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Abstract 

Techniques from t h e  t h e o r y  of singulari t ies of smooth mappings are employed t o  
study t h e  reduct ion of nonlinear optimization problems t o  simpler forms. I t  is 
shown how singulari ty t h e o r y  idezs can be  used t o  : 1) r e d u c e  decision space  
dimensionality; (2) t ransform t h e  const ra int  space  t o  simpler form f o r  primal algo- 
r i thms; (3) provide sensit ivity analysis. 



SINGULARITY THEORY FOR NONLINEAR 
OPTIMIZATION PROBLJDIS 

J. Cast i  

I. Background 
Consider a smooth ( C m )  function f :Rn -, Rm and assume t h a t  f h a s  a c r i t i ca l  

point a t  t h e  or igin ,  i .e .  df  ( 0 )  = 0 .  The t h e o r y  of singulari t ies as developed by 
Thorn, Mather,  Arnol'd and o t h e r s  [I-31 a d d r e s s e s  t h e  following basic questions: 

A. What i s  t h e  local  c h a r a c t e r  of f in a neighborhood of t h e  c r i t i ca l  poir,t? 
Basiczlly, th i s  questior, amounts t o  asking "at what p o i ~ t  i s  i t  s a f e  t o  t r u n c a t e  t h e  
Taylor s e r i e s  f o r  f ?" This is  t h e  de terminacy  problem. 

B. What a r e  t h e  "essential" pe r tu rba t ions  of f ?  That is ,  what pe r tu rba t ions  of 
f car, o c c u r  which change t h e  quali tat ive na tu re  of f and which cannot  b e  
t ransformed away by a change of coordinates?  This is t h e  unfolding problem. 

C. Can we classify t h e  types  of s ingular i t ies  which f can  have  up t o  dif- 
feomorphism? This i s  t h e  classiptcation problem. 

Elementary cz tas t rophe  t h e o r y  largely  solves t h e s e  t h r e e  problems (when 
m = I ) ;  i t s  generalization t o  singulari ty t h e o r y  solves t h e  f i r s t  two, and gives rela- 
tively complete information on t h e  th i rd  f o r  m ,  n small. Here  we outline a program 
f o r  t h e  utilization of these  r e s u l t s  in a n  applied se t t ing t o  deal  with c e r t a i n  t y p e s  
of nonlinear optimization problems. In t h e  following section we give a brief  sum- 
mary of t h e  main r e s u l t s  of singulari ty t h e o r y  f o r  problems A-C f o r  jktnctions 
(m  =I) and t h e n  p roceed  t o  a discussion of how t h e s e  resu l t s  may b e  employed f o r  
nonlinear optimization. 

II. Determinacy. Unfoldings, and Classifications 

Equivalence of Germs 
In i t s  local  vers ion,  elementary c a t a s t r o p h e  t h e o r y  deals with functions 

f :U+ R where  U i s  a neighborhood of 0 in R n .  The c leanest  way t o  handle such 
functions is t o  p a s s  t o  germs, a germ being a class of functions which a g r e e  on 
sui table  neighborhoods of 0. All opera t ions  on germs a r e  defined by performing 
s i n i l a r  opera t ions  on represen ta t ives  of t h e i r  classes.  In t h e  sequel, we shal l  usu- 
ally make no distinction between a germ and a represen ta t ive  function. 

W e  l e t  En b e  t h e  s e t  of all smooth germs Rn + R ,  and le t  En, b e  t h e  set of all 
smooth germs  Rn -, R m .  Of course  En,1 = En . These sets are v e c t o r  s p a c e s  o v e r  
R ,  of infinite dimension. We a b b r e v i a t e  ( z l ,  .. . ,zn ) E Rn t o  z . If f E En, then  

f ( 2 )  = CPl(z), - .  . , f m ( z ) )  

and t h e  f i  are t h e  components of f .  



A diffeomorphism germ 4p:Rn -+Rn sa t is f ies  ~ ( 0 )  = 0 ,  and h a s  a n  inverse  q' 
such thaL y ( y f ) ( z ) )  = z = 4p'(q(z)) f o r  z n e a r  0. I t  r e p r e s e n t s  a smooth, invert i-  
b le  local  coord ina te  change.  By t h e  Inverse  Function Theorem, 4p i s  a diffeomor- 
phism germ if and  only if i t  h a s  a nonzero  Jacobian,  t h a t  i s ,  

Two germs f ,g :Rn -+ R are r i g h t  e q u i v a l e n t  if t h e r e  i s  a diffeomorphism 
germ y and a coristant y E R such  t h a t  

This i s  t h e  n a t u r a l  equivalence f o r  studying topological p r o p e r t i e s  of t h e  g r a -  
d ient  Of (Poston and S tewar t  [4]). I f f ,  r a t h e r  than O f ,  i s  important ,  t h e  t e r m  y 
i s  omitte?. 

A t y p e  of germ is a r i g h t  equivalence c lass  and t h e  classif ication of ge rms  up 
to r i g h t  equivalence amounts t o  a clzssif ication of types.  Each t y p e  forms a subse t  
of En, and t h e  c e n t r a l  ob jec t  of study is t h e  way these  types  f i t  t o g e t h e r .  

A p r e c i s e  descriptior ,  i s  comp!icated by t h e  f a c t  t h a t  most t y p e s  have  infinite 
dimension; bu t  t h e r e  is a mezsure  of t h e  corfiplexity of a type ,  t h e  cod imens ion ,  
which i s  genera l ly  f ini te.  Heurist ically,  i t  is t h e  d i f ference  between t h e  dimension 
of t h e  t y p e  and t h a t  of En (even though both are infinite). A p r e c i s e  definition i s  
given below. 

The l a r g e s t  t y p e s  have  codimension 0 and form open sets in En. Their  boun- 
d a r i e s  conta in  types  of codimension 1 ;  t h e  boundaries of t h e s e  in t u r n  contain 
t y p e s  of codimension 2, and so on,  with h igher  codimensions reveal ing progress ive-  
ly more complex types .  Types of infinite codimension ex i s t ,  but  form a v e r y  small 
s e t  in a r easonab le  sense .  

Codimension and the Jacobian ideal 
Let En b e  t h e  set of ge rms  R n  -+ R ,  and let F b e  t h e  s e t  of formal  power s e r i e s  

in zl, ..., z,. T h e r e  i s  a map j:E + F  defined by 

where  t h e  r ight-hand s ide  i s  t h e  Taylor s e r i e s ,  or j e t ,  o f f .  Note t h a t  i t  ex i s t s  as a 
f o r m a l  power s e r i e s  f o r  al! smooth f :  convergence i s  not  r equ i red  in what follows. 
The map j i s  onto ,  l inea r  o v e r  R ,  and p r e s e r v e s  p roduc t s  (i.e.,  
jCP .9 )  = j u g )  = ( j f  . j g ) ) .  

Let  mn b e  t h e  s e t  of f E En such t h a t  f (0) = 0.  This is a n  i d e a l  of En (mean-' 
ing t h a t  if f E mn and g E E ther, f g  E mn , which we wri te  br ief ly  a s  mnEn C m,). 
I t s  k th  power  'k m, consis ts  of all f e E n  such t h a t  
0 = f (0) = df (0.) = dZf (0) = - = dk-If (0). In pa r t i cu lz r ,  f is a s i n g u l a r i t y  
if and only i f f  E m, . The ideals  mk form a decreas ing sequence.  

T h e r e  is a similar  chain  in Fn. 
Let M'k = j ( m  ) : th is  is t h e  set of formal power 

? s e r i e s  with z e r o  coxstant  t e rm.  Then h& = j(m,) is t h e  set of formal power series 
without t e r m s  of d e g r e e  S k  -1 . The in tersect ion of al l  M: i s  0;  t h e  in te resec t ion  
of al l  mk is t h e  set m," of f l a t  germs,  having z e r o  Taylor s e r i e s .  



The Jacob ian  i d e a l  of a singulari ty f is  t h e  set of 211 germs express ib le  in t h e  
form 

f o r  a r b i t r a r y  germs gi . W e  denote  i t  by A V )  , o r  merely A when f i s  understood. 
I t s  image j ACf) C Fn has  an  analogous definition, where  t h e  p a r t i a l  der ivat ives  
are defined formally. Since f i s  a singulari ty,  AV) c m,. The cod imens ion  of f 
i s  defined t o  b e  

cod Cf)  = dimRmn / AV). 

Similarly, at t h e  formal power s e r i e s  level ,  we define 

The codimension of a n  o r b i t  i s  t h e  same as tha t  of i t s  tangent  s p a c e  T. This i s  t h e  
same as t h e  dimension of t h e  quotient  vec to r  space  E/T. In En, t h e  analog of th is  
tangent  s p a c e  is  t h e  Jacobian idezl ,  s o  t h e  codimension shon!d b e  d i m  En / AV).  
This mezsures t h e  number of independent directions in En "missing" from ACf) , o r  
equivalently missing from t h e  o r b i t  o f f  . 

The computation of cod Cf)  i s  ef fected by means of t h e  following resu l t :  if ei- 
t h e r  cod Cf ) o r  cod (j f ) i s  f inite t h e n  s o  i s  t h e  o t h e r ,  and they  are equal.  Thus, t h e  
computation may b e  c a r r i e d  o u t  on t h e  formal power s e r i e s  level  where  i t  i s  a com- 
binatorial  calculation. For  examples ir, classical  notation, see Poston and Stewart 
[&>. 

Determinacy 
Let f e En, and define t h e  k - je t  j k V )  t o  b e  t h e  Tzylor s e r i e s  of f up t o  and 

including t e rms  of o r d e r  k . For  example,  

W e  say  t h a t  f i s  k-determinate  ( o r  k-determined) if f o r  any g e  En such t h a t  
j k g  = jk f , i t  follows t h a t  g i s  r i g h t  equivalent t o  f .  

A germ i s  1-determined if- i t s  l i n e a r  p a r t  i s  nonzero,  t h a t  i s ,  i t s  der ivat ive  
does  not  vanish. S o  t h e  non-1-determined germs a r e  t h e  singularities: If f is  a 
singulari ty and f (0) = 0 (as  we can  assume) then the  second der iva t ive  gives t h e  
2-jet o f f  in t h e  form 

2 
j f ( z l n - - - p z n )  = ~ i , j ~ i j z i z '  

where  t h e  Hessian matrix 

i s  symmetric. I t  can  b e  shown t h a t  f is 2-determined if and only if de t  (H) # 0 ; in 
th i s  c a s e  f i s  r i g h t  equivalent to 

This i s  a reformulation in determinacy terms of t h e  Morse Lemma (Milnor 151). A 
germ equivalent t o  (*) i s  szid t o  b e  Morse. Morse germs are prec i se ly  those  of 
codimension 0.  The number L of negative signs in (*) is t h e  i n d e z  of f ,  and f is  an  
1-saddle. Morse theory  (Milnor [5]) desc r ibes  t h e  global p r o p e r t i e s  of a function 



f : X  -. R where X i s  a smooth manifold, and f h a s  only Morse singulari t ies.  (See 
Casti [9] f o r  more details) .  

There  exis t  r u l e s  f o r  computing t h e  determinacy of a given germ: an easy 
necessary  condition, a n  easy  (different)  sufficient  condition, and a h a r d e r  
necessary-and-sufficient condition. 

Let A b e  t h e  Jacobian ideal  of f . Then: 

(i) If mk c m, A then  f i s  k-determined. 
(ii) If f is  k-determined then mk s m, A. 
(iii) f is  k-determined if and only if rn: s m, A(J +g ) f o r  a l l  g E m: . 

There  is  z slightly s t r o n g e r  form of (i), namely 

( is )  If mk+l s  mi^ then  f i s  k-determined. 

Nurcerous examples in Poston and Stewart  [4] and Gibson [3] show how t o  com- 
pu te  t h e  determinacy of a given f .  For  example, suppose f i s  in Morse form (*). 
 the^ A = < +2zl, . .  . , + 22, > = m, and m: = m, A. By (i), f is 2-determined as as- 
s e r t e d  above.  

A germ in f i n i t e l y  determined if i t  i s  k-determined f o r  some finite k . The fol- 
lowing are equivalent: 

(iv) f h a s  f inite codimension 
(v) f i s  finitely determined 
(vi) m i  s A f o r  some t . 

The solution t o  t h e  Determinacy Problem is  thus  t h a t  i t  i s  sa fe  (up t o  r i g h t  
equivalence) t o  t r u n c a t e  a k-determined germ at d e g r e e  k of i t s  Taylor se r i es .  
For  a germ such as zZy E E2, which is not finitely determined, i t  is not s a f e  t o  
t runca te  h igher  o r d e r  pe r tu rb ing  terms (and indeed z 2 y t y t  h a s  a type t h a t  
depends on t ) .  Germs t h a t  are not finitely determined e i t h e r  a r i s e  in a context  
where some symmetry is act ing (and should be  analyzed by methods similar t o  those  
above but  which t a k e  symmetry into account - which c a n  b e  done) o r  must b e  
viewed with suspicion. By (iv), w e  may summarize: "nice" germs hzve finite codi- 
mension. 

Suppose tha t  f is not  2-determinate, s o  t h a t  det  (H)=O. Let t h e  rank  of t h e  
matrix H b e  r and cal l  n -r i t s  corank .  A useful resul t .  called t h e  S p l i t t i n g  Lem- 
ma, s z y s  t h a t  f is r i g h t  equivalent t o  a germ of t h e  form 

For  many purposes ,  t h e  quadra t i c  t e r m s  may be  ignored.  So t h e  Splitting Lemma 
reduces  t h e  effective number of va r iab les  t o  n --r. A simple proof f o r  f inite di- 
mensions is  in Poston and S tewar t  141. 

The determinacy calculations,  and  t h e  application of t h e  Splitting Lemma, may 
b e  c a r r i e d  ou t  equally well on j k  f in F, , provided t h e  codimensior, of f i s  finite. 
The formal power s e r i e s  se t t ing is  b e t t e r  f o r  computations. 

Unfoldings 
An unfolding of a singulari ty i s  a "parametrized family of per turbat ions ."  The 

notior. i s  useful mainly because ,  f o r  f inite codimension s ingular i t ies ,  t h e r e  ex i s t s  a 
"universal unfolding" which i s  a sense  c a p t u r e s  a l l  possible unfoldings. 



More r igorously ,  le t  f c E n .  Then ar: I -pa ramete r  unfo ld ing  of f i s  a germ 

F ' F n + i l  t h a t  is ,  a real-valued germ of a functioz 
F ( z l  ,..., z,. E ~ , .  . . , E ~ )  = F ( x , E ) ,  such t h a t  F ( z , O )  = f ( 2 ) .  

An unfolding F is  i n d u c e d  from F if 

F ( z  ,6 )  = F ( P ~ ( z ) ~ # ' ( ~ ) )  + ~ ( 6 )  

where 

6 = ( d l , .  . . ,6,) c R m  

p6:Rn + R n  

$:Rm -, R1 

7:RL -, R. 

Two ur,fo!dings a r e  e q u i v a l e n t  if each czr. b e  induced f r o x  t h e  o t h e r .  An 1- 
p a r a m e t e r  unfolding i s  ve rsa1  if all o t h e r  unfoldizgs can b e  induce2 from it; 
u n i v e r s a l  if in addition, 1 is  as small a s  possible. 

Suppose t h a t  f h a s  f inite codimension c .  Let u l ,  . . . , u c  b e  a basis  f o r  
mn / ACf). Then i t  i s  a theorem t h a t  z u n i v e r s a l  unfolding i s  given by t h e  germ 

F(z ) ,E)  = f (z )  + e l u l ( z )  + - . + c C u c ( z ) , c i  E R (**> 

While d i f fe ren t  choices  of t h e  ui can  be  made, a universzl unfolding i s  unique up t o  
equivalence.  The exis tence of universal  unfoldings in finite codimension, and t h e  
method f o r  computing them, is probably t h e  most significant and useful  r e s u l t  in 
e lementary  ca tas t rophe  theory .  (Note t h a t  (**) i s  l inear  in t h e  unfolding var iab les  
E . This i s  a theorem,  and i s  n o t  built into t h e  definition of an  unfolding.) 

F o r  example, if f ( z , y ) = z 3 + y 4 ,  t h e n  a basis f o r  m2/ACf)  i s  
Iz , y , z y  , y 2,zy 1. S o  a universal  unfolding i s  given by 

The codimension of a germ f h a s  s e v e r z l  in terpreta t ions:  

(i) The codimension of t h e  Jacobian ideal  in mn , 

(ii) The number of independent d i rect ions  "missing" from t h e  o r b i t  of f , 
(iii) The number of pa ramete rs  in any universal  unfolding of f . 

In addition, if t h e  codimension of f is  c ,  i t  can be  shown t h a t  any small p e r t u r -  
bation of f h a s  at most c +I cr i t i ca l  points. 

Classification 
W e  ske tch  how t h e s e  ideas  may b e  used t o  classify germs of codimension at 

most 4. 

Let  f e En . If f i s  not a singulari ty then  f ( z )  i s  r i g h t  equivalent t o  z l .  If f 
i s  a s ingular i ty ,  and i t s  Hessian h a s  nonzero determinant,  then f i s  r i g h t  
equivalent t o  * 212 * . . . * z: . Otherwise, de t  (H)=O. Let k =n -r b e  t h e  corank  
of H ,  and spl i t  f as 



I t  can  b e  proved t h a t  the  classif ication of possibilities f o r  f depends only on t h e  
similar classification f o r  g .  

The Taylor s e r i e s  of g begins with cubic o r  h igher  terms. F i r s t  suppose t h a t  
k =I, and l e t  t h e  f i r s t  nonzero jet of g b e  atzt  . This i s  t-determined, and sca les  
t o  5 z ( t  even),  z t  ( t  odd). The codimension i s  t -2, s o  t = 3 ,  4, 5 o r  6. 

Next, l e t  k =2, and l e t  

By a l inear  change of var iable ,  th i s  cubic may b e  brought  t o  t h e  form z 3  + zy2 
(one r e a l  r o o t ) ,  z3  - zy2 ( t h r e e  dist inct  r e a l  roots) ,  z2y ( t h r e e  r e a l  r o o t s ,  one 
repea ted) ,  z 3  ( t h r e e  r e a l  r o o t s ,  a l l  r epea ted) ,  o r  0.  

The forms z3  i zy2 a r e  3-determined, and of codimension 3. 

The form zZy i s  not 3-determined, s o  w e  corisider h igher  terms.  A s e r i e s  of 
changes of var iable  bring any h i g h e r  o r d e r  expznsion t o  t h e  form z2y + y t  , which 
is  t-determined and of codimension t . Only t =4 i s  re1evar.t t o  o u r  problem h e r e .  

No h igher  term added t o  z 3  produces  a codimension 4 r e s u l t ;  znd no h igher  
term added t o  0 does. 

Finally, let k r 3. Then t h e  codimension can b e  proved t o  b e  at least 7, s o  th is  
c a s e  does  not a r i se .  

Thus, w e  have classified t h e  germs of codimension 5 4 into t h e  canonical forms 

z: + (MI 
3 

2 1  2,222 + (N) 

213 + zlz; + (N) 

213 + 224 + (N) 

where  

(M) = 5222 + . . .  i z , ,  2 (N) = + z 3  2 - c . . .  i z n .  2 

The ce lebra ted  elementary ca tas t rophes  of Thom are t h e  universal  unfoldings 
of t h e  singulari t ies on th is  l i s t ,  o r  i t s  extension t o  higher  codimensions. The 
universal  unfolding arises when we t r y  t o  classify not germs, bu t  I-parameter fami- 
l ies  of germs. For  I 5 4, "almost all" such a r e  given by universal  unfoldings of 
germs of codimension S4. 

Table 1 sumxarizes t h e  l i s t  of germs and t h e i r  unfoldings up t o  codimension 5 ,  to- 
g e t h e r  with t h e i r  customzry name and  symbol in t h e  systemztic notztion of Arnol'd [I]. 
The terms (M) and (N) a r e  omitted f o r  c la r i ty ,  x and y r e p l z c e  z l  and  z2; and unfolding 
p a r a m e t e r s  are listed as (a ,b ,c ,d ,e )  r a t h e r  than ( c ~ , c ~ , c ~ , E ~ ,  E ~ ) .  



TABLE 1: The  e l emen ta ry  c a t a s t r o p h e s  of codimension 5 5 . When t h e  + sign o c c u r s ,  ge rms  with s ign (+) are 
ca l led  standard, (-) are ca l l ed  dual .  

symbol 

A2 

+A3 

A4 

3 4 5  

A6 

D i- 

Di+ 

* 5  

D 6  

D6C 

*6 

name 

fold 

c u s p  

swaLlowt.ai1 

butt.erfly 

wigwam 

el l ip t ic  umbilic 

hype rbo l i c  umbilic 

pa rabo l i c  umbilic 

s econd  e l l ip t ic  umbilic 

s econd  hype rbo l i c  umbilic 

symbolic  umbilic 

ge rm 
- - -. . - . -- - . - - - 

un ive r sa l  
unfolding 

x3+ax 

CO- 

r a n k  
codi- 
mension 

1 

2 

3 

4 

5 

3 

3 

4 

5 

5 

The  a b o v e  s k e t c h  shows how t h e  classification problem r e d u c e s  to t h e  de t e rminacy  a n d  unfoldfng p rob-  
lems (and i s  r e l a t ive ly  e a s y  o n c e  t h e s e  are solved) .  In appl ica t ions ,  t h e  main inf luence  of t h e  c lass i f ica t ion  
i s  a n  organiz ing  one:  t h e  de t e rminacy  a n d  unfolding t h e o r e m s  p lay  a m o r e  d i r e c t  role. 



IIt. Singularity Theory and Nonlinear Programming 
We consider  t h e  problem 

max f ( z  

o v e r  al l  z  E Rn such t h a t  

Q ( Z )  0 ,  

where f ,g E mn . T h e r e  are at least t h r e e  different a s p e c t s  of th i s  s t andard  nonlinear 
optimization problem which singulari ty theory can shed some l ight  upon: (1 )  reduction 
of dimensionality in t h e  decision s p a c e  f o r  dual, penalty,  and b a r r i e r  type algorithms 
[?I; (2) transformation of t h e  const ra int  space into simpler form f o r  primal type algo- 
r i thms [?I and (3) sensit ivity analysis.  Let us examine e z c h  of t h e s e  areas in tu rn .  

Dimensionality Reduction and the Splitting Lemma 
If t h e  optimization p r o b l e a  (1)-(2) is  t o  be zpproached using one  of t h e  dual penal- 

ty ,  o r  b z r r i e r  a l g o r i t h ~ s  [?], t h e  Splitting Lemma can b e  used t o  r e d u c e  t h e  dirne~sior. 
of t h e  decisior: v e s t o r  in t h e  s u r r o g a t e  objective functior,. For  example, consider t h e  
augmented Lagrangian method, f o r  which t h e  su r roga te  object ive  function is  

where a is a v e c t o r  of multipliers and p i s  some positive constant.  The pzramete rs  a 
are updated according t o ,  say ,  t h e  augmented Lagrangian scheme of Hestenes. 

Assume t h a t  t h e  c r i t i c a l  point  of G i s  located at z = z m , a  = am , and t h a t  t h e  
corank of G ( z  , a )  = r. Then t h e  Splitting L e ~ m a  insures  t h a t  t h e r e  exist  coordinate 
transformations z -, 5 ,  a -, 6 such  t h a t  G -, G ,  where 

where c = codim G  while GI ( - )  i s  a function O ( ( z  j 3, , which i s  l i n e a r  in Gl, . . . , a, . 
The function M ( - )  i s  a p u r e  quadrat ic .  The important point  h e r e  i s  t h a t  usuzlly r C C n  , 
which implies t h a t  most of t h e  computational work i s  involved in minimizing t h e  quadrat-  
i c  M, which can  be  done v e r y  e f f i c i e ~ t l y  by any of a number of quasi-Newton schemes. 
The essentially nonlinear p a r t  of t h e  problem involves t h e  minimization of G ,  which, 
however, involves only r var iables .  Often r = 1 o r  2, even if n i s  v e r y  l a rge ,  say,  
hundreds,  s o  t h e  computational savings can be significant. 

The potential  drawback t o  t h e  above scheme is  t h z t  in o r d e r  t o  compute r ,  t h e  
corank  of G ,  we need t o  know t h e  Hessian 

at t h e  c r i t i ca l  point (zm , a o ) .  Since i t  i s  precisely z *  which w e  s e e k ,  i t  a p p e a r s  at 
f i r s t  glance t h a t  t h e  si tuztion i s  not  too promising. However, th is  problem can be c i r -  
cumvented in a t  l eas t  two d i f fe ren t  ways: 

(i) Often i t  can  b e  seen t h a t  t h e  Hessian will be of constznt  r a n k  in some neigh- 
borhood D of z m  , even if w e  don't know z '  exactly.  This si tuation comes about s ince  
we usually have a t  l e a s t  some idea of t h e  region D containing z '  . Thus, if we have an  
estimate of D and know t h a t  r a n k  H ( z  , a )  = constant f o r  a l l  z E D, t h e n  we can use  th i s  
information in a success ive  approximatior. scheme generat ing a sequence zn -, z The 
idea is  t o  apply  t h e  Spli t t ing Lemma t o  each approximate problem at t h e  point zn . 



(ii) if t h e r e  is  no informztion about  t h e  rank  H, then w e  car, appezl  t o  t h e  inequa!- 
ity 

r ( r  +1)/2 S codim G ,  

which always holds. W e  can t a k e  a pessimistic est imate of r which, at worst ,  means only 
t h a t  w e  include a few more variables in o u r  nonlinear optimizatior, of GI(.) than  might 
have been  needed. If codim G S 2 , then  we can see from t h e  inequality t h a t  r =1 and 
t h e r e  is only a single esseztial ,  nonlinear vzr iable ,  regardless  of where z '  i s  located.  
Otherwise t h e r e  mzy b e  severa l  nonlinear var iables ,  but t h e  number will s t i l l  b e  
severe ly  limited by t h e  above inequality. 

An essent ia l  ingredient in making t h e  above scheme work in p r a c t i c e  is  t h e  e z s e  of 
determining t h e  coordinate  transformations z -, 2 , a  -r 6 . A s  noted in Section 11, t h e  
theory  guaran tees  such transformations exis t  and,  moreover,  t h a t  they are themselves 
diffeor~orphisrns.  Thus, t h e  coordinate changes 

have convergent  power s e r i e s  e_xpansions. Consequently, since we know t h e  or iginal  
form of G and  i t s  normal form G,  in pr inciple  w e  can subst i tu te  t h e  above expansions 
and match coefficients in o r d e r  t o  determine t h e  explici t  form of t h e  transformations.  
The operat ional  implementation of th i s  idea,  however, may requ i re  a substantial  amount 
of z l g e b r a ,  depending upon t h e  e x a c t  n a t u r e  of G. 

Simplifying the Constraint Space 
F o r  nonlinear constrained optimizatioc problems hzving nonlinear cons t rz ic t  sets, 

t h e  coord ina te  changes  discussed above cac b e  employe? t o  "straighten-out" t h e  bind- 
ing cons t ra in t s  in a neighborhood of r e g u l a r  points, s o  t h a t  primzl methods f o r  solving 
const ra ined optimization problems c a n  b e  used, dealing only with l inear  s ide  con- 
s t ra in t s .  The essence  of the  primal methods is  t o  start with a feasible d i rect ion along 
which t h e  object ive  functior, i s  improving. A one-dimensional line s e a r c h  ( in terval  
bisection,  Newton's method, e tc . )  i s  then used t o  solve t h e  one-dimensional optimization 
p r o b l e ~  along t h e  improving feasible d i rect ion,  const ra ined s o  t h a t  t h e  resul t ing solu- 
tion remains feas ible  173. 

A specif ic  example ,of such 2 primal method i s  t h e  gradient  project ion technique 
due t o  Rosen. This method genera tes  a n  improving feas ible  direction by project ing t h e  
negative of t h e  gradient  vec to r  of f onto t h e  affine subspace determined by t h e  in te r -  
sect ion of t h e  binding const ra ints ,  assuming t h e  const ra ints  a r e  l inear .  A project ion 
matrix P is  formed from a suitable l inez r  combination of t h e  normal v e c t o r s  of t h e  con- 
s t r a i n t  subspaces  (i.e. t h e  gradients of t h e  binding const ra ints) .  The result ing one- 
dimensional optimization is then guaranteed t o  remain feasible as long as a sui table  
u p p e r  bound i s  obse rved  on t h e  line s e a r c h  [7]. 

In t h e  event  t h e  const ra ints  are nonlinear,  t h e  gradient  of f i s  p ro jec ted  onto  t h e  
in tersect ion of t h e  tangent  spaces  t o  t h e  binding const ra ints ,  s o  t h a t  movement along 
t h e  improving fezsible direction will, in genera!, t a k e  t h e  solution oxtside t h e  feas ible  
region ( see  Figure  1 ) .  This necess i ta tes  a cor rec t ion  move t o  bring t h e  solutions back 
in to  t h e  feas ible  regions  a f t e r  t h e  one-dimensional s e a r c h  hzs  been completed. Singu- 
l a r i ty  t h e o r y  a p p e a r s  t o  o f fe r  t h e  possibility of materially improving t h e  above  p ro-  
c e d u r e  as we now indicate.  



move 

FIGURE 1 Projected gradient method of Rosen f o r  nonlinear constrzints (From Figure 
10.5, pg. 398 Bazaraa and Shetty,  1979) 

Consider the  following nonlinear programming problem: 

minimize: f ( z )  

subject  to: gi ( z )  5 0 i =1,2, ..., m 

z 2 0  

For any x such thz t  z r 0 ,  if I = [ i : g i ( z )  = O j ,  then 

X = [z :gi ( x )  = 0 j = n (gi ( 2 )  n Rn hyperplane) 
i f 1  

will be  t h e  intersection of a finite number of manifolds in Rn and thus,  with t he  possi- 
ble exclusion of a set of points of codimension n, (corners)  will inherit  t he  manifold 
s t r u c t u r e  locally. Loczlly, then,  a coordinate change could be  effected in X which will 
cause X t o  take t he  form: 

X -, Y = ly :O = a'y + c ,  a ,c constant vec tors j  

as long a s  t he  gradients of t he  binding constraints  don't vanish. A trznsversali ty argu- 
ment can be used to  ru l e  out the  l a t t e r  possibility. 

Assuming tha t  only the  constraints gi ( 2 )  = 0 is binding, l e t  

Si = T, gi ( z  ) n Rn hyperplane,  

where 

T, gi ( z  ) = tangent space t o  gi at x. 

Since codim Tzgi ( z )  = 1 and codim IRn hyperplznej = 1, if  t he  intersection is  
t ransverse  



coc5im Tz gi (2 ) + codim [Rn -I h yperplane j = codim Si = 2 

Results from dif ferent ia l  topology assert t h a t  t h e  set of c r i t i c a l  points Ri f o r  gi will 
b e  isolated,  thus  t h e  dim Ri = 0 and codim Ri = n. There fore ,  

codim Ri + codim Si = n +2 > n. 

So,  f o r  Vgi (2 )  t o  b e  z e r o  zt exact ly  t h e  same points where  gi (z)=0 const i tu tes  a non- 
t r a n s v e r s e  in tersect ion and i s  t h e r e f o r e  non-generic. If any such points should o c c u r ,  
they will b e  isolated and thus  not form a const ra int  boundary. 

In p r a c t i c e ,  finding X and t h e  coordinate  transformation necessa ry  t o  make i t  look 
l ike Y usually requ i res  some e f fo r t .  However, if project ion onto  only one binding con- 
s t r a i n t  i s  necessa ry ,  t h e  calculztion becomes simpler,  as t h e  following example shows: 

min f (zi ,z2)  = 1/22;  + 1/22;  - z1-z2 

( the  geometry in x s p a c e  is  shown in Figure 2) 

subject  t o  

z f + z ; - l  s 0 

-21 5; 0 

- 2 2  s 0 

Vp ( 2 )  = (2,-l,z2-1) at (1,O): Vf (1,O) = (0,-1) 
vg1(2 = (22:,2z2) Vg 1(1,0) = (2,O) - binding 
Vg2(z) = (-1,O) , Vg2(1,0) = (-130) 
vg3(z) = (0, -1) Vg &,O) = (0, -1) - binding 

As can  b e  seen ,  w e  want t o  p r o j e c t  onto  g l (z)  . To s t ra igh ten  out  g l ,  l e t  
2 - 2  y l  = z l  , y 2  - z 2 .  In t h e n e w  coordinates ,  VfneWwiLl b e  : 

V f  ,,,(Y) = (Y p - 1 , ~  $ -I), Vf ",,(l.O) = (0, -1) 

(Note: This is not t h e  gradient  of t h e  transformed objective function bu t  r a t h e r  t h e  
t ransformed gradient  of t h e  old object ive  functior,.) 

The new problem is : 

m i n Z ( ~ ~ , ~ ~ )  = 1 / 2 y l  + 1 / 2 y 2  - Y ?  - Y $  

( the  geometry in y space  in shown in Figure 3) 

subject  t o  

y 1 + y 2 - 1  s 0 

- Y l  s 0 

-y25 ;  0 

Now t h e  cons t ra in t  is l inear  and we p r o j e c t  Vp,,, onto  g1 by forming t h e  project ion 
matrix:  



FIGURE 2 Configuration in x s p a c e  



The oSjective functior, i s  optimized along t h e  const ra int  by let t ing 

S o  t h e  minimum is  t aken  on at 

That th i s  i s  t h e  optimum can  b e  seen by trying to form a n  improving feas ible  direction 
in z space .  The r e s u l t  w i l l  b e  t h e  z e r o  vec to r ,  indicating t h a t  t h e  optimum h a s  been 
reached .  

1 v~(z) = (47-I,*-I) - P =I-M~(MM~)-~M = ;I - [$I + (47 47) = * 
1 ' - 2 1  
2 2 
1 

, 2  2 

d =PVf (z) = - 47-1 



I new 

FIGURE 3 Configuration in y space 



zs clzimed. 

A summzry of t h e  algorithm i s  given as follows: 

I n i t i a l i z a t i o n  step: Choose a feasible point z, and find Ii = f i :g l (z)  = O j .  Let u =1 
and go t o  (1). 

(1) If Ii = 0 ,  l e t  P = I ,  form d, = P V f  (2,) and go t o  (3). Otherwise, form t h e  
project ion matrix in x-space as follows. Let M = Dp (2,) b e  t h e  matrix of gradients  of 

t h e  binding cons t ra in t s  at I,. If P = I- M' (hWt)- M = 0 ,  l e t  W = -(hWf )-' M Vf (2,). 
If W r 0 ,  z, will b e  a Kuhn-Tucker point, otherwise, de le te  a row corresponding t o  
Wi r 0 and r e p e a t  s t e p  (1). This h a s  t h e  effect  of eliminating binding const ra ints  from 
consideration which won't genera te  an  improving feas ible  direction.  Let 
I = f i  :gi ( z )  = O j  a f t e r  a nonzero P h a s  been found. 

(2) If X = n (gi ( z )  r\ f R n  -I hyperplane!) i s  a l ready  l inea r ,  use  t h e  matrix in 
i € I  

the '  foliowing calculations.  Otherwise, find a coordinate change such t h a t  X becomes 

Find Vf ,,,(y (2)) ! y (z, ) and conver t  t h e  problem into y coordinates .  Form t h e  pro- 
jection matrix P = I - a t  ( aa t  )-la and go t o  (3) a f t e r  forming d, = 
P V f  ,,JY (z 1) l Y (z, 

(3) Let  h, b e  a solution t o  

Mi~imize f (z, + hd, ) where z, = z,, if in z coordinates  and  

z, = y,, if in y coordinates  

0 4 h S  h,,, 

where  h,,, i s  determined s o  t h a t  t h e  problem remains feas ible .  

Let  z, = z, + hd, , conver t  t o  z coordinates,  if necessa ry ,  and  r e t u r n  t o  (1). 

For  more  complex problems involving more than one binding const ra int ,  t h e  coor- 
dinate changes  must b e  automated and checks  made on t h e  neighborhood of validity of 
t h e  transformations.  Application t o  o t h e r  primal methods c a n  a l so  b e  made using t h e  
same types  of arguments.  

Sensitivity Analysis and Unfoldings 
In Section 11, we noted t h a t  a universal unfolding of a smooth function f ( z )  

r e p r e s e n t s  t h e  most genera l  t y p e  of smooth per tu rba t ion  t o  which f c a n  b e  subjected 
and t h a t  t h e  number of t e rms  needed t o  charac te r ize  a l l  such per tu rbz t ions  equals 
codim f . Fur thermore ,  if u l(z ), . . . , u, (z ) r e p r e s e n t  a basis  f o r  t h e  Jacobian ideal  
mn / VCf  ), then  t h e  lui { also  r e p r e s e n t  a basis f o r  t h e  s p a c e  of a l l  such per turbat ions .  
Since per tu rbz t ions  in t h e  object ive  function and/or cons t ra in t s  l ie  at t h e  h e a r t  of 
sensitivity analysis f o r  nonlinear optimizztion, i t  seems reasonab le  t o  con jec tu re  t h a t  
t h e  concepts  of unfolding and t ransversal i ty  should be  of use  in character iz ing var ious  
issues ar is ing in t h e  sensit ivity analysis of nonlinear programs.  H e r e  we shal l  indicate 
two d i f fe ren t  d i rec t ions  t o  b e  pursued: 1) constra int  qualification conditions; 2) 
objective function stabilizztion and examination of t h e  stabil i ty of t h e  dual algorithms 
discussed above.  



T r a n s v e r s a l i t y  and the Kubn-Tucker  Conditions 
A s  an indication of how singularity theory arguments can be  employed t o  study 

constraint perturbations,  let us examine t h e  classical Kuhn-Tucker conditions using 
transversality arguments. 

The Kuhn-Tucker necessary conditions play a n  important ro l e  in t he  theoret ical  
development of mathematical programming. These conditions were derived from a more 
general set of conditions, called the  Fritz John conditions by assuming tha t  a con- 
s t ra in t  qualification is in effect.  Both t h e  Fritz John and Kuhn-Tucker conditions a r e  
necessary f o r  z *  t o  be an  optimal solution of t he  constrained optimization problem. 
One of the  most widely used constraint qualifications i s  that  the  gradients of t he  bind- 
ing constraints a t  t he  point z *  be linearly independent. 

In singularity theory, t he  concept of a t ransverse  intersection between two mani- 
folds is a cornerstone f o r  s t ruc tura l  stability arguments. One definition of a 
t ransverse  intersection a t  a point is tha t  no vector  is perpendicular t o  t he  tangent 
spaces of both manifolds simultaneously [4]. Since the  gradient vec tor  of a manifold at 
a point w i l l  also be  the  normal vector  to t he  tangent hyperplane at thz t  point, i t  follows 
tha t  t h e  gradient vectors  of two intersecting manifolds w i l l  both be  collinear if and 
only if t he  intersection is t ransverse.  Furthermore, and more importantly, t he  Thom 
Isotropy Theorem [4] s ta tes  tha t  t ransverse  crossings are structural ly  stable. This 
means tha t  s m a l l  perturbations of t he  constraints around a Kuhn-Tucker point won't 
change the  geometry of the  intersection much. In fact ,  the  original constraint confi- 
guration can be recovered by a smooth coordinate change around the  point of interest.  

Let us consider an  example demonstrating the  s t ructural  instability of a non- 
t ransverse  crossing. In the  example, t he  following definition of a t ransverse  crossing 
will b e  used: 

DEFINITION 1 .  Two manifolds, R and S ,  embedded in Rn  intersect  t ransversa l ly  if 
1 )  R n S  = # o r  

2) codim (T,R) + codim (T,S) < n and 

codim (T,R) + codim (T,S) = codim T,R nT,S) 

where T, is the  tangest space a t  z . 
Ezample (from 171, s e e  Figure 4 f o r  geometry) 

Minimize: f ( z l , z 2 )  = -1 

Subject to: z2 - ( 1  2 S 0 

Vf = (-1,O) at (1,O): Vf (1,O) = (-1,O) 
vgl  = (-X1-f) , I )  V g l  (1,O) = (0 , l )  - binding 
vg 2 = (0,-1) V g  (1,O) = (0,-1) - binding 

The gradients of the  binding constraints are not linerly independent. Checking t h e  
Kuhn-Tucker conditions: 



0 = 1  . , inconsistency, 

showing t h a t  t he  Kuhn-Tucker conditions don't hold. 

Transversalit y 

Both gl  and g will be  embedded in R~ so  

T, g l ( z )  = f(z1,z2,z3):  2 2  - 3(1*1)2z1 = 2 2  - 3(1*1)2 zlj 

T, g 2 ( z )  = !(z1,z2,z3): 2 2  = z 2 j  

at (1,O): 

T, g l ( z )  = fz l ,zzz3) :  z2 = oj, thus 7'' g l ( z )  n T,g2(z) = T, g l ( z )  

T, g 2 ( z )  = I(zl,zZ,z3): 2 2  = O j  

codim T, g l ( z  ) = 1 

codim T, g 2 ( z )  = 1 

codim (T, g l ( z )  n Tx g 2 ( z ) )  = 1 

Thus, 

codim T, g l ( z )  + codim T, g 2 ( z )  f codim (7'' g l ( z )  n T, g 2 ( z  1) 

so  t h e  intersection is nontransverse. 

If t h e  cubic constraint i s  per turbed slightly: 

8 1 ( ~ 1 , ~ Z )  = YZ - (1-111)3 + &, 

then T,gl(z) n T,g2(z) at (1.0) will be  t he  empty se t ,  so  t he  interesection is. by de- 
finition, t ransverse.  A t  t he i r  point of intersection, z = (l+a,O), s o  

T, g l ( z )  = [(z1,z2,z3): z2  + 3a2  zl = 3 a 2 j  

Tz g 2 ( z )  = f(zl,z2,z3): 2 2  = o j  
and T, g l ( z )  n T, g 2 ( z )  = [(z1,z2,z3): z1 = l j  will be  a line in R ~ .  

Thus, 

codim (T, g ( z  )) = 1 

codim (T, g ( z  )) = 1 

codim (7'' g l ( z )  n T, g 2 ( z ) )  = 2 

s o  codim (T, g l ( z ) )  + codim (T, g 2 ( z )  = codim (T, g l ( z  )) n T, g l (z  )) and the  inter- 
section i s  t ransverse.  



FIGURE 4 Example of a nontransverse constraint crossing (from Figure 4.5, pg.136, 
Bazaraa and Shetty, 1979) 

The unfolding concept can also b e  of use in sensitivity analyses in t h e  following 
manner. As an  u n p a m e t r i z e d  function, the  objective function f' ( z )  may be  unstable 
with regard  t o  s m a l l  perturbations (i.e. t he  qualitative cha rac t e r  of t he  cr i t ical  points 
of f' may change as a resul t  of small changes in I). This is clearly a bad situation as 
f a r  as the  credibility of t he  resul ts  obtained from such a n  optimization are concerned. 
However. if codirn f' =c ,  an  unfolding of f' involving at least c parameters  wi l l  be  s table  
relat ive t o  all s t ruc tura l  perturbations in the  sense tha t  if f '(z)+p(z) i s  a perturba-  
tion of f' , then the  behavior of f' ( z  ) + p ( z )  near  i t s  cr i t ical  points can be  captured by 
varying the  parameters  in a universal unfolding of I. A s  already noted, t h e  elements 
ul(z.), ..., u , ( z )  forming a basis f o r  m, / Vw) constitute a basis f o r  exactly t he  type of 
perturbations we need t o  stabilize f' . 

Unfolding can also be  of use f o r  studying the  stabililty of t he  dual optimization al- 
gorithms, which requi re  t he  formation of a surrogate  objective function using a compu- 
tational parameter. For example, t he  augmented Lagrangian method mentioned above 
requi res  the use of a parameter  p. These parameterized functions can be  studied t o  
learn  what types of objective functions and constraints may lead t o  sur roga te  objective 



functions which are structural ly  unstable, and which may behave badly as the  computa- 
tional parameter  i s  varied. 

These ideas  can be illustrated by considering t h e  s tandard l inear  programming 
problem. In a sense,  a l inear objective function is  t he  linearization of a general non- 
l inear f ( z ) ,  since no r e a l  world process even generates  a completely l inear  potential. 

DEFINITION 2 . 1  i s  s t r u c t u r a l l y  stable if, for sufficiently small smooth per turba-  
tion functions p. t he  c r i t i ca l  points of f and f + p remain within t h e  same neighborhood 
and have the  same type (max, min, saddle, etc.). 

Consider t h e  l inear  program: 

maximize: f ( z ) = c t z  

subject  to: Az S 0 

Note t h a t  t he  Hessian matrix of f will be identically ze ro  f o r  all x ,  so tha t  a l inear  pro- 
gram has a maximum only by virtue of the  constraints. 

If a small l inear per turbat ion i s  added to  the  objective function: 

maximize: f ( z )  = (cf + ct )z ,  t i  << 1 

subject to: Az S 0 z =1,2, ..., n 

t he  isoclines of t he  objective function on t h e  x hyperplane might shif t  s o  tha t  t he  set of 
isoclines leaves t he  feasible region a t  a completely different extreme point of t he  con- 
vex hull of constraints.  Thus the  linear programming problem i s  not even stable with 
respec t  t o  l inear  perturbations.  

In cont ras t ,  i t  i s  known tha t  Morse (i.e. quadratic) extrema are t h e  only s t ructur-  
ally s table  types f o r  nonparameterized functions, although f o r  parameterized functions 
t he  situation i s  different.  Similarly, since adding a small per turbat ion to a Morse func- 
tion does not drastically change the  location of the  unconstrained extremum, the  loca- 
tion of t he  constrained extremum also shouldn't change too much, since t he  constrained 
extremum usually occurs  where the constraints a r e  tangent to t h e  isoclines of j ( z ) .  

As a final note, t h e  computational implications of t h e  above discussion are not by 
any means as d i r e  as might seem. While t he  general nonlinear programming problem i s  
computationally difficult, numerical methods f o r  quadrat ic  programs, both constrained 
and unconstrained, are w e l l  developed. Ir: fact ,  since Morse functions are the  only 
s t ructural ly  s table  types of smooth unparametrized functions, a case could b e  made f o r  
transforming even nonquadratic nonlinear programs into quadrat ic  form using t h e  dif- 
feomorphic coordinate changes guaranteed by singularity theory. Thus, a quadrat ic  
program rep re sen t s ,  in a cer ta in  sense, t h e  canonical problem f o r  mathematical pro- 
gramming. 
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