Given a set y c F p ,  w e  define the  se t  A ( Y )  of all  points above Y,  and the  set 

B(Y) of all points below Y  by 

~ ( Y ) = [ y & ~ : y > y '  forsome y ' ~ Y j  

and 

B(Y)= I y  E*: y  < y' f o r  some ~ ' E Y ] .  

respectively. Clearly A (Y)c RP u I + - 1 and B  (Y)cRP u f -1 

Definition 4.1 Given a set Y C ~ ,  a point c E* i s  said t o  b e  a maximal 

point of Y  if f E Y  and c L B  (Y), tha t  is, if E Y  and the re  is no y ' E Y  such tha t  

f < y ' .  The set of al maximal points of Y  is called the  maximum of Y  and i s  denoted 

by Max Y .  

Definition 4.2 Given a set Y C ~ ,  a point c EF' is  said t o  be  a supremal 

point of Y  if f B(Y) and ~ ( f  ) c B ( Y ) ~ ,  tha t  is, if t h e r e  is no y  EY such tha t  c < y  

and If the relation y' <f implies t he  existence of some y  EY such tha t  y' < y .  The 

set of all supremal points of Y  is called the supremum of Y  and is denoted by Sup Y.  

Remark4.1 (1)  M a x 4 = 4 a n d S u p 4 = [ - - j .  

t ~ (  Ig 1 )  is slmply denoted b y  B ( g ) .  



Proposition 4.1 (cf . Proposition 3.3) 

MaxY = Y n SupY 

(Proof) If 6 E YnSup Y ,  i t  is  c l ea r  that  f E Max Y. Conversely, if 6 E Max Y ,  

t hen f  €Y\B(Y).  Sincef  E Y ,  B ( f  )cB(Y). Hence f €SupY. 

Proposition 4.2 fl) Sup Y = i -- j and only tr B (Y) = #. This i s  the case 

whenand onlywhen Y = # o r Y = i - - 1 .  

(2) S u p Y = f + - j i f a n d  only i f B ( Y ) = R P u f - - 1 .  

(3 )  Except the above two cases. Sup YcRp . 

(Proof) (1) It  i s  c l ea r  tha t  B(Y) = # when and only when Y = # o r  Y = f - - 1 .  
I t  is  also obvious tha t  Sup Y = f -- j if B(Y) = #. Finally, if Sup Y = i - - j ,  then 

--L B(Y),  which implies t ha t  B(Y) = #. 

(2)  If B(Y) =RP u i -- j ,  then SupYci+- j .  Since 

B( + -) =RP U i -- j = B (Y) , + W E  SUP Y. Hence Sup Y = i + - j .  Suppose conversely 

tha t  SupY= i+-j.  Then +-L B(Y) and B(+-)cB(Y) .  Since B ( + - ) = P u t - - 1 ,  

B(Y)=RPuf - - j .  

(3) Since --< y < + - f o r  any y € RP , Sup Y C  RP except  t he  above two special 

cases. 

Now w e  shall consider a characterization of Sup Y as the  maximum of t he  clo- 

s u r e  of B(Y) in Ep (cf. Proposition 3.1). The above proposition suggests us to 

define the  closure of B(Y) in Ep as follows: For Y C ~  , let 

if B(Y) = # 
cl B(Y) = if ~ ( Y ) = R p u f - - j  

k : (Y)nRp)ut  - - I  otherwise. 

Here the  symbol "cl " in t he  right-hand side means the  usual c losure in RP . 
Minimum and inflmum can be defined analogously t o  maldmum and supremum, r e s p e c t i v e -  

l y .  



Lemma 4.1 B(cl B(Y)) =B(Y). 

(Proof) If B(Y) = @ or B O  =RP v I - - j ,  t he  lemma is obviously t rue .  Hence 

w e  consider the  remaining general case. The point -- is  clearly contained in both 

sets .  Thus le t  y €B(Y) and y +--. Then t h e r e  exis ts  y1€YnRP such tha t  y < y'. 

Hence 

ay +(I -a)y '€B(Y)  f o r  any a ,  O<a<l .  

Taking the  limit when a +0, w e  can prove tha t  y' E cl B (Y) and so y E B (cl B(Y)). 

Conversely suppose tha t  y E B (cl B(Y))  and y + -. Then t h e r e  exis ts  a sequence 

fykjcB(Y)nRP such tha t  yk +y' and y <y ' .  Therefore ,  y < y k  for sufficiently 

la rge  k , and so y E B 0. 

Proposition 4.3 Sup Y = [cL B(Y)] \ B(Y) = M a x  [cl B (Y)]  

(Proof) Since M a x 2  =Z\B(Z) generally, t he  r igh t  equality follows directly 

from Lemma 4.1. Hence w e  prove the  lef t  equality, namely t ha t  

Sup Y = [cl B(Y)] \B(Y). Let f E [cl B (Y)]\B (Y). I t  suffices to consider t he  case 

where 6 E cl (B(Y) nRP),  since t he  proposition i s  tr ivial  in t h e  o ther  cases. Then 

t h e r e  exists a sequence f yk j c B O n R p  such tha t  yk +6.  For any y < f  , w e  have 

y < yk for sufficiently la rge  k .  Hence B ( f ) c B ( Y )  and so f €Sup Y. Conversely 

suppose tha t  6 E S U ~ Y .  Then f L B(Y) and B($)cB(Y) .  Since w e  may assume tha t  

6 € R P ,  f o r  an a rb i t r a ry  fixed d ~ i n t  D, 

f -ad EB(G)cB(Y) f o r  any a >O. 

By taking the  limit when a+O, w e  can prove tha t  f EcLB(Y). Hence 

6 E [cl B(Y)]\B(Y). This completes t h e  proof. 

Corollary 4-1 Sup Y =Sup (B(Y))  =Sup (cL B O )  

(Proof) F r o m  Proposition 4.3, 

SupY = Max [cl B(Y)], 

Sup ( B O )  = Max [cl B(B(Y))] 



Sup (cl B(Y)) =Max [cl B(c1 B(Y))]. 

Since B(B(Y)) = B(Y) clearly and B(c1 B(Y)) = B(Y) from Lemma 4.1, t he  above 

t h r e e  sets coincide. 

Lemma 4.2 y ERP a n d  d Eint  D, t hen  there  ez i s t s  a pos i t ive  number  a. 

s u c h  t h a t  y + a d ~ i n t ~ j b r  d l  aza,. 

(Proof) If such a. does not exist ,  we can take  a sequence of positive number 

f a k  j such that  a k  -. +a* and y - a k  d SC intD. Since i n tD  is a cone, 

y / a k  -dSC inW. Noting tha t  (intD)' is a closed set and taking the  limit when 

k -. w, we have -d SC intD. However, this is a contradiction. 

Proposition 4.4 B (Y) = B (Sup Y). 

(Proof) I t  is  c l ea r  t ha t  B(Sup Y) cB(Y) from the  definition of supremum. W e  

shall  prove the  converse inclusion Bm c B(Sup Y). if Sup Y = f +w j or [ -- j , t he  

relation is obvious. In t he  o t h e r  case,  -- is contained in both sets. Let s EB(Y) 

and f + - w. Then the re  exists y EY such tha t  s < y . Take an  a r b i t r a r y  d E int D. 

Then t h e r e  exists a positive number a. such tha t  y + a d  Zi cl Bm for all  a > a o ,  

since otherwise cl B(Y)>RP (see Lemma 4.2). Thus we can define a finite nonnega- 

t ive number by 

Then i t  is c l ea r  tha t  y + Ed  E Sup Y = Max [cl Bm]. Since f < y gy + E d ,  we have 

proved tha t  Bmc B(Sup Y). 

Corollary 4.2 

(Proof) I t  is  c l e a r  t ha t  YC cl B(Y). Since Sup Y = [cl B(Y)]\ B(Y) f r o m  Pro- 

position 4.3 and B(Y)c cl  B(Y), 

The las t  equality directly follows f r o m  Proposition 4.4. 



Proposition 4.5 (cf. Theorem 3.2) 

and the above three sets  are d is jo in t .  (7hey m a y  be empty.)  

(Proof) I t  i s  c l ea r  tha t  t he  th ree  se t s  a r e  disjoint. Since 

Sup YuB(Sup Y) = cL B(Y) 

from Corollary 4.2, i t  suffices to prove tha t  y €A (Sup Y) if y cL B(Y). When 

Sup Y = f -- j o r  f + - j ,  t he  above statement i s  obviously t rue .  S o  we consider the  

remaining ordinary case.  Since + -€A (Sup Y), we take y s! cL B (Y) with y + + - and 

prove tha t  y € A  (Sup Y).' Fix an a rb i t r a ry  d Eint D. Since YnRP + $ in this  case,  

y - a d  €B(Y) f o r  sufficiently large a >O by Lemma 4.2. Let 

and c = y - -Ed.  Showing tha t  €Sup Y completes t he  proof. Since 

c EcL B(Y) =Sup Yu B(Y), i t  suffices t o  show tha t  c s! B 03. If w e  suppose to the  

contrary tha t  c€B(Y),  then y - a d  €B(Y) from some a slightly smaller than z, 
which contradicts t h e  definition of E .  Therefore c s! B(Y) as was to be  proved. 

Proposition 4.6 v ylc y g c F p ,  then 

SUP Yl CSUP YguB(Sup Ye) 

Lemma 4.3 Ci) B(Y1 +Ye) =B(Yl) +B(Ye) jbr yl ,  ye*, where i t  i s  assumed 

that  the sum + - -- does not occur. 



(Proof) Not s o  difficult.  

Proposition 4.7 Let F1 and F, be se t -valued m a p s  f rom a s p a c e  X to *. 
&re  t h e  s u m  +- -- is a s s u m e d  n o t  to occur .  Then 

= Sup u [B(F1(z)) +B(F,(z 111 CLemma4.3,(1)) 
I 

= Sup u [B(Fl(z)) +B (Sup Fe(z  ))I (Proposi t ion 4.4) 
t 

= Sup B ( U  [F1(z) +Sup F,(z)l)  (Lemma4.3,(2)) 
s 

= Sup u [ F l ( z )  +SupF,(z)]  (CoroLLaty4.1) 
s 

Corollary 4.3 U F  is a se t -va lued  m a p f r o m  X to  2, t h e n  

Sup u F ( z )  =Sup u S u p F ( z ) .  
s s 

(Proof) Take F l ( z  ) = F ( z  ) and  F e ( z  ) = 10 j in Proposit ion 4.7. 

Corollary 4.4 f i r  y l ,  y e c j r P ,  

Sup  (Yl u Ye) =Sup (Sup Yl u Sup Ye) 



(Proof) Take an  a rb i t r a ry  Z EX, and l e t  F ( i )  = Y, and F ( z )  =YE for any z f i  

in Corollary 4.3. 

Corollary 4.5 Sup (Sup Y) =Sup Y j b r  YC* . 

(Proof) Let Y1 =Ye=Y in Corollary 4.4. 

Proposition 4.8 Given a set Y*, 

Sup(InfY) =InfX 

(Proof) From Corollary 4.2, 

Inf YC Sup (Inf Y)uB(Inf Y) 

Since Inf YnB(1nf y ) = 4,  Inf YcSup(1nfY). Conversely, if 6 e Inf Y, then 

6 EA(Inf Y)uB(Inf Y) from Proposition 4.5. If 6 EB(1nf Y). then 6 e Sup (Inf Y). If 

6 EA(1nf Y), then 6 e cl (B(1nf Y)) and so 6 Sup(1nf Y). Therefore Sup(1nf Y)cInf Y. 

This completes t h e  proof. 

The final proposition in this section provides a character izat ion of t h e  

supremum by scalarization under the convexity assumption. 

Proposition 4.9 

and the converse inc lus ion  is d s o  v d i d  if cl B(Y) is a convez set .  Here Do is a 

d u d  Qosi t ive  polar)  cone 410, i .e .  

(Proof) A similar version of this proposition is  known well (e.g. [3] Chapter 

3) and the  proof of this proposition can be  easily modified from tha t  of the existent 

result .  Hence i t  is omitted here .  



5. Conjugate maps 

In this  section w e  shall  define the  conjugate map of a set-valued map from a 

linear topological space  X to Ep. This concept i s  an extension of tha t  of well- 

known conjugate functions. 

Given a l inear  topological space X, w e  consider the  space  of a l l  l inear  con- 

tinuous ope ra to r s  from X to RP as a dual space  of X with respect to P. This space 

is simply denoted by XC in this  paper .  Namely, f o r  z EX and TEX* , h. represen ts  

an element in RP . If X=Rn , then T  is  identified with a p xn matrix. In this section 

le t  F  b e  a set-valued map from X to Ep. 

Definition 5.1 A set-valued map P f r o m  XC to 3 defined by 

FC(T) = S u p  u [Tz - F ( z ) ]  f o r  TEXL 
t r X  

is called t h e  conjugate map of F. Moreover, a set-valued map FC* f r o m  X to * 
defined by 

FC* ( z )  = Sup u [Tz -FC ( T ) ]  for z EX 
T EX' 

is  called t h e  biconjugate map of F .  When f  is  a function f r o m  X to 9,  i t s  conju- 

gate  map and biconjugate map can b e  defined by identifying i t  with a set-valued 

map zt+ I f ( z )  I. 

Proposition 5.1 Let Z be a point i n  X. we d m n e  a set-valued map G  

from X to Rp bp G  ( z  )=F(z + Z) jbr all z E X ,  then 

(1) G * ( T ) = F * ( T ) - z 5 ,  

(2 )  GL* ( Z  ) =P* ( Z  + z). 

= Sup u [ T z  - F ( z  +z)] 
z 

= Sup u I [ T k f  -F(z f )1  -Sj 
a' 

= SUP u[=' - F ( z f ) ]  - 
a' 



= P  ( T )  -75.  

G** ( 2 )  = Sup U [h: -G* ( T ) ]  
T 

= Sup y [Tz -P ( T )  +%]  = P *  ( x  +z). 
T 

Proposition 5.2 Let c be a point in RP . Then 

(1) (F+G)* (TI =P(T)*- 

( 2 )  (F+F)** ( z )  = P * ( z )  + c .  

(F + y ) *  ( T )  = Sup y [Tz -F (x )  -51 
Z 

= Sup y [Tz -F(z ) l  - y  
Z 

= S U P ~  [Tx -P ( T ) ]  + c  = P * ( x )  + c .  
Z 

Lemma 5.1 Let InfF be another set-valued map from X to Ep defined by 

(Inf F ) ( z  ) = Inf F ( z  ) f o r  all z EX. Then 

P ( T )  = (Inf F)* ( T )  and P *  ( 2 )  = (Inf F) ** ( z ) .  

(Proof) 

(Inf F)* ( T )  = SupU [Tz -(Inf F ) ( z ) ]  
2 



= S u p ~ [ T z  - F ( s ) ]  =I;) ( T ) .  
s 

Proposition 5.3 (Extension of Fenchel's inequality) @ y W ( z )  and 

y' EFI ( T ) ,  then y + y' < lk. In other words, for any z EX and any TEX, 

(Proof) Since 

i t  is clear f r o m  Corollary 4.2 and Proposition 4.5 t ha t  

This proves t he  proposition. 

Corollary 5.1 U y  EF(0) and y f € + ( T ) ,  then y < y f .  

(Proof) Let y' = --yf and z = O  in Proposition 5.3. 

Corollary 5.2 @ y EF(z) and y'EF)*(z). then y < y'. In other words, 

F(z)cFL* (z)uA(Fe*(z)) .  

(Proof) From Proposition 5.3, 

F ( z )  n B ( n  -F* ( T ) )  = #. 

However, B(Tz -FL ( T ) )  = B(P* ( 2 ) )  by Proposition 4.4  and hence 

F(z)nB(FL* ( 2 ) )  = #. 

This implies 



from Proposition 4.5. 

6. Subgradients 

In this  section w e  introduce t h e  concept of subgmdients for set-valued maps 

f r o m  a l inear  topological space to *. The differentiability of a map is  closely 

connected with a relationship between itself and its biconjugate map. In this  sec- 

tion F is  assumed to be a set-valued map f r o m  a l inear  topological space  X t o  *. 
Definition Let f E X  and 6 EF ( f  ). An element T E X C  is  said to b e  a subgra- 

dient of F at ( f  ;$) if 

Tf -6 €Max [ I t  - F ( z  )]. 
8 

The set of al l  subgradients of F at (2;s) i s  called t he  subdifferential of F at (2;s) 

and i s  denoted by OF(2;P) .  Moreover w e  let We) = U BF(2;p ) .  W e  can simi- 
i.m 

lar ly  define 8 f ( z ' )  f o r  a function j. When dF(z';c)## f o r  every p € F ( 5 ) ,  F  is  

said to b e  subdifferentiable a t  2 .  

The f i r s t  resul t  is  a character izat ion of a minimal point of a set-valued map. 

Proposition 6.1 A point G E F ( 5 )  is in M i n ~ F ( z )  if' a n d  on ly  ij 

O E  BF(5 ; p  ). 

(Proof) Obvious from the  definition of t h e  subgradient. 

The second result  is  a relationship between the  subgradient and t h e  conjugate 

map. 

Proposition 6.2 Let 6 E F ( ~ )  for some z' E X .  men T E 8F(z' ; 6 ) if a n d  on ly  

if TS -6 EP ( T ) .  

(Proof) From the  definition of t h e  subgradient, T E  8 F ( S ; c )  if and only if 



The la t te r  condition is equivalent to the following by Proposition 4.1: 

Hence the  proposition is obviously t rue.  

Moreover, t h e  subdifferentiability guarantees a relationship between a map 

and its biconjugate. 

Theorem 6.1 If F is subdwerenf iab le  at 5 E X ,  then F ( Z ) C P *  (k ). More- 

over, U F ( Z )  = InfF(2)  in  addi t ion ,  then F ( 5 )  = P *  (5) .  

(Proof) In view of Proposition 5.1, i t  suffices t o  prove the  case 2  = 0 .  

First ,  let 6 EF(O). Since F is  subdifferentiable at 0 ,  t h e r e  exists ~ E P  such tha t  

E -FI (p). Then, from Corollary 5.1, 

6 E Max [-P"(T)]CSup [-P ( T ) ]  =F** ( 0 ) .  
r r 

Thus w e  have proved tha t  F ( Z ) c P *  ( S ) .  Next w e  assume tha t  F(0)  =Inf F(0) and 

take an a rb i t r a ry  6 E P *  ( 0 ) .  From Proposition 4.5, 

In view of Corollay 5.2, 6 # A(F(0)) .  If we suppose tha t  E B V ( 0 ) ) .  t he re  exists 

y' EF(0) such tha t  6 < y ' .  Then the re  exists T EX* such tha t  y' E -FI ( T )  since F 

is assumed to be  subdifferentiable at 0 .  However, this  implies tha t  6 EB(--P (T'))  

and hence contradicts the  assumption 6 E P *  ( 0 )  = Sup y [-FI ( T ) ] .  Therefore 
r 

6 EF(O) and w e  have proved tha t  P *  (5 ) c F ( 2 ) .  

Finally we will show tha t  a convexity assumption guarantees t he  subdifferenti- 

ability of a map as in the  ordinary case of a scalar-valued function. To this end, 

we must define the  convexity of a set-valued map F by 

e p i F  = ~ ( Z , ~ ) E X X R ~ : ~  ay' f o r  some y' E F ( z ) J ,  

and say tha t  F is  convex when e p i F  is a convex set in XxRP. W e  also define the  

effective domain of F by 



Proposition 6.3 a set-valued map F from a .Locally convez l i n e a r  two-  

Logical space X to RP u +- { i s  convez, iJ f Eint dom F a n d  i f F ( f )  c InfF(f  ), then  

F i s  s u b d ~ e r e n t i a b l e  a t  5 .  

(Proof) Let Q EF(5.). Since F ( 5 )  cInfF(5. ), (5. , c )  i s  clearly a boundary pont 

of e p i F  in XxRP. Therefore t he re  exists a hyperplane which supports  the  convex 

se t  e p i F  at ( f  ,Q). Namely the re  exists a nonzero vector (X,p) f X'XRP such tha t  

where X' is a usually paired space of X and <*,a> denotes the  pairing o r  the  inner 

product. Since f E intdomF, p is  not equal t o  the zero  vector.  Hence w e  can take 

some T E P  s o  tha t  

In fact,  t h e r e  exists a vector  e ERP such tha t  <p.e > = -1 since p + O .  So  we may 

define T as 7!z = <X,z > e .  Then 

< p , ~ - ~ > ~ < p l y - 7 ! z >  f o r a n y  ZEX and y ~ F ( z ) .  

In view of Proposition 4.9, this  implies tha t  

namely, tha t  T E 8 F ( g ; c  ). Thus F is subdifferentiable a t  2 .  

7. Duality in multiobjective optimization 

In this  section we shall derive duality results in multiobjective optimization. A 

domination cone Dl  which is of course a pointed closed convex cone, i s  assumed t o  

be  given in RP. Let f be  a function from a locally convex l inear  topological space 

X to RP u + 00 { and consider a multiobjective optimization problem 

(PI minimize f (2 )  

Solving this problem means to find the  set 

Min (P) = Min [f ( 2 ) : ~  EX 1 



o r  the se t  

Inf (P)=Inf l J ( x ) : x E X  1. 

W e  introduce a perturbation parameter u EU and imbed t h e  primal problem 

( P )  into a family of multiobjective optimization problems, where U is another  

locally convex linear topological space. Let Q be  a function from XXU t o  

RP u 1 +- 1 such that  

Then the perturbed problem is the  following: 

(Pu) minimize p ( z  ,u ). = 

Definition 7.1 The set-valued map W from U t o  2 defined by 

W ( u )  =Inf ( P J  = Inf l ~ ( z  ,u ) : z  EX] 

is  called the  perturbation map f o r  Problem ( P ) .  

Of course,  Inf ( P )  = W ( 0 ) .  

Now w e  consider the conjugate map of Q :  

Q* ( T ,  A) = Sup 1 Tz + Au - Q(Z ,U ):z E X , u  EU j f o r  T  EXC and AEU*. 

Then 

= Inf 1 p ( z  ,u ) - A u : z  EX.U EU j. 

We define the  dual problem to ( P )  as follows: 

@> maximize - Q* ( 0 , A ) .  
A 

Since - Q* (O,.) i s  not a function but a set-valued map from U* t o  2, t he  dual prob- 

l e m  is not a usual multiobjective optimization problem. However i t  can b e  under- 

stood as a problem to obtain the  set Sup u [ -Q* (O,A)] ,  that  is, 
A 

SUP (D) = Sup U[ -v* ( 0 . A ) ) .  
A 



Remark 7.1 If w e  would like to make much of the  symmetry between the pri-  

mal  and dual problems, w e  may consider a set-valued map 9 from XXU to RP u f +am j 

such tha t  @(z ,0) = Inf ff ( z )  f o r  all z EX. Then the  primal and d u d  problems may 

be written as 

(PI minimize 9(z ,0), and 
s 

@> maximize -O* (0, A). 
h 

The f i r s t  resu l t  w e  can prove is a weak duality theorem, which states tha t  any 

feasible value of t he  primal problem is  not below any feasible value of the  dual 

problem. 

Proposition 7.1 For any z EX and A€ LP , 

lO>P B(-v* (0.A))). 

And hence 

Inf (P) nB(Sup 0)) = $I. 

(Proof) From Proposition 5.3, 

tha t  is 

This completes the  proof of the  proposition. 

The following relationship between the  per turbat ion map and the  dual map is  

quite important. 

Lemma 7.1 W* (A) = p* (0, A). 

(Proof) 

W* (A) = Sup u [hu - W ( u  )) 
Y 

= Sup u [Au -1nf t p(x ,u ):z EX j ] 
Y 



= Sup u [Au +Sup [ - q ( z  , u  ):z EX j ] 
Y 

= Sup u [Sup I h -rp(z ,u ):z EX 1 I 
Y 

= Sup u [ h - q ( z  ,u ):z EX 1 (Corollary 4.3) 
Y 

=Sup [ A u  - ~ p ( z , u ) : z E X , u  E U ]  

In view of this  lemma, we can rewri te  Sup(D) as 

S.up (D) = Sup u [- Wr (A)] = W** (0). 
A 

Since Inf (P) = W(O), t he  relationship between the  primal problem and the dual 

problem is nothing but t he  relationship between the  values of t h e  perturbation map 

and i ts  biconjugate map at the  nominal point u = 0. Hence we may pay attention t o  

the  following class of problems. 

Definition 7.2 The primal problem (P) is said t o  be stable if t he  perturbation 

map W is subdifferentiable at 0. 

We can obtain the  s t rong duality for  this class of problems. 

Theorem 7.1 PProblem (P) is stable, then 

Inf (P) = Sup @) 

(Proof) Obvious from Theorem 6.1. 

The following proposition and corollary show tha t  convexity i s  essentially suf- 

ficient f o r  guaranteeing the  stability of t he  primal problem. 

Proposition 7.2 U the  B n c t i o n  q S x U  +RP u [ + 1 is convez ,  then the 

per turbat ion  map W is a convez  set-valued map. 

(Proof) Let 



Y ( u )  = [ q ( z , u ) : z E X j ~ R P u [ + - 1  

f o r  each u EU. Then, by Proposition 4.3, 

W ( u  = I n f  Y ( u  = [cl A  (Y(u ))]\A (Y(u  1). 

Let ( u l , y l ) , ( u L , y ~ E e p i  W .  Then 

y ' c w ( u i )  + ~ c c l  d ( Y ( u i ) )  f o r  i =1,2. 

For each a such tha t  0 S a S 1 ,  

a y 1 + ( 1 - a ) y e € a c l  ~ ( Y ( u l ) )  + ( I  -a )c l  A ( Y ( u ~ )  

c cl [ ad ( Y ( u  I ) )  + (1 - a)A (Y(u 1 .  

Since q  is  convex, w e  can easily prove tha t  

ad ( Y ( u l ) ) + ( l  - a ) A ( Y ( u e ) ) c A ( Y ( a u l + ( l  -a)uE)) .  

Therefore  

which implies tha t  

a(u ' ,  y  l )  + (1 - a)(u ' ,  y  4 Eepi W. 

Hence epi W i s  a convex set in UxRP,  t ha t  is, W is  a convex set-valued map. 

Corollary 7.1 f l  the  -nction q  is convez a n d  iJ O E  int dom (p(z ,u ) for 

some z ,  t h e n  Problem (P) is stable. 

(Proof) Obvious from Propositions 7.2 and 6.3. 

8. Conclusion 

In this  pape r  w e  have considered what kind of definition is appropr ia te  f o r  

t h e  supremum of a set in t he  multi-dimensional Euclidean space.  From a mathemati- 

cal  point of view, a definition based on t h e  weak efficiency seems to be t he  most 

appropr ia te ,  though the  oridinary efficiency is b e t t e r  f r o m  a pract ical  point of 



view. Therefore  w e  have defined t h e  supremum of a set in t he  extended Euclidean 

space containing two imaginary points *-, on t h e  basis of the  weak maximality. 

This definition satisfies some desirable  fundamental propert ies .  

Some useful concepts such as conjugate maps and subgradients have been 

introduced for vector-valued set-valued maps also on the  basis of weak maximality. 

These concepts have enabled us to develop t h e  conjugate duallty in multiobjective 

optimization. Although the  resul ts  obtained are qui re  similar to the  ea r l i e r  works 

by the  au thor  and Sawaragi [ 2 ]  or Kawasaki [ 5 ] ,  our  new approach makes t h e  

proofs much eas ie r  and more understandable. 
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