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ABSTRACT

The first part of this paper is devoted to consideration on the defini-
tion of "supremum" in a multi-dimensional Euclidean space. A desirable
definition is looked for among several possible alternatives. In the second
part conjugate duality in multiobjective optimization is developed.
Supremum is defined in the extended multi-dimensional Euclidean space on
the basis of consideration in the first part. Some useful concepts such as
conjugate maps and subgradients are introduced for vector-valued set-
valued maps. Finally a strong duality result for a multiobjective optimiza-
tion problem is proved under a regularity condition.
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Consideration on Supremmim in a Multi-Dimensional
Space and Conjugate Duality in Multiobjective
Optimization

Tetsuzo Tanino

1. Introduction

In this paper we develop a conjugate duality theory in multiobjective optimiza-
tion. Conjugate duality has been fully developed in scalar optimization by
Rockafellar [1] and provides a unified framework for the duvality theory. The
author and Sawaragi extended it to the case of muitiobjective optimization by
introducing some new concepts such as conjugate maps and subgradients for
vector-valued, set-valued maps ([2],[3]). Their results are based on the efficiency
(Pareto maximality). Kawasaki refined their results and obtained a reciprocal
duality by introducing the concept of "supremum set” in an extended Euclidean
space ([4],[5]). His supremum is based on the weak efficiency (weak Pareto maxi-

mality) of the closure of a set in an extended sense.

On the other hand, there are some other definitions of "supremum” (Zowe [6],
Gross [7], Nieuwenhuis [8], Brumelle [9], Ponstein [10] and so on). In the first part
of this paper, we consider the definition of "supremum” in the multi-dimensional
Euclidean spaces. As a conclusion, the definition based on the weak efficiency
seems to be the most appropriate for our purpose from the mathematical point of

view.

In the second part we define the supremum of a set in the extended multi-
dimensional Euclidean space on the basis of weak efficiency. We also show that our
definition is almost equivalent to that of Kawasaki [4]. Conjugate maps and subgra-
dients are defined for vecot-valued, set-valued maps as extensions of ordinary
conjugate functions and subgradients, respectively. Finally, duality results in mul-
tiobjective optimization are provided. Since our definition of supremum is almost
equivalent to Kawasaki’'s, the duvality results finally obtained are similar to his
results in [5]. However, our approach makes the proofs easier and refines some

results along with some new properties concerning "supremum’.
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Part I: Consideration on the Definition of Supremum in /7

2. Several definitions of maximum and supremum in R*

In this section we will consider several kinds of definitions of maximum and
supremum for sets in the p-dimensional Euclidean space R¥ (p 21). Though we deal
only with maximum and supremum, analogous results can be also obtained for

minimum and infimum.

Let D be a fixed pointed closed convex cone with the nonempty interior in R*.
The reader might imagine the simplest case where D is equal to the nonnegative

orthant R%. We use the following three symbols as inequalities: For y.,y' €R”,
vey < y-y'eD
vy <« y-y €D\ {0}
yoy ey—y €inth

The relation 2 is transitive, reflexive and antisymmetric; while & and > are transi-
tive and irreflexive. Note that = is equivalent to > and 2, « and ¢ are all

equivalent when p =1 and D =R,.

First, we consider the maximum of a set Y in . We must recall the definition

in the case p =1:
YEYCR isamaximumof Y « J €Y and 2y Wy€Y.

Since 2, € and ¢ are equivalent in this case, we may consider three kinds of

extensions.

Definition 2.1 For YCR?,
y=max Y — JcY and g2y WyeY.
Y=P-max Y —*y€Y and Yy VyeY,
Y=WP-max Y« y€Y and y«Ly WyeY,

Here note that max Y is a single point, but P—max Y and WP -maxY are sets. It

is clear that

maxY €EP-max YCWP-maxYCY.
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We usually cell maxY the greatest element of ¥ and an arbitrary ¢ in P-maxY a
maximal element (efficient or Pareto maximal point) of Y. An element in WP-—max Y

is called a weakly efficient or weakly Pareto maximal point.

Now we turn to the definition of supremum of Y. If » =1, the supremum of 7Y,

sup?, is defined as the smallest upper bound for Y, namely.

(1) 2y Yy €Y; and

Y =sup?Y «— {(ﬁ) if y’2y WYY €Y, then yv'=7.

The second condition can be written in the contrapositive form:
f@1)Jif y' <7, then there exists ¥ €Y such that ¥’ <y.

As in the case of maximum, we can consider the following three kinds of supremum:

Definition 2.2 For YCR?

. v {(1—i) 72y WEY; and
- ~—>

v =sup (1—ii) ify’2y WeY, then v’ 27 (S1)
R (2—) YLy WYEY; and
'yEP—sup}’G—'{ Ce N tE ar . , (S2)

(2—1) if y'sy then there exists ¥y €Y, such that y'<sy.

_ (3—) ¥y« v VyYEY: and
VEWP —supYe {(3—1:1'.) if ¥’ <¥, thenthere exists ¥y €7, such that ¢’ <y. (S3)

Remark 2.1 If we use the ordering cone D explicitly, these definitions can

be rewritten as follows:

A {(1—1) Y<§ -D; and

V=SWY | (1-4i) it ycy =D, then §ey’ —D. (51)
A (2—) [G+D\{0})NY =¢; and

VEP =supY> 1 (24i) g-D\ (0jcY-D\ {0}, (S2)
. (3—) (¥ +intD)nY = ¢; and

VEWP =supY= | (3_4i) §—intDCY—intD. (S3)

In the above definitions, sup Y is a point, while P—supY and WP —sup?Y are
sets. It is clear that P-supYCWP-—supY. However supY is not generally con-
tained in P—sup Y. The first definition (S1) was used by Brumelle [9] and many oth-
ers. The third definition (S3) was adopted by Nieuwenhuis [8].



Noting that
sup Y =max[cl Y —R,)]

when p =1,D =R, and Y is bounded above, we may obtain other definitions of

supremum.

Definition 2.3 Given a set YCR?, we define the following:

sup’Y =max[cl (Y —D)] (s1)
P —sup’'Y =P —max[cl (Y —D)] (S2")
. WP —sup’'Y =WP —max[cl (Y —D)] (S3")

Note that ¢l (Y —D) =cl (Y —int D). The definitions (S2’) and (S3’) are essen-
tially equivalent to those given by Gross [7] and Kawasaki [4], respectively.

3. Some properties of several kinds of supremum

In this section we will study some properties of supremum defined in the previ-
ous section. First, we may expect that the definitions with and without the prime

nran

are closely related to each other.

Proposition 3.1 (1) [f Y is bounded above, supY=sup’'Y. [f Y is not

bounded above, neither sup Y nor sup’Y exists.

) WP —supY=WP —sup’'Y =[cl (Y =D)I\(Y —int D).

(Proof) 1 Easy. 2 The proof of the fact
WP —supY =[cl(Y =D)]J\ (Y —int D) can be found in Nieuwenhuis [8] (Theorem I-17).
Hence we will show that WP —sup’'Y=[cl (Y -D)I\N(Y —intD). First, if
Y EWP —sup’'Y =WP —max[cl (Y—=D)], then it is clear that ¢ €cli(Y —D) and
€Y —intD. Suppose conversely that €[l (-D)J\N(Y~intD) but not
7 € WP —meax[cl(Y=D)]. Then there exists y€cl (Y =D) such that ¥ <y, i.e.
v €9 +int D. Hence, for sufficiently small £¢>0, ¢y +&BC{ +intD, where B is the
unit ball in R?. Since y€cl(Y —=D), there exists y'’€Y and d€D such that
vy’ —d €y +¢&B. Therefore, ¥y’ —d €y +intD, namely ¢y’ =9y €d +intDcintD. This

implies that €Y —int D and so leads to a contradiction. Hence ¢ € WP —sup’Y and



the proof is completed.

Thus we need not discriminate between supY (resp. WP —sup?) and sup’Y
(resp. WP —sup’Y).

Remark 3.1 There is no inclusion relation between P —sup Y and P =sup’?.
For example, if Y ={y € R:y <1, y<1} Uiy €RE:yY;80,yp=1)and if D=RE, then

P-supY={(0,1)}and P-sup’'Y ={(1,1){.

The following proposition is obvious.

Proposition 3.2 P —supYCWP ~supY and P ~sup’YCWP —sup Y. Moreover

we have some relalionships belween marimum and supremum.

Proposition 3.3 (1) [fsupYe€Y, thensupY=max?.
(2) P=maxY=YNP —supY DY NP -sup'?.

(3) WP —maxY=YNWP —sup?.

{Proof) The proofs are easy.

Remark 3.2 The relation Y NP —sup’'Y =P —maxY does not always hold. In

fact, in the example in Remark 3.1,

P-maxY ={(0,1)} and WP —sup’'Y NY = ¢.

Now we shall study some properties of the definitions given above. It seems to
be better that the definition of supremum satisfies those properties. The most
interesting property is related to the existence of supremum and is called the
axiom of continuity of real numbers in the case p =1. This axiom asserts that a set
which is bounded above has the supremum. Namely, if Y is a nonempty set and if
there exists some ¥ €R such that y 2y for all y €Y (i.e. such that YCy —D), then
there exists the supremum of Y. The assumption of boundedness can also be writ-
tenas Y—D#R or Y—-intD#R. As an extension of this axiom, we have the follow-

ing theorem:
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Theorem 3.1 For a nonempty set YCR¥,

(1) there exists supY if and only if there exists ¥ €RF such that Y2y for all
VEY,

(2) P —sup’Y# ¢ if there exists ¥ €RF such that y 2y for all y €Y, and only if
Y-D »RF,

(3) PW-supY#¢ifand only ifY —D#RF.

(Proof) (1),(2) Not so difficult. (3) Due to Nieuwenhuis [8] (Theorem 1-18).

Remark 3.8 (1) Even when there exists ¥ €RP such that y 2y for all y €Y,
P —supY may be empty. For example, let Y={y eR?:y <0{. Then P-supY =¢,
though Y=-D=0-D.

(2) P —sup’Y may not be empty when Y is not bounded above. For example, if
Y={yeRby,+y,=0} and D=RE, then P -sup’Y=Y which is not empty but
unbounded above.

Another interesting and important property of the supremum is the fact that it
divides the whole real line into two parts in the case p =1. This result can be
extended to the multi-dimensional case only when we consider the weak Pareto

supremum.

Theorem 3.2 (Mieuwenhuis [8], Lemma [-27) If WP —supY # ¢, then
RP =(WP —supY) (WP —supY +intD) U (WP —sup Y —int D),

where the three sets in the right-hand side are disjoint.

Corollary 3.1 [fWP —sup Y # ¢, then

YCWP —supY —intD u {0}.

As a counterexample which shows that the theorem and corollary are not valid
if we replace WP —supY by P —supY or P —sup’Y, we may consider the example in
Remark 3.1.

Taking these results into account, we may conclude that WP —sup?Y is the most
appropriate as the definition of supremum of a set ¥ in ®* from the mathematical

point of view. Namely, it satisfies the extensions of the desirable properties of the
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ordinary supremum in the uni-dimensional Euclidear. space. Hence, in the second
part of this paper, we will define the supremum of Y essentially by WP —sup?Y and

develop the conjugate duality in multiobjective optimization.
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Part II: Conjugate Duality in Multiobjective Optimization

4. Definition of Supremum in 7”

In this section we redefine the supremum of a set not only in R? but also in the
extended Euclidean space RP. In the ordinary case (p=1), we put supY =+e if ¥
is not bounded above and supY = — if Y is empty. Moreover these two imaginary
points + e and —o are quite useful in optimization theory. Therefore we add +e
and —o to the p-dimensional space R* and denote the extended space by R®.
These two points satisfy the following for any y €R*:

—wolYy <o, 4oty =+ and —oo+y =—o,
Of course we assume that —(4+ @)= —e, The sum + «=—e is not considered, since we

can avoid it.

Given a set YCE’. we define the set A(Y) of all points above Y, and the set
B(Y) of all points below Y by

AV)={y€eRP:y >y’ for some y' €Y}
and
B()={yeRP:y <y’ forsome y €Yl

respectively. Clearly A(Y)CRPuUf+ =] and B(Y)CR? U | —e].

Definition 4.1 Given a set YCR®, a point ¢ €R? is said to be a maximal
point of Y if €Y and ¢ £ B(Y), that is, if J €Y and there is no ¥y’ €Y such that
¥ <¥'. The set of al maximal points of Y is called the maximum of Y and is denoted
by Max?Y.

Definition 4.2 Given a set YCR®, a point 'ﬁeﬁ’ is said to be a supremal
point of Y if ¥ & B(Y) and B(¥)CB(Y)!, that is, if there is no ¥ €Y such that ¢ <y
and if the relation ¥’ <¥ implies the existence of some ¥ €Y such that ' <y. The
set of all supremal points of Y is called the supremum of ¥ and is denoted by Sup Y.

Remark 4.1 (1) Max¢=¢ and Supg={ -],

TB({7 }) is simply denoted by B ().
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(2) —Max(=Y)=MinY',and—Sup(-Y)=InfY".

Proposition 4.1 (cf. Proposition 3.3)

MaxY =YNnSupY

(Proof) If J €YNSup?, it is clear that §y €eMaxY. Conversely, if y €eMax?,
then ¥ €Y\ B(Y). Sincey €Y, B(§)CB(Y). Hence ¥ € SupY.

Proposition 4.2 (1) SupY={~o | ifand only if BQ)=¢. This is the case
when and only when Y=¢orY ={ —eo],
() SupY={+e=}ifand only ifB(Y)=RFU{~e].

(3) Except the above two cases, Sup YCRF.

(Proof) (1) It is clear that B(Y) =¢ when and only when Y=¢ or Y = {—oo].
It is also obvious that SupY={-o] if B(Y)=¢. Finally, if SupY={—e, then
—wg B (Y), which implies that B(Y) = ¢.

2) If B(Y)=RFPuU|l~—e], then SupYcCi+ee], Since
B(+o)=RFPUf~—0|=RB(Y), +>€SupY. Hence SupY={+e|. Suppose conversely
that SupY = {+e|. Then +og B(Y) and B(+=)CB(Y). Since B(+®) =RPF U}l -,
B(Y)=RFuU|—o{.

(8) Since —=<y <+ for any y €RF, SupYCR? except the above two special

cases.

Now we shall consider a characterization of SupY as the maximum of the clo-
sure of B(Y) in RF (cf. Proposition 3.1). The above proposition suggests us to
define the closure of B(Y) in RP® as follows: For YcR® , let

f—oof ifB(Y)=¢
cl B(Y) ={R? if B(Y)=RPU|~w]
cl (B(Y)NRP)Uf~o] otherwise.

Here the symbol "¢l " in the right-hand side means the usual closure in RF.

T Minimum and infimum can be defined analogously to maximum and supremum, respective-
ly.
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Lemma 4.1 B (cl B(Y)) =B(Y).

(Proof) If B(Y)=¢ or B(Y)=RFPuU | —e]{, the lemma is obviously true. Hence
we consider the remaining general case. The point —ee is clearly contained in both
sets. Thus let ¥y €R(Y) and ¥ #—9. Then there exists ¥y’ € YNRF such that ¥y <y’.

Hence
ay +(1l—-a)y’'€B®) foranya, 0<a<i.

Taking the limit when a +0, we can prove that y’€cl B(Y) and so ¥ € B(cl B(Y)).
Conversely suppose that ¥y € B(cl B(Y)) and ¥y # —=. Then there exists a sequence
fy*{cB(Y)NR? such that y* -y’ and ¥ <y’. Therefore, y <y* for sufficiently
large k, and so y €B(Y).

Proposition 4.3 SupY ={cl B(MI\ B(Y) =Max {cl B ()]

(Proof) Since MaxZ =Z\ B(Z) generally, the right equality follows directly
from Lemma 4.1. Hence we prove the left equality, namely that
SupY ={cl B(NI\B(Y). Let y€[cl B()]\B(Y). It suffices to consider the case
where 7 €cl (B(Y)NR?), since the proposition is trivial in the other cases. Then
there exists a sequence { y* }CB(Y)NR* such that y* +7. For any ¥ <7, we have
v <y" for sufficiently large k. Hence B(y)CB(Y) and so y €Sup Y. Conversely
suppose that ¢ €SupY. Then ¢ £ B(Y) and B({)CB(Y). Since we may assume that
7 €R?, for an arbitrary fixed d €int D,

v —ade€B(Y)CB(Y) forany a>O0.

By taking the limit when a-+0, we can prove that ¥y €cl B(Y). Hence
v €{cl B(Y]J\B(Y). This completes the proof.

Corollary 4.1 Sup Y =Sup (B(Y)) =Sup (cl B(Y))

(Proof) From Proposition 4.3,
SupY =Max [cl B(Y)],
Sup (B(Y)) =Max [cl B(B(Y))]

and
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Sup (cl B(Y)) =Max [cl B(cl B(Y))].

Since B(B(Y))=FB(Q) clearly and B(cl B(Y)) =P(Y) from Lemma 4.1, the above

three sets coincide.

Lemma 4.2 If y €R? and d €int D, then there exists a positive number a,
such thaty +ad €intD forall a Zao.

(Proof) If such agdoes not exist, we can take a sequence of positive number
fap{ such that ay »+e« and Yy —a,d¢€intD. Since iIntD is a cone,
v/ o, —d¢€intD. Noting that (int D)® is a closed set and taking the limit when

k » o, we have —d & intD. However, this is a contradiction.

Proposition 4.4 B(Y)=F(Sup?).

(Proof) It is clear that B(SupY)cB(Y) from the definition of supremum. We
shall prove the converse inclusion B(Y)CB(SupY). if SupY ={+e| or { —e{, the
relation is obvious. In the other case, — is contained in both sets. Let ¢ € B(Y)
and ¢ # —e. Then there exists ¥ €Y such that § <y. Take an arbitrary d €int D.
Then there exists a positive number ag such that ¥y +ad € ¢l B() for all a > aq,
since otherwise ¢l B(Y)DR? (see Lemma 4.2). Thus we can define a finite nonnega-

tive number « by

a=sup {a:y +ad €cl B(Y) |.
Then it is clear that ¥ +ad €Sup Y =Max [cl B(Y)]. Since ¥ <y £y +ad, we have
proved that B()CcFB(Sup?).

Corollary 4.2

Ycel B(Y) =SupYUB(Y)=SupYuUB(Sup?).

(Proof) 1t is clear that Ycel B(Y). Since SupY =[cl BY)I\NB(Y) from Pro-
position 4.3 and B(Y)ccl B(Y),

el B(Y)=Sup()VEB({®).

The last equality directly follows from Proposition 4.4.



-12 -

Proposition 4.5 (cf. Theorem 3.2)
RP =Sup YUA(Sup Y)UB(SupY)

and the above three sets are disjoint. (They may be empty.)

(Proof) It is clear that the three sets are disjoint. Since
SupYUB(SupY) =cl B

from Corollary 4.2, it suffices to prove that ¥y €A (Sup?) if vy € cl B(Y). When
SupY={—e{ or | + =], the above statement is obviously true. So we consider the
remaining ordinary case. Since +=€4(Sup?), we take ¥y € cl B(Y) with ¢ ¥ + e and
prove that ¥y € A(SupY). Fix an arbitrary d €int D. Since YNRP #¢ in this case,
v —ad € B(Y) for sufficiently large a >0 by Lemma 4.2. Let

a=inffa>0:y —ad €B )

and ¢ =y —ad. Showing that 7 €SupY completes the proof. Since
Y E€cl B(Y)=SupYURB(Y), it suffices to show that € B(¥). If we suppose to the
contrary that y €B(Y), then y —ad € B(Y) from some a slightly smaller than a,

which contradicts the definition of a. Therefore ¥ € B(Y) as was to be proved.

Proposition 4.6 [fY,C YeCRP, then

Sup Y, CSup YU B(Sup Yg)

(Proof)
Y1CY2 = B(Yl)CB(Yg)
=> ¢l B(Y,)CclB(Yz)

=> SupY,ccl B(Y;)Ccl B(Yg) =Sup YeuUB (Sup Yp).

Lemma 4.8 (1) B(Y,+Yp) =B(Y;) +B(Yp) for Y,, Y, CR®, where it is assumed

that the sum + o —o does not ococur.

@) B(UK)=UIB(Y¢)forY¢C§’ Gen.

te/ {€
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(Proof) Not so difficult.

Propaosition 4.7 Let Fy and F; be set-valued maps from a space X to RP.

Here the sum + o —o ts assumed not to occur. Then

Sup U [Fy(z) +F(z )] =Sup U [Fy(z) +SupFe(z )]

(Proof)

Sup L‘J [F(z) +Fp(z)]
= Sup(B( L’J [Fi(z) +Fe(z)])) (Corollary4.l)
= Sup(L'JB[F,(z Y+Fp(z)]) (Lemmad4.3,(2))
= Sup sz [BUF(z)) +B(Fe(x))] (Lemmad.3,(1))
= Sup U [B(Fi(z)) +B(SupFe(z))] (Proposition4.4)
=Sup UB[Fy(z)+SupFe(z)] (Lemma4.3,(1))

s

=Sup B (U[F,(z) +Sup Fp(z)]) (Lemma4.3,(2))

=Sup (Y [Fi{(z)+SupFpe(z)] (Corollaryd.l)

Corollary 4.3 IfF is a set-valued map from X to R?, then

Sup U F(z)=Sup { SupF(z).
t 3

(Proof) Take Fy(z)=F(x) and Fe(z) = {01{ in Proposition 4.7.

Corollary 4.4 Fbr Y, Y,CR®,

Sup (Y,VYe) =Sup (SupY;uSup¥p)
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(Proof) Take an arbitrary Z€X, and let F(Z) =Y, and F(z) =Y, forany z #Z

in Corollary 4.3.
Coroliary 4.5 Sup(SupY)=SupY for YCR”.
(Proof) LetY,=Yp=Y in Corollary 4.4.

Proposition 4.8 Given a set YCcR®,

Sup(InfY) =Inf Y.

{(Proof) From Corollary 4.2,
InfYCSup (Inf Y)URBR(InfY).

Since InfYNnB(Infy)=¢, InfYCSup(InfY). Conversely, if ¢ & InfY, then
Y €A(Inf )UERB(InfY) from Proposition 4.5. If § € B(InfY), then ¢ € Sup(InfY). If
VEA(INTY), then ¥ & cl(B(InfY)) and so ¥ Sup(InfY). Therefore Sup{Inf Y)CInfY.

This completes the proof.

The final proposition in this section provides a characterization of the

supremum by scalarization under the convexity assumption.

Proposition 4.9

SupY> {Pecl BY): <, 7> =sug <uy >
peDX [0} ve

and the converse inclusion is also valid if cl B(Y) is a convez set. Here D% is a

dual (positive polar)cone of D, i.e.

D°=f{ueRP:<u,d> 20 “deD)].

{Proof) A similar version of this proposition is known well (e.g. [3] Chapter
3) and the proof of this proposition can be easily modified from that of the existent

result. Hence it is omitted here.
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S. Conjugate maps

In this section we shall define the conjugate map of a set-valued map from a
linear topological space X to R?. Tnis concept is an extension of that of well-

known conjugate functions.

Given a linear topological space X, we consider the space of all linear con-
tinuous operators from X to R* as a dual space of X with respect to R”. This space
is simply denoted by X* in this paper. Namely, for z €X and T€X*, Tz represents
an element in R®. If X=R™, then T is identified with a p xn matrix. In this section
let F be a set-valued map from X to RP.

Definition 5.1 A set-valued map F* from X* to R® defined by

™ (T)=Su U [Tx —F(z)] for Tex*

zeX

is called the conjugate map of F. Moreover, a set-valued map /™* from X to R?
defined by

Fe*(z)=Sup (Y [Tz —F*(T)] for ze€X
TeX*

is called the biconjugate map of F. When f is a function from X to R® , its conju-
gate map and biconjugate map can be defined by identifying it with a set-valued
map zP {f(z) .

Proposition 5.1 Let £ be a point in X. If we define a set-valued map G
from X to R? by G(z)=F(z +Z) for all z €X, then

(1) G*(T)=F*(T) -Tx,
(2) G**(z)=F**(z +ZI).

(Proof) (1)

G*(T) =Sup Y[Tx =G (z)]
= Sup [Tz —=F(z +z)]
= Sup u[[ﬂc’ -F(z')]-Tz

=Sup Y[Tz’' —-F(z')]-Tx
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=F*(T)-Tz.

()

G**(z) =Sup L’) (Tx —G*(T)]

=Sup [Tz =F*(T)+Tz]=F**(z +x).
T

Proposition 5.2 Let i/ be a point in R®. Then
Q) F+y)* (M) =F~(T)—y
R) F+y)*=*(z)=F**(z)+¥.

(Proof) (1)
F+y)*(T)=Sup Y [Tz —F(z) —¥]
=Sup U [Tz —F(z)] -y

=/~ (T)-

b

()

F+y)**(z) =Suwp [Tz =F(T)+V]

=Supy [Tz —F*(T)]1+¥ =F**(z) +¥.

Lemma S.1 Let InfF be another set-valued map from X to RF defined by
(InfF)(z) =InfF(zx) for all x €X. Then

F*(T) = (InfF)*(T) and F**(x) = (Inf F)**(x).

(Proof)

(Inf F)*(T) = Supy [Tz —(Inf F)(z)]
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= Sup | Sup[Tz —F(z)]

= Sup [Tz —F(z)]=F*(T).

Proposition 8.3 (Extension of Fenchel's inequality) I ¥y €F(z) and
v €F*(T), then y +y’' £ Tx. In other words, for any z €X and any T€X*,

(F(z)-Tz]nB(-*(T)) = ¢

(Proof) Since

F*(T)=Sup [Tz —F(x)],

it is clear from Corollary 4.2 and Proposition 4.5 that
[Tz =F(z)]nA@EF*(T)) = ¢.

This proves the proposition.
Corollary 5.1 Ify€F(0) and y' € =F*(T), then y Ly'.
(Proof) Let ¥ =~y  and z =0 in Proposition 5.3.

Corollary 5.2 [y €F(z) and y' €F**(z), then y L y’. In other words,

F(z)CF*(z)vA(FF>=(x)).

(Pljoof) From Proposition 5.3,
F(z)nB(Tz —F*(T)) = ¢.
However, B(Tz —F*(T)) = B(F**(x)) by Proposition 4.4 and hence
F(z)NB(F**(z)) = ¢.
This implies

F(z)cF™*(z)VA (F**(z))
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from Proposition 4.5.

6. Subgradients

In this section we introduce the concept of subgradients for set-valued maps
from a linear topological space to R?. The differentiability of a map is closely
connected with a relationship between itself and its biconjugate map. In this sec-

tion F’ is assumed to be a set-valued map from a linear topological space X to R®.

Definition Let £ €X and Y €F (). An element Te€X* is said to be a subgra-
dient of F at (z;7) if

TZ =y €Max [Tz =F(z)].

The set of all subgradients of F* at (£;7/) is called the subdifferential of F at (£;7)

and is denoted by 9F(£;¥). Moreover we let 8F(x)= |y &8F(£:¥). We can simi-
vers)
larly define 8f(£) for a function f. When 8F(£;y)# ¢ for every g€F(£), F is

said to be subdifferentiable at £.

The first result is a characterization of a minimal point of a set-valued map.

Proposition 8.1 A point yEF(£) is in MinyUF(z) if and only if
E 4

0€ &8F (£:7).
(Proof) Obvious from the definition of the subgradient.

The second result is a relationship between the subgradient and the conjugate

map.

Proposition 6.2 Let { €F(z) for some £ €X. Then T€ 8F(Z;y) if and only
if Tz —y €F*(T).

(Proof) From the definition of the subgradient, T€ 8F (£ ;%) if and only if
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T =g eMax Y[Tx —F(z)].
E 4

The latter condition is equivalent to the following by Proposition 4.1:

T =y e~ (T)ny [Tz —=F(z)].

Hence the proposition is obviously true.

Moreover, the subdifferentiability guarantees a relationship between a map

and its biconjugate.

Theorem 6.1 If F is subdifferentiable at £ €X, then F(x)CF**(x). More-
over, ifF(z)=InfF(z) in addition, then F(£) = F**(z).

{(Proof) In view of Proposition 5.1, it suffices to prove the case £ =0.
First, let ¥ €F(0). Since F is subdifferentiable at 0, there exists TeX* such that
¢ € ~*(T). Then, from Corollary 5.1,

¥ €Max L# [=F*(T)]cSup k# [—=F*(T)] =F**(0).

Thus we have proved that F(£)CF**(z). Next we assume that F(0) =Inf F(0) and
take an arbitrary ¢ € **(0). From Proposition 4.5,

RP =F(0)UA (F(0))uB (F(0)).

In view of Corollay 5.2, ¥ € A(F(0)). If we suppose that ¢ € B(f(0)), there exists
¥’ €F(0) such that ¥ <y¥’. Then there exists 7" €X* such that '€ =F*(T ) since F
is assumed to be subdifferentiable at 0. However, this implies that ¢ € B(—=F* (T"))
and hence contradicts the assumption 7 €F**(0) = Sup L,J [-F*(T)]. Therefore

¥ €F(0) and we have proved that F** (£)CF(£).

Finally we will show that a convexity assumption guarantees the subdifferenti-
ability of a map as in the ordinary case of a scalar-valued function. To this end,

we must define the convexity of a set-valued map F by
epiF = {(z,y)EXXRP:y 2y’ for some ¥y’ €F(z)}.

and say that F is convex when epiF is a convex set in XXRP. We also define the

effective domain of F by

domF =z eX:F(z)NR?# ¢ |.
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Proposition 6.3 If a set-valued map F from a locally convez linear topo-
logical space X to RPu | += | is convez, if £ €intdom F and if F(£)CInfF(£), then

F is subdifferentiabdle at £.

{Proof) Let § €F(£). Since F(£)cInfF(£), (£,7) is clearly a boundary pont
of epiF in XxR?. Therefore there exists a hyperplane which supports the convex
set epiF at (£,77). Namely there exists a nonzero vector (A, i) €X’x RP such that

MNE>+HSUPGIS A Z>+<uy> WV(z,¥)€EepiF,

where X’ is a usually paired space of X and <s+> denotes the pairing or the inner
product. Since £ €intdomF’, u is not equal to the zero vector. Hence we can take

some T € X* so that
K, Tz > = =<\, z> vz €X.

In fact, there exists a vector e € R¥ such that <u,e> = =1 since u#0. So we may
define T as Tx = <A,z >e. Then

<u,y -TE>S <uy ~Tz> forany z€X and y €F(z).
In view of Proposition 4.9, this implies that

Y —Tf£e€lnf Y [F(z)-Tx]

namely, that T€ 8F (£;%). Thus F is subdifferentiable at z.

7. Duality in multiobjective optimization

In this section we shall derive duality results in multiobjective optimization. A
domination cone D, which is of course a pointed closed convex cone, is assumed to
be given in RF. Let f be a function from a locally convex linear topological space

X to RP U | + e | and consider a multiobjective optimization problem
®) minimize f(z)
Solving this problem means to find the set

Min(P)=Min{f(z):z €X !



-21 -

or the set

Inf(P)=Inf{f(x):x €X|.

We introduce a perturbation parameter u €U and imbed the primal problem
(P) into a family of multiobjective optimization problems, where U is another
locally convex linear topological space. Let ¢ be a function from XxU to
RP U {+e ] such that

¢(z,0) =f(z) VzeX
Then the perturbed problem is the following:

Pw minimize (z ,u ).
2 .

Definition 7.1 The set-valued map W from U to FR* defined by
W{u) =Inf (P) =Inf {¢(z . u ):z €X|

is called the perturbation map for Problem (P).
Of course, Inf (P) = W(0).

Now we consider the conjugate map of ¢:
¢*(T,A) =Sup {Tz + Au —¢(z ,u)zeX, ue€lU| for Tex* and AeU*.
Then
—¢*(0,A) = Sup {Au —p(z,u):z X, u €U |
=Infle(z,u)—Au:zeX,uel.
We define the dual problem to (P) as follows:

D) maxiAmize —¢*(0,A).

Since = ¢* (0, is not a function but a set-valued map from U* to - , the dual prob-
lem is not a usual multiobjective optimization problem. However it can be under-

stood as a problem to obtain the set Sup | j [—¢*(0,A)], that is,
A

Sup (D) = Sup Y[ —¢* (0.A)].
A
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Remark 7.1 If we would like to make much of the symmetry between the pri-
mal and dual problems, we may consider a set-valued map ® from XxXU to RP U | +oo |
such that $(z,0) =Inf{f(z) | for all z €X. Then the primal and dual problems may

be written as

@) minimize ®(z,0), and

™) maxihmize -&* (0,A).

The first result we can prove is a weak duality theorem, which states that any
feasible value of the primal problem is not below any feasible value of the dual

problem.

Propaosition 7.1 For any z€X and Acl™,
p(x,0) € B(—¢*(0,A)).
And hence

Inf (P)NEB(Sup (D)) = ¢.

(Proof) From Proposition 5.3,
#(z,0) —0z —AO¢Z B (—¢*(0,4)).
that is
¢(x,0)g B(—¢*(0,A).

This completes the proof of the proposition.

The following relationship between the perturbation map and the dual map is

quite important.
Lemma 7.1 W*(A) = ¢*(0,A).

(Proof)

W*(A) =Sup U[Au -W(u)]

=Sup U [Au ~Inf @z ,u )iz €X ]
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=Sup U [Au +Sup { —p(z ,u)z€X{]

= Sup y [Sup { Au —¢p(z ,u):zeX {]

=Sup Ui{Au —¢(z,u)ze€X| (Corollary 4.3)
=Sup [Au —p(z,u)zeX,uel]

= ¢* (0, A).

In view of this lemma, we can rewrite Sup(D) as
Sup (D) = Sup U [—W*(A)] = W** (0).
A
Since Inf (P) = W(0), the relationship between the primal problem and the duval
problem is nothing but the relationship between the values of the perturbation map

and its biconjugate map at the nominal point u = 0. Hence we may pay attention to

the following class of problems.

Definition 7.2 The primal problem (P) is said to be stable if the perturbation
map W is subdifferentiable at 0.

We can obtain the strong duality for this class of problems.

Theorem 7.1 [f Problem (P) is stable, then

Inf (P) = Sup (D)

(Proof) Obvious from Theorem 6.1.

The following proposition and corollary show that convexity is essentially suf-

ficient for guaranteeing the stability of the primal problem.

Proposition 7.2 [f the function ¢ XXU »RPuU{+ »| is convez, then the

perturbation map W is a convez set-valued map.

(Proof) Let
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Y(u) = fo(z . u)z€X {CRPU [+ |
for each u €U. Then, by Proposition 4.3,
W(u) =InfY(u) =[cl AT (u))NAT(2)).
Let (uly!),(uty®€epi W. Then
yiewWw(u!)+Dccd A(¥(ut)) for i=1.2.
For each a such that 02aS1,
ayl+(l-a)ytead A (u)+ (1 ~a)cl A(Y(uF)
Cel fad(¥(u')+(1-a)d Y (u®) .
Since ¢ is convex, we can easily prove that
aA(Y(u)+Q-a) A (uB)cA@(aul+(1—a)uh)).
Therefore
ay!+(1 —a)ytecl A(Y(aul+ (1 —a)u®).
which implies that
a(uly) +1 —a)(ubyPeepiW.

Hence epi ¥ is a convex set in UXRKF, that is, W is a convex set-valued map.

Corollary 7.1 If the function ¢ is convezx and {f O€intdom ¢(z ,u) for

some z, then Problem (P) is stable.

(Proof) Obvious from Propositions 7.2 and 6.3.

8. Conclusion

In this paper we have considered what kind of definition is appropriate for
the supremum of a set in the multi-dimensional Euclidean space. From a mathemati-
cal point of view, a definition based on the weak efficiency seems to be the most

appropriate, though the oridinary efficiency is better from a practical point of
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view. Therefore we have defined the supremum of a set in the extended Euclidean
space containing two imaginary points +e, on the basis of the weak maximality.

This definition satisfies some desirable fundamental properties.

Some useful concepts such as conjugate maps and subgradients have been
introduced for vector-valued set-valued maps also on the basis of weak maximality.
These concepts have enabled us to develop the conjugate duality in multiobjective
optimization. Although the resulits obtained are quire similar to the earlier works
by the author and Sawaragi [2] or Kawasaki [6], our new approach makes the

proofs much easier and more understandable.



10.

-26-

References

Rockafellar, R.T. (1974) Conjugate Duality and Optimization. CBMS Lecture

Notes Ser. 16, SIAM.

Tanino, T. and Sawaragi, Y. (1980) Conjugate maps and duality in multiobjective
optimization, J. Optimization Theory and Appl. 31, 473-499.

Sawaragi, Y., Nakayama, H. and Tanino, T. (1985) Theory of Multiobjective

Optimization, Academic Press.

Kawasaki, H. (1981) Conjugate relations and weak subdifferentials, Math. of
Operations Research, 593-607.

Kawasaki, H. (1982) A duality theorem in multiobjective nonlinear program-

ming, Math. of Operations Research 7, 95-110.

Zowe, J. (1975) A duality theory for a convex programming in order-complete
vector lattices, J. Math. Analysis and Appl. 50, 273-287.

Gros, C. (1978) Generalization of Fenchel's duality theory for convex vector

optimization, European J. of Operational Research 2, 368-376.

Nieuwenhuis, J.W. (1980) Supremal points and generalized duality, Math.
Operationsforsch. Statist., Ser. Optimization 11, 41-59.

Brumelle, S. (1981) Duality for multiple objective convex programs, Math. of
Operations Research 6, 159-172.

Ponstein, J. (1982) On the dualization of multiobjective optimization problems.

Univ. of Groningen, Economic Institute Rep. 88.



