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PREFACE 

A s  in natural  sciences like physics t he  primary aim of a systems ana- 
lytic study is  t o  find a synthesis of formal and informal, mathematical and 
non-mathematical methods, procedures,  approaches,  etc., and to  design a 
computer-based system as a qualitatively new tool f o r  t he  analysis of con- 
crete problems pertinent t o  a concrete  r e a l  system under study. 

This process  of design should be  able t o  incorporate different types of 
available knowledge and information about t he  real system. The non- 
quantifiable knowledge of people, who from the i r  experience know many 
important propert ies  of t he  r e a l  system, is  often of a high value. There- 
fore ,  having efficient channels of communicating this type of knowledge into 
the  process  of design is  very desirable. 

This type of a communicating channel is one of t he  character is t ic  
features  of the  modeling procedure described in this paper .  I t  accepts  two 
types of information about a r ea l  system: measurement data  and also expe r t  
knowledge about t he  system's s t ructure .  The use of the  highly interactive 
computer system based on this procedure is an i terat ive process  in the  
course of which the  subjective expe r t  knowledge can be  utilized to a g rea t  
advantage. 

This interactive system has been applied successfully by the  IIASA 
Regional Water Policies Project (WAT) f o r  t he  development of simplified 
models of complex groundwater-crop growth systems fo r  t he i r  subsequent 
incorporation in the  decision support system f o r  the  Southern Peel  region 
in t he  Netherlands. This application will be  described in a forthcoming 
paper  and also in the  final r epo r t  of the  WAT project.  

Sergei Orlovski 
Pro jec t  Leader 
Regional Water Policies Project  



ABSTRACT 

Key Words. Complex system, computer assistance, identification, man- 
machine interface,  model simplification, s t ructural  modeling. 

A computer-assisted mathematical modeling method tha t  emphasizes t he  
interaction between analysts and computers is  presented. I t  combines 
algebraic and graph-theoretic approaches t o  ex t r ac t  a trade-off between 
human mental models and models based on the  use of data  collected from t h e  
system under study. The method is  oriented t o  the  modeling of t he  so-called 
"gray box" systems which often involve human behavioral aspec ts  and also 
knowledge of t h e  expe r t s  in re levant  fields. By recursive dialogues with t he  
computer, t he  modeler finds a system model which can be  nonlinear with 
respec t  t o  descriptive variables. The s t ruc ture  of t he  computer program 
packages is  also presented. 



AN INTERACTIVE MODELING SUPPORT SYSTEM (KMSS) 

Y. ~akamor i ' ) ,  M. ~yobu ' ) ,  H. ~ u k a w a ~ )  and Y. sawaragi2) 

1. INTRODUCTION 
Kalman (1983) has  emphasized tha t  "a model must explain real data;  i t  

must not be  an  a r t i fac t  expressing the  modeler's prejudices." He (1982) 
claims tha t  "the principal modeling problems f o r  t he  fu ture  are not statisti- 
cal, but system-theoretical," and continues t ha t  "the immediate task is  t o  
begin developing p r e  judice-free modeling theory." His words are impressive 
and shocking f o r  applied systems analysts. The state-of-the-art of t h e  
mathematical systems theory is, however, not so  w e l l  developed tha t  i t  can 
cope with complex large-scale systems which lie outside of t h e  domain of 
validity of t h e  physical laws. Such systems must involve human behavioral 
aspects  and may not provide behavioral data  sufficient both in quality and 
quantity. We reply t o  Kalman's addresses by quoting the  assertion in Gaines 
(1984) t ha t  "the powerful methods of l inear systems theory work not 
because they re f lec t  reali ty but r a t h e r  because w e  have built worlds of 
mechanical and electronical systems which are linear,  and hence can be  
modeled, designed and controlled; outside technologically c rea ted  reali ty 
l inear systems theory has  f a r  less t o  offer  in modeling the  worlds of 
nature." On the  o the r  hand, i t  is also t he  fac t  t ha t  w e  often face  situations 
where any classical, statist ical  procedures  would not work adequately. To 
deal with such problems w e  must consider effective utilization of t he  exist- 
ing theories  and tools. 

''on l e a v e  from t h e  Department o f  Applied Mathematics,  Facu l ty  o f  Sc i ence ,  Konan Univer- 
s i t y ,  Kobe, Japan. 
 he Sapan I n s t i t u t e  o f  S y s t e m s  Research.  
';~epartment o f  Applied Mathematics and P h y s i c s ,  K y o t o  U n i v e r s i t y .  



T'ne process of mathematical modeling involves a cer tain number of 
stages and cycles. In a classical framework of system modeling th ree  funda- 
mental stages a r e  considered: selection of the type of model, parameter 
estimation and the  validation of the model. El-Sherief (1984) defines the  
system identification problem in his recent  survey concerning multivariable 
system modeling as follows: "from a given se t  of input and output measure- 
ments (cause and effect),  i t  is required t o  estimate a mathematical model 
within 'a specified class of models' which fits the  measurements as closely 
as possible." He observes tha t  "one important fac tor  in identifying mul- 
tivariable systems is t he  determination of the s t ructural  parameters;  each 
type of model has i ts  own structural  parameters which must be known before 
an  attempt is made t o  estimate the  model parameters." This statement is 
re lated to the  main point in Kalman (1980): "there is a one-to-one 
corresponcience between the data and i ts  canonical realization (model); 
with the  same data  each modeler must a r r ive  at the  same conclusion as any 
o ther  modeler, except f o r  a possibility inevitable but always irrelevant 
relabeling of the  variables." But t he re  certainly exist  worlds tha t  the  (par- 
tial) reaiization theory would not be accepted yet, and under such uncertain 
circumstances we must make important decisions. 

A grea t  majority of tendency has been rapidly arising in modeling of 
badly posed systems in which emphasis lies on s t ruc ture  characterization 
instead of parameter estimation. In fact,  Linstone e t  al. (1979) identify 
about 100 s tructural  modeling techniques, and develop guidelines in the  
choice and p rope r  use of 7 famous tools. They define a s t ructural  model as 
"any model which represents  a complex system as a se t  of elements with 
relations - nearly always pairwise - linking some o r  all of them; and places 
the emphasis on the  geometry o r  s t ruc ture  r a t h e r  than on quantitative 
aspects of the  relationships." Because generally decision-makers are not 
mathematicians o r  scientists a s t ructural  model i s  much more appropriate  
than o thers  f o r  learning experience. The s t ruc ture  of a system is funda- 
mental t o  the  understanding of what is happening. I t  gives new insights into 
the system t o  decision-makers and the  modelers a s  w e l l .  Among many tools 
of s t ructural  modeling we ex t r ac t  the idea, fo r  ou r  purpose, from the  Inter- 
pretive Structural  Modeling (ISM) proposed by Warfield (1974); w e  have 
found in i t  the  importance of a bird's eye view. 

Our ultimate goal is t o  obtain some numerical relationships between 
system variables which should be, we believe, comprehensive o r  descriptive 
r a t h e r  than intrinsic. Much attention has been also devoted t o  the  exten- 
sion of the  classical image of modeling in uncertain environments. An 
unorthodox approach is known as the Group Method of Data Handling 
(GMDH) proposed by Ivakhnenko (1968). I t  is  based on heuristic principles 
of self-organization and rel ies  on bioengineering concepts. Despite the  
energetic research  activities of Ibakhnenko and his colleagues after i ts  
introduction, the method seems t o  be f a r  from world-acceptance. A critique 
is the following: by application of the  self-organization method, the  com- 
puter  itself finds a unique model, but ignores any theories and consensuses 
developed in the  relevant field. Look, this is a good example of the  lesson 
f o r  applied systems analysts. If w e  define the  direction of new systems 
analysis as a discipline tha t  provides decision support systems in any fields 
of human activities, then of vital importance is communication at every 
level, f o r  instance dialogues between citizens and mathematicians, between 



economists and system analysts, between exper t s  and decision-makers 
between people and computers, and between mental images and the  data.  W e  
will borrow a p a r t  of Ibakhnenko's idea, but w e  do not necessarily re ly  on 
the  whole process  of heuristic self-organization. 

The method presented in this paper  consists of a combined modeling 
technique of a lgebraic  and graph-theoretic approaches,  and related man- 
machine interfaces.  A new simulation model must be  comprehensible, flexi- 
ble anci simple but appropriately complicated f o r  the  purpose of prediction 
o r  decision-making. But nei ther  exactly defined stopping ru le  nor  com- 
parison cr i ter ion is  imposed in ou r  method. The pessimism of untouchability 
of t he  r e a l  s t ruc tu re  does not allow t o  rely entirely on any traditional, sta- 
tistical c r i t e r i a  because most of them have been invented t o  measure dis- 
tance between t h e  model and the  r e a l  system. Some of them are, however, 
used in ou r  method just as re fe rence  material, whenever required. Our 
mainpoint is  how t o  balance, with computer assistance, t he  experts '  mental 
models with those which the  data  tells. 

In t he  next section w e  descr ibe t he  outline of t he  method, and then in 
Section 3 w e  present  the  main p a r t  of this paper  involving multistage dialo- 
gues in t he  modeling process  and related man-machine interfaces.  To make 
the pape r  self-contained, the  details of graph-theoretic and algebraic  
phases of modeling will b e  presented in Sections 4 and 5, respectively,  
which are related t o  t he  principal computer program packages. Finally, in 
Section 6 we descr ibe a personal computer software of t he  modeling support 
system. 

2. STRUCTURE OF THE METHOD 

PROBLEM. Suppose w e  have a real object t o  obtain a mathematical model. 
We introduce a set of names of variables: 

and suppose w e  have a measurement data  table: 

where zij represen ts  j -th measurement of i -th variable. 

W e  introduce a cause-effect relation B, on t he  product set S x S, 
defined by 

(zi , z j )  E B if and only if zi influences zj  , 

o r ,  equivalently, a matrix A = (a i j  ) defined by 

- (I if ' " * J j )  E"  

a ~ j  - 0 otherwise 

This matrix descr ibes  character is t ic  set of the  relation B and is  called t he  
adjacency m a t r i z .  The matrix A represen ts  a type of ou r  knowledge about 
t he  dependency relation between system variables, and is  not determined 
clearly at t he  initial s tage of t he  modeling process.  



The problem is t o  obtain a mathematical model of the  system in terms of 
a se t  of equations which governs the  elements of S  using the  measurement 
data X and the  information A .  

OUTLING. The modeling process consists of t h ree  different but interdepen- 
dent stages of dialogues. 

The f i r s t  s t a g e  d i a l o g u e  is required fo r  preparation of the  modeling, 
including input of measurement data  and the  initial version of cause-effect 
relation on the  s e t  of variables, transformation of variables, data  screen- 
ing, and refinement of the  cause-effect relation. 

The s econd  s t a g e  d i a l o g u e  is  devoted t o  find a trade-off between the 
measurement data  and the  modeler's knowledge about dependencies between 
the  variables. Based on the  measurement data  and the  initial version of the  
cause-effect relation, using the  option of regression method, the  computer 
finds a linear m o ~ e l  and the  corresponding digraph model. The modeler 
modifies the  new relation re fer r ing  t o  these computer models and his 
knowledge. The process  continues repeatedly until no change occurs  o r  the  
modeler is satisfied with the  modified relation. 

The t h i r d  s t a g e  d i a l o g u e  is  related t o  model simplification and ela- 
boration. Model simplification is based on the  use of equivalence relation, 
and model elaboration is an  application of regression analysis including the  
hypothesis testing on estimated coefficients, and examinations of the  expla- 
natory and predictive powers of the  model. 

Figure 1 shows the  s t ruc ture  of the  modeling process. 

3. INTERACTIYIi: MODELING METHOD 

3.1. T h e  F i r s t  Stage D i a l o g u e  
The f i r s t  s tage of the  modeling process consists of the  following s teps 

that a r e  necessary f o r  preparation of the  modeling. 

1. D a t a  I n p u t  

We call t he  triplicate ( S . X , A )  the modeling knowledge which is fed into 
the  computer at the  f i r s t  step. The manner of filling the adjacency matrix A 
should be negative. Here negative means tha t  the modeler should en ter  the 
computer a p a r t  of his knowledge, putting 0's at the  r ight  places. The r e s t  
of entr ies  in A will be  filled with 1's by the  computer. The underlying idea 
is tha t  we should inquire into strength of relationship between every pair  of 
variables except those which a r e  definitely irrelevant.  

In filling the  adjacency matrix A = ( a i j ) ,  we allow t o  use an  extension 
of binary relation: 

1 2 if xi certainly influences x j  

ail = { 0 if xi never influences x j  

1 otherwise 

There is no difference between 1 and 2 in digraph modeling. They a r e  
t reated differently in choosing explanatory variables in linear modeling, 
i.e., the variables indicated by 2 a r e  regarded as the core  variables and 
those indicted by 1 the  optional variables. We redefine the  cause-effect 



Figure 1: The s t ruc tu re  of t he  modeling process  

ENTRANCE TO THE SYSTEM 

relation B as follows: 

EXIT FROM THE SYSTEM 

(xi,xj) E B if and only if aij + 0 

W e  have another  option of filling t he  matrix A .  The relation con- 
sidered is t he  cause and effect that  is  not necessarily transitive. But i t  may 
be quite feasible t o  employ the  assumption of transitivity t o  develop a l inear 
model. The modeler can choose t he  option of a transit ive embedding method 
which is a modified version of tha t  in Warfield (1976). The resulting matrix 
A is a transit ive matrix with elements 0 o r  1. The advantage of this method 
is t ha t  i t  can reduce t he  number of pairwise comparisons remarkably. One 
caution in using this method is that  t he  modeler should consider indirect 
cause-effect relationships as well a s  d i rec t  ones. 
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2. Transformat ion of Variables 

The modeler can  feed into t h e  computer ano ther  type of knowledge: 
time-lag effects  o r  functional relationships. The result ing model can  b e  
fa i r ly  complicated by transformation of variables.  Transformation is  a l so  
needed t o  make distr ibutions of var iables  symmetric because,  according t o  
Hartwig and Dearing (1979), non-symmetric distr ibutions and non-linear 
relat ionships often exis t  toge ther .  If every  distr ibution of var iables  i s  
roughly symmetric, then w e  will have a high chance t o  obtain a l inear  model. 
For th is  purpose  t h e  computer helps t h e  modeler offering possible t ransfor-  
mations. The options of t h e s e  include: 

y = z ( n  : given in teger)  , y ( t  ) = z ( t  -1) ( t  : time) , 

y = a +bz + c z  + dz lz2 ( a  ,b ,c and d : given constants)  , 

and t h e i r  combinations. Needless t o  say,  some transformations have con- 
s t ra in t s  with r e s p e c t  to t h e  range  of numbers. The computer provides his- 
tograms of t h e  original  and  transformed var iables  to ass i s t  t h e  modeler's 
judgement. The modeler c a n  choose a transformation by which t h e  result ing 
new var iable  h a s  a satisfactori ly symmetric histogram a f t e r  s e v e r a l  exami- 
nation. 

When a transformation i s  done, t h e  computer modifies t h e  modeling 
knowledge (S,X,A ) in t h e  following way. If a single var iable  i s  transformed 
by a formula excep t  t h e  time-lag operat ion,  then t h e  corresponding r o w  of 
t h e  da ta  matrix X is simply rewri t ten  with t h e  transformed numbers. Other- 
wise, a new var iable  is added t o  t h e  set S, a new row i s  added t o  t h e  da ta  
matrix X f o r  t h e  transformed da ta ,  and t h e  adjacency matrix is extended in 
such a way t h a t  t h e  new row (resp.  column) is  given by Boolean addition of 
t h e  corresponding rows ( resp.  columns) of original  variables.  

3. C a u s e - m e c t  Re la t ion  

If t h e  modeler wants to look at t h e  s t r u c t u r e  of h is  mental model, then  
t h e  computer will show t h e  digraph of h i e r a r c h y  based on t h e  adjacency 
matrix A ,  taking its t ransi t ive  c losure  and ex t rac t ing  t h e  skeleton.  The 
p rocess  of obtaining a digraph will b e  explained in deta i l  in Section 4. 
Moreover, if t h e  modeler wants t o  check t h e  relat ionship between a p a i r  of 
var iables ,  then t h e  computer will show two dimensional scatter plots. The 
modeler can change t h e  re la t ion charac te r ized  by A r e f e r r i n g  t o  these  
information. 

If t h e  objective of modeling is not just description but control  or pred- 
iction of t h e  r e a l  system, then  t h e  control  var iables  o r  t h e  var iables  whose 
d a t a  can  b e  obtained accura te ly  should b e  placed in a p p r o p r i a t e  positions 
in t h e  h ie ra rchy .  The introduction of t h e  modeler 's  assumptions o r  preju- 
dices at th i s  s t age  should b e  as li t t le as possible. 

4. L i n e a r  ReLation 

The computer checks  and displays p a i r s  of var iables  which have high 
cor re la t ion  coefficients. To avoid t h e  problem of multicollinearity and a l so  
t o  simplify t h e  model, i t  i s  recommended t h a t  one of t h e  p a i r  is set aside 
when they are supposed t o  b e  l inearly dependent. If t h e  p a i r  zf and zj is 
such a p a i r  an6 t h e  modeler wants t o  exclude zj, then t h e  j - th  row and 



column of A will be rewritten as 

aji = 3  and ajk = 0 ,  k # i  , k # j 

a i j = 2  and a k j = O , k # i , k # j  ' 

where 3 is t rea ted  the same as 1 o r  2 in the  digraph modeling, but i t  is 
t reated as 0 in the  linear modeling. Thus, x j  will be explained only by xi 
and x j  will not be an  explanatory variable f o r  x i .  

The underlying idea is tha t  if w e  put aji = 2 ,  then t h e r e  will be a high 
possibility tha t  xi is also explained only by x j  and this is not interesting. If 
t he re  a r e  more than two variables tha t  a r e  highly correlated,  then the  
modeler can remove some of them in the  s a m e  manner. 

If t h e r e  a r e  some known relationships between variables in terms of 
l inear equations, then the  modeler can en ter  the facts  into the  computer. 
This information will save time in the second stage dialogue. 

5. Data Screening 

If at some s tep  the  modeler wants t o  check distributions o r  outliers of 
the  data  f o r  some variables, the  computer assists the  modeler by showing 
the list of candidates of outliers, histograms o r  scattergrams. The modeler 
can designate t he  case numbers which he does not want t o  use in modeling. 

m e r  the first s tage dialogue, the set  of var iab les  S a n d  the d a t a  
matr ix  X a re  f ized a n d  w i l l  be used  in  the next  stage as they  are .  The 
adjacency ma t r ix  A wh ich  contains  the modeling knowledge obtained u p  
to t h i s  stage i s  alone open for m r t h e r  modification. Figure 2 shows a 
visual description of the  f i r s t  s tage dialogue. 

3.2. The Second Stage Dialogue 
The purpose of this s tage is to  elaborate the  cause-effect relations 

which are summarized in the  adjacency matrix. A ser ies  of reciprocal  con- 
siderations and calculations by the  modeler and the  computer will continue 
until at least one of them recognizes tha t  the fu r the r  repetition would not 
improve the  model. The information exchange process is the  following: 

1.  Selection of Regression Method 
The modeler should choose one of the  options of regression methods 

with self-selection of explanatory variables, which will be  used in the  next 
step. The options of these include: 

- the forward selection procedure, 
- the backward elimination procedure, 
- the all possible selection procedure, and 
- the  group method of data  handling. 

The last  one is most recommended in ou r  method because we have in mind the  
rea l  world tha t  can hardly provide the data  with which the  traditional, sta- 
tistical inferences work well. If this method is selected, the  computer asks 
the  modeler about the  data  division into the  training and testing sets.  We 
use a modified o r  simplified version of this method, i.e., the  par t i a l  
descript ions will be written in a linear form (linear in variables). This 
point will be discussed in Section 5.1. 
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2. E s t i m a t i o n  of L i n e a r  R e l a t i o n s h i p s  

Firs t  t h e  computer p r e p a r e s  a n  n x ( n  +1) vacant  a r r a y  C: 

For  t h e  convenience w e  write c o  f o r  t h e  f i r s t  column v e c t o r  of and C f o r  
t h e  remaining n x n matrix,  i.e., 

The a r r a y  C i s  p r e p a r e d  f o r  t h e  coemcien t  matrix of a set of l inear  equa- 
tions which t h e  computer will s e a r c h  from now on: 

x = c o + C x  with cii = 0 ,  a l l  i , 

where x denotes t h e  n-column vec to r  whose components correspond t o  t h e  
names of var iables  x l,x2 . . . . . x, . 

By t h e  se lected automatic modeling method, t h e  computer will est imate 
t h e  row vec to rs  of one by one r e f e r r i n g  t o  t h e  matrix A (which can  b e  
conver ted t o  a t ransi t ive  matrix be fore  going into modeling) in t h e  following 
way: 

- Suppose now a t u r n  i s  i - t h  row vec to r  of C. 
- The computer r e f e r s  t h e  i - t h  column of t h e  adjacency matrix A ,  and 
defines two subsets  of S: 

The var iables  x j  in Sf are always chosen as e x p l a n a t o r y  v a r i a b l e s  f o r  xi. 
and  those  in S: are candidates of explanatory var iables  f o r  xi (the 
e x p l a i n e d  variable).  Let  us call  Sf t h e  set of core  v a r i a b l e s  and St t h e  set 
of o p t i o n a l  v a r i a b t e s .  

- By t h e  specified method t h e  computer will find t h e  best f i t  equation ( the  
meaning of t h e  bes t  f i t  will b e  explained in Section 5): 

where G o ,  Gj  are estimated coefficients. 

- The computer substi tutes:  
* 

C i o = C i o  
[cij if xj  E st u S: - - (0 otherwise 

Thus t h e  computer will have found a l inear  model: 



3. Extraction ofskeleton 
A linear manifold indicates a relationship between variables,  but i t  

does not tell about t he  cause-effect relationships. But, h e r e  w e  impose on 
the  computer a heuristic assumption: I n  the linear model - 

MC = (S ,C)  o r  x = co + Cx 

the explanatory variables are regarded as the causal variables to the 
explained variables. 

Following this  assumption the  computer modifies the  adjacency matrix 
A = (a i j )  re fe r r ing  t o  C = ( c i j )  as follows: Let us denote t he  new i ,  j entry 
of A by a; and the  old i , j entry by a t j .  

I 0 if cji = 0 and xi E S? 
a; = a!j otherwise 

Thus some of 1's in A will tu rn  into 0's. The corresponding relation B is 
then defined by 

( x i , x j )  E B  i fandonly  if aij Z 1  . 

Let us introduce a digraph D defined by 

where the  elements of S are identified as vertices and those of B arcs. The 
ver t ices  a r e  represented by points and t h e r e  i s  a directed line heading 
from xi t o  x j  if and only if (xi , x j )  is in B.  Let B denote the  transit ive clo- 
s u r e  of B ,  i.e., 

(a) B contains B ,  
(b) B  is transit ive,  and 

(c) B is t he  minimal relation satisfying (a) and (b). 

Suppose the  variable set S can be  divided into m equivalence classes 
Ei,E2 , . . . , Em. Here an  Ep is  defined by - 

xi , x j  E Ep if and only if (xi ,xj)  , ( x j  , X i  ) E B . 
By the  graph-theoretic terminology an  equivalence class is  called a 

strong component o r  a cycle set of t he  digraph D. For details see Section 
4.1. Then w e  can define new sets:  - 

S = IEp ; p = 1 , 2 , . .  . ,  m {  , 

B' = ~ ( E ~ , E ~ )  : some ( x i . z j )  E B .  xi E E ~  , xj E E ~ I  
and the  corresponding digraph is  called t he  condensation digraph: 

D* = (S,B*) . 
Finally w e  introduce the  skeleton digraph 5 which i s  a minimum-arc subdi- 
graph of D, f o r  which removal of any arc would destroy reachability 
present  in t he  relation. Actually t he  above process  is ca r r ied  out by some 
matrix operations in the  computer. The details will be  described in Section 
4.2. 



After a l l ,  t h e  computer will have found t h e  digraph model: 

MD = (S ,E)  . 

This i s  a visual version of t h e  l inear  model MC. The digraph model i s  
uniquely led from t h e  l inear  model by t h e  heur is t ic  assumption, but  t h e  
r e v e r s e  i s  not t r u e .  

4 .  Information Exchange 
Now t h e  computer h a s  a l inear  model MC and t h e  corresponding digraph 

model MD. This s t e p  i s  devoted t o  t h e  learning exper ience  f o r  both t h e  
modeler and t h e  computer. Showing i t s  digraph model MD, t h e  computer 
a s k s  t h e  modeler modification of t h e  re la t ion p resen t  in t h e  l inea r  model. 
The allowable amendments t o  t h e  digraph model and t h e i r  reflection on t h e  
adjacency and reachabi l i ty  matrices are summarized as follows; if a n  amend- 
ment a f f e c t s  t h e  skeleton matrix,  t h e  digraph model is immediately modified. 

(1) Format Amendments t o  Hierarchy 

To facil i tate in te rp re ta t ion  of t h e  relat ion,  t h e  modeler can  amend t h e  
format of h ie ra rchy  t h a t  a f fec t s  only t h e  skeleton matrix. Such amendments 
include replacements of ve r t i ces ,  t h e  contraction of ve r t i ces  in di f ferent  
levels and t h e  pooling of ve r t i ces  in t h e  same level. The ver t i ces  con- 
t r a c t e d  o r  pooled are drawn in di f ferent  co lo rs  t o  distinguish them from t h e  
s t rong components. 

(2) Substantial Amendments t o  Cycles 

The modeler c a n  look at t h e  adjacency s t r u c t u r e  of each  cycle (strong 
component) and modify i t  by adding o r  removing arcs. Addition of a n  arc t o  
a digraph map of a cycle  h a s  no e f fec t  on t h e  reachabi l i ty  but  corresponds 
t o  replacing a 0 in t h e  adjacency matrix with a 1. On t h e  o t h e r  hand, remo- 
val of a n  arc causes  t h e  r e v e r s e  operat ion on t h e  adjacency matrix. When 
a n  arc is removed, t h e  computer finds t h e  t ransi t ive  c losure  of t h e  revised 
adjacency matrix and rewr i t e  t h e  reachabil i ty matrix. But a n  arc removal 
from a cycle  sometimes p r e s e r v e s  t h e  universal  reachabil i ty.  If t h e  cycle  
clipping i s  des i red,  a cycle  can  b e  divided into two s t rong  components which 
can  b e  e i t h e r  in t h e  same level o r  in d i f ferent  levels. When a cycle  is 
clipped by th is  manner, t h e  corresponding interconnecting e n t r i e s  between 
divided s t rong  components in t h e  reachabil i ty matrix,  and  a l so  those  of t h e  
adjacency matrix filled with l 's, will b e  replaced by 0's. The modeler 
should pay ca re fu l  a t tent ion t o  t h e  cycles forming t h e  ver tex  bas i s .  H e r e  
t h e  v e r t e x  basis of a digraph is  t h e  set of ve r t i ces  which consists  of all ver -  
t ices  with no incoming arcs. The var iables  in t h e  ve r tex  basis should b e  
measurable with relat ively small measurement e r r o r s  and should b e  
appropr ia te  as t h e  control  variables.  

(3) Substantial  Amendments t o  Hierarchy 

Addition of a new arc t o  t h e  h ie ra rchy  causes  t h e  same change in t h e  
adjacency and reachabi l i ty  matr ices  in such a way t h a t  all 0 ' s  between two 
s t rong components are rep laced  by 1's. But t h e  latter matrix may not be  
reachable ;  hence t h e  computer finds t h e  t ransi t ive  c losure  of t h e  revised 
matrix. Removal of a n  arc from t h e  h i e r a r c h y  often a f fec t s  t h e  reachabil-  
ity. If a n  arc is  removed, t h e  adjacency matrix i s  f i r s t  modified by replac-  
ing a l l  1's between two s t rong  components with 0's. Then t h e  computer finds 



the  transit ive closure of the  revised adjacency matrix and s e e  i t  thereaf te r  
as the transit ive matrix. If an  arc removal causes the  violence of the  total  
reachability necessary in the  system, the modeler should compensate i t  by 
adding appropr ia te  arcs. 

Even the  expe r t  can hardly tell whether t he  obtained linear equations 
are appropriate  o r  not because of the  difficulties of checking validity of 
the  hypothesis testing and giving meaning t o  regression coefficients. 
Therefore t he  l inear equations are not shown here.  But t he  d i rec t  modifica- 
tion of t he  adjacency s t ruc tu re  between cycles is  sometimes required. W e  
p r epa re  another  program f o r  this purpose. 

(4) Amendments t o  Adjacency S t ruc ture  

The computer exhibits t he  columns of t he  adajcency matrix A one by 
one which may present  t he  l inear relationship of variables. The modeler 
can change 0's t o  1's in each column, and vice versa.  Moreover he can 
write 2 's  at some en t r ies  if t he  indicated variables should always be  neces- 
sa ry  as the  explanatory variables,  i.e., t he  c o r e  variables. If any change is  
done, t he  reachabili ty matrix is  recalculated and the  revised digraph is  
shown. 

the  modeler does not  change a n y  re la t ionsh ips ,  t h e n  the  modeling 
process w i l l  proceed to the  t h i r d  s tage dialogue.  Otherwise,  the  second 
s tage dialogue w i l l  be repeated a g a i n .  In t h i s  case  the  modeler c a n  
in form the computer  the  Linear re la t ionsh ips  w i t h  w h i c h  h e  is a l r e a d y  
sa t i s f i ed  for s a v i n g  t ime.  He c a n  s u b s t i t u t e  the  reachabi l i t y  m a t r i x  f i r  
the  ad jacency  m a t r i x  to f ind  m r t h e r  poss ib i l i t i e s  in the l i n e a r  model- 
i n g .  Figure 3 sketches this  s tage of dialogue. 

3.3. T h e  Third  Stage D i a l o g u e  
This s tage consists of t w o  modes: 

- model elaboration, and 
- model simplification. 

The modeler can move from one mode t o  another  at any time he  wants. 

1. Model Elaborat ion 

If t he  modeler considers tha t  he  has  enough data  and tha t  t he i r  statis- 
t ics  are meaningful, then he can elaborate  t he  computer model by the  clas- 
sical regression analysis. Even if he  has  used t h e  group method of data  
handling at t he  second stage, i t  i s  recommended in Ivakhnenko et al. (1979) 
tha t  t he  coefficients of all t he  models upon comparison and selection can be  
reestimated using the  minimum mean square error method applied t o  t he  
whole data  table. In this mode the  modeler must designate an  explained 
variable,  then the  computer will reestimate t he  coefficients of t he  l inear 
equation and provide t he  following statistics: 

- standard e r r o r s  of estimated coefficients, 
- t-ratios of estimated coefficients, 
- standard deviation of residuals, 
- F-ratio against a null hypothesis, and 
- controlled determination coefficient. 

All t he  above statist ical  terminologies will be  explained in Section 5.2. 
Moreover, the  computer supplies t he  routines: 



Figure 3: The second s tage dialogue 
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- residual plots, 
- multicolliearity checking, and 
- prediction, if a new data  set is available. 

The modeler can elaborate  t he  computer model by adding o r  removing some 
explanatory variables re fe r r ing  to these statistics. If the  modeler wants 
the  data  preprocessing, he  can call the subroutines in t he  f i r s t  stage: 

- transformation of variables, and 
- data  screening. 

2. Model Simplification 

Because t he  variables in an equivalence class may be  connected by a 
l inear relationship, i t  i s  desirable t o  choose proxy variables for model sim- 
plification and elaboration a s  wel l .  The modeler can ex t r ac t  some proxy 
variables in each equivalence class  to simplify the  computer model in the  
following way. 

(1) If two o r  more explanatory variables in a l inear equation come 
f r o m  the  same equivalence class, then the  modeler can examine model sim- 
plification by choosing one o r  a f e w  proxy variables and removing the  rest. 
The computer will reestimate the  coefficients of the  equation and calculate 
some statist ics mentioned in t he  model elaboration mode. The modeler can 
ask t he  computer t o  choose o the r  variables a s  the  proxy variables repeat-  
edly, and if he  is  satisfied with one of the  results,  h e  will obtain a simplified 
model. 

(2) If the  explanatory variables in a l inear equation come from many 
equivalence classes, then the  modeler can examine fu r the r  simplification s o  
tha t  t he  explanatory variables will come from a small number of equivalence 
classes, a s  long a s  t he  simplification does not destroy the  reachability 
present  in the  model developed a t  the  second stage. 

Figure 4 shows the  flow c h a r t  of the  third s tage dialogue. The modeler 
can  r e t u r n  to the f i r s t  stage dialogue he w a n t s  to reconstruct the 
model b y  us ing  a l ternat ive  tools equipped in  the computer.  

4. GEOMXTRIC PHASE OF YODELING 
Having in mind tha t  o u r  final goal is t o  ex t r ac t  numerical propert ies  of 

a complex system, w e  place t he  emphasis on the  quantitative aspects  of t he  
relationships. One important thing involved in developing geometric models 
is the  learning experience about the  potential variables and the i r  interac- 
tions. Lack of understanding of the  s t ruc ture  of t he  underlying systems 
often leads us t o - the  wrong conclusion. 

Let us recal l  the  notations: S denotes t he  set of descriptive system 
variables: 

S = ~ x 1 , x 2  ,....., X, j 

and B a cause-effect relation of these variables: 

B = (xi ,zj) ; zi ,zj E S and zi affects zj j . 
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4.1. Graph Theoretic Concepts 
The foundation of s t r u c t u r a l  modeling is  provided by t h e  g raph  theory  

which h a s  been impressively developed by Hara ry  et a l .  (1965) and Rober t s  
(1976): t h e  l a t t e r  i s  t h e  original  t e x t  of t h e  following description.  

Define a d i rec ted  g r a p h  o r  d igraph D as a p a i r  ( S , B ) ,  where S is t h e  
set of elements and B E S X S i s  a subset  of o r d e r e d  p a i r s  of elements. W e  
use t h e  notation S ( D )  and B ( D )  f o r  t h e  v e r t e x  set and t h e  a r c  s e t  of D,  
respectively.  The ver t i ces  are represen ted  by points and t h e r e  is  a 
a i rec ted  line leaaing from zi t o  z j  if and only if (zi , z j )  i s  in B .  If t h e r e  is 
a n  a r c  from v e r t e x  zi t o  ve r tex  z j ,  we shall  say  t h a t  zi i s  adjacent  t o  x j .  
W e  say  x j  i s  reachable from zi if t h e r e  is  a p a t h  from xi t o  z j  . A p a t h  i s  a 
sequence 

where t  r 0 , t y l , y 2 ,  . . . , y t  i s  a subset  of S and e a c h  ( y i  , y i  i s  in B .  
A pa th  is  called closed if yt +l = y l .  If t h e  path  is closed and t h e  v e r t i c e s  
y 1 , y 2 ,  . . . , y t  are dist inct ,  then t h e  pa th  is  called a cycle .  An a r c  from a 
ver tex  t o  itself is called a loop. 

A digraph D i s  s t r o n g l y  connected o r  s t rong  if f o r  e v e r y  p a i r  of ve r -  
t i ces  zi and z,, zi i s  r eachab le  from z j  and z j  i s  r eachab le  from z i .  A 
s u b d i g r a p h  of D i s  a digraph whose ver tex  set is  a subset  of S ( D )  and 
whose a r c  set is a subset  of B ( D ) .  A s t rong  component o r  a cycle  set of D 
i s  a maximal strongly connected subdigraph, where maximal means t h a t  if we 
add more ver t i ces ,  t h e  result ing generated subdigraph is not strongly con- 
nected.  The ver t i ces  in a s t rong  component form a n  equivalence c lass ,  i.e., 
they are connected with each  o t h e r  by a reflexive,  t ransi t ive  and symmetric 
relat ion.  Note t h a t  a single v e r t e x  may consti tute a s t rong  component, and 
each ver tex  is in one and only one s t rong component. 

W e  can now define a new digraph D ' ,  t h e  condensa t ion  d i g r a p h  of D 
as follows. Let E 1 , E 2 ,  . . . , Em b e  t h e  s t rong components o r  p roxy  ver-  
t ices.  Then 

and w e  draw a n  arc from Ep t o  Eq if and only if p + q and f o r  some ver t i ces  
xi E Ep and z j  E E q .  t h e r e  is a n  arc from zi t o  z j  in D. 

A collection V of v e r t i c e s  of a digraph D is called a v e r t e z  b a s i s  of D 
if every  ver tex  not in V is reachab le  from some v e r t e x  in V and V is minimal. 
Here ,  minimal means t h a t  no p r o p e r  subset  of V can  r e a c h  a l l  ver t ices .  The 
concept of t h e  v e r t e x  basis i s  important from t h e  control-theoretic view 
point and some theorems have been established: 

(1) The condensa t ion  d i g r a p h  D' of a d i g r a p h  D is  acycl ic ,  i .e . ,  i t  
has n o  cycles .  

( 2 )  An acyc l i c  d i g r a p h  has a u n i q u e  v e r t e z  bas i s ,  cons i s t ing  of a l l  
ver t i ces  w i t h  n o  incoming a r c s .  

( 3 )  Let V* be the  u n i q u e  v e r t e z  b a s i s  of D * .  Then the v e r t e z  b a s i s  of 
D a r e  those s e t s  V c o n s i s t i n g  of one v e r t e z  from each s t rong  component of 
D w h i c h  is in v*. 



( 4 )  Every  two ver tez  bases of a d ig raph  have the same number of 
vert ices .  

A skeleton d ig raph  5 is a minimum-arc subdigraph of D*, in which 
each strong component o r  a cycle in D has been replaced with a proxy ver- 
tex,  and from which removal of any a r c  would destroy reachability present  
in t he  relation. A skeleton digraph gives insight into the  hierarchical  
s t ruc ture  of t he  underlying system. 

4.2. Structural Modeling 
System s t ruc tures  in t e r m s  of t he  graph-theoretic terminologies can be  

conveniently summarized using suitable binary matrices. The process of 
s t ructural  modeling is  a ser ies  of s teps  of matrix operations; a brief 
description is presented below. 

Suppose D = ( S , B )  is a digraph. The adjacency matrix A associated 
with D i s  the matrix ( a i j )  defined by 

- (1 if (xi  exj)  t B 
aij - 0 otherwise 

One of t he  important propert ies  of the  adjacency matrix is: 

UD i s  a d ig raph  w i t h  adjacency matrix  A = (a i j ) ,  then  i , j e n t r y  of 
A t  gives the number gl paths  41 Length t in D which  Lead from xi to z j .  

The reachabi l i ty  matr ix ,  o r  the  t rans i t i v e  closure R = ( r i j )  of A is  
the  matrix defined by 

1 if z j  i s  reachable  from xi 

Note tha t  each ver tex is reachable  from itself, since xi alone is  a path,  s o  
rii = 1, all  i .  The reachability matrix can be  expressed in t e r m s  of t he  
adjacency matrix: 

where all  t he  operations are Boolean. It  is  obvious from the  definition tha t  
t he  reachability matrix descr ibes  reflexive, t rans i t i v e  relation, i.e., a 
par t ia l  ordering relat ion.  

Many authors  have developed partitioning and tearing methods on the  
reachability matrix in o r d e r  t o  construct an  interpret ive s t ruc tura l  model. 
Efficient procedures  are found in Warfield (1976) and Sage (1977).  A f t e r  
several  parti t ions and rearrangements of the  reachability matrix, one can 
obtain a s tandard  o r  canonicaL form which is  a lower block triangular 
matrix. This matrix can be  converted into a condensation matrix in which 
the  rows and columns of all t he  s a m e  levels, i.e., t he  cycle sets o r  the  
strong components in D are deleted except one, tha t  one being identified as 
the  proxy element. 

As  far as the  extraction of strong components is  concerned, t he  follow- 
ing theorem is  useful. 



Suppose D i s  a d i g r a p h  w i t h  the reachabi l i t y  m a t r i x  R = ( r i j ) .  
Then: 

(1) The s t rong  component c o n t a i n i n g  a ver tex  xi is g i v e n  b y  the e n t r i e s  
of 1 in  the i - t h  row (or column) of R X R ~ ,  where  R T  is the t ranspose  of R 
a n d  the product  i s  the  elementwise product ,  i .e . .  R X R~ = ( r i j  X rji  ). 

( 2 )  The number of v e r t i c e s  in the s t rong  component c o n t a i n i n g  xi is the 
i - t h  diagonal  e n t r y  of R 2 .  

The skeleton m a t r i x  ( s i j )  is  a condensation matrix in which all  diago- 
nal entr ies  are 0, and the  entr ies  of 1 are changed into 0 until any addi- 
tional en t ry  would destroy reachability present  in the  condensation matrix. 
An efficient algorithm t o  find the  skeleton matrix is  presented in Warfield 
(1975). The relation modeled is asymmetr ic ,  i.e., an entry sij  = 1 implies 
sji = 0, and no cycle is  found in the  s t ructure .  The s t ruc tura l  model of such 
a t r a n s i t i v e ,  asymmetr ic  relation is  called a h i e r a r c h y .  

These model exchange isomorphisms descr ibe t he  process  by which 
primitive (mental) models are ultimately transformed into clearly articu- 
lated interpret ive s t ruc tura l  models. One of the  grea tes t  advantages of this 
process  is  tha t  i t  gives t he  modeler insight into t h e  s t ruc tu re  itself. A s  
insight i s  gained, t he  modeler may want t o  co r r ec t  ea r l i e r  aspects  of t he  
model. 

5. ALGEBRAIC PHASE OF MODELING 
Our method requires  t he  program packages f o r  t he  procedures  of 

self-selection of explanatory variables a t  t h e  second stage. The classical 
regression analysis is also used at t he  third s tage f o r  model simplification 
and elaboration. 

5.1. Self-Organization Method 
If t he  modeler has  enough data ,  the  following self-selection procedures 

are recommended: 

- t he  forward selection procedure,  
- t he  backward elimination procedure,  o r  
- t h e  all possible selection procedure.  

The selection cr i ter ion (goodness of fi t)  used in these procedures  is  usually 
t he  controlled determination coefficient . A drawback of these procedures  
i s  that  they need a fairly long time f o r  calculation when t h e  number of can- 
didates of explanatory variables is large.  If t he  modeler does not have 
enough data ,  o r  h e  wants a quick search  f o r  a linear model at t he  second 
stage, then h e  can choose a linear version of 

- the  group method of data  handling. 

W e  give below a brief summary of this method. 

A s  mentioned in t he  introduction we are against some aspects  of this 
method: "For t he  discovery of laws i t  i s  not necessary f o r  t he  human opera- 
t o r  t o  specify t he  set of explanatory variables, t h e  input and output vari- 
ables, t he  control variables,  and the  disturbances, etc. All of this is  done 
by the  computer (Ivakhnenko et al .  1979)." I t  is a matter of common 
knowledge tha t  even apparently i r re levant  variables could be 



approximately embedded in a linear (or nonlinear) equation. The reason 
why w e  use a p a r t  of this method is that  w e  are supposing the  objective sys- 
tems a s  those which could hardly provide adequate da ta  with which 
mathematics o r  statist ics would work well t o  develop fantastic models 
acceptable t o  every person. 

Ivakhnenko's idea is t he  following: 

- If the data  are not too variable,  the computer itself can find the  best  
unique model f o r  prediction o r  the  best one exhibiting cause-effect rela- 
tionships. 

- By application of t he  self-organization method, t h e  computer should b e  
able t o  objectively discover the  natural law tha t  exists in t he  object  under 
study. 

A prototype of the  group method of da ta  handling can be  described a s  
follows: 

- The model t o  b e  found is  t h e  complete description, where the  explained 
variable is a nonlinear function of all  the  explanatory variables and the i r  
time-delayed variables. This complete description is found by several  
layers  of approximation. 

- A t  the  f i r s t  layer  of selection the  complete description is  substituted by 
some part ial  descript ions which are nonlinear functions of every  possible 
combinations of pa i r s  of t h e  explanatory variables and the i r  time-delayed 
variables. The values of t he  par t ia l  description coefficients (goodness of 
fi t)  can b e  found by t h e  mean squares  e r r o r  method. Then some of t he  par-  
t ial  descriptions are chosen such tha t  t he  e r r o r s  of selected ones are less 
than a specified threshold value. 

- A t  t he  second layer  of selection, the selected par t ia l  descriptions at t he  
f i r s t  l ayer  play the  ro les  of explanatory variables. The estimation of coef- 
ficients and the  choice of some par t ia l  descriptions (the number should b e  
less than tha t  of t he  f i r s t  layer)  are repeated again. 

- The number of selection layers  increases as long as t h e  lower value of t he  
c r i te r ia  is  decreasing. Thus t he  process  is continuously repeated with t he  
imposition of e v e r  more rigid thresholds s o  tha t  finally a unique model is  
selected. When the model complexity gradually increases,  t he  selection cr i -  
ter ion passes through a minimum, and thus obtains t h e  model of optimal com- 
plexity. 

- The above process  is  t he  mathematical counterpar t  of the  process  used by 
a gardener  in selectively raising various species f o r  t he  purpose of obtain- 
ing a hybrid type tha t  has  desired propert ies .  

A variety of heuristic c r i t e r i a  and algorithms are proposed by Iva- 
khnenko and his followers. The modeler must specify a cr i ter ion,  a n  algo- 
rithm, some types of par t ia l  descriptions, e tc .  They are summarized as fol- 
lows (we omit t he  explanation of terminologies). 

- The opera tor  (they call  t he  modeler just as an opera tor )  must convey to  
t he  computer a cr i ter ion of model selection according t o  his purpose, f o r  
example, 



- t he  regularity cr i ter ion,  
- t he  minimum-of-bias criterion, 
- t he  combined c r i te r ia ,  and 
- t he  balance-of-variance criterion. 

- The opera tor  must reduce t he  amount of data used in 

- model development (training set) ,  

where coefficients are estimated by t h e  mean squares  error method, and 
use the  rest in 

- model verification (testing set) ,  

i.e., selection of t he  par t ia l  descriptions. 

- The opera tor  must specify t h e  l ist  of feasible re fe rence  functions, such as 

- polynomiales, 
- rational fractions,  
- harmonic se r ies ,  etc. 

- The opera tor  must specify the  simulation environment, t ha t  is, a list of 
possible explanatory variables and the i r  time-delayed variables. 

- The opera tor  must determine an  algorithm f o r  model sifting, fo r  example, 

- t he  multilayer threshold algorithm, 
- t h e  combinatorial algorithm, o r  
- t he  adaptive learning network algorithm. 

According to  Ibakhnenko et al. (19?9), t he re  already exis t  about 100 algo- 
rithms. This fact itself tells how heuristic this method is. 

In our  method w e  use (heuristically) 

- t he  regularity cr i ter ion,  
- t he  multilayer threshold algorithm 

which w e  have already described as a prototype of t h e  group method of data 
handling. W e  r e s t r i c t  t he  par t ia l  descriptions t o  l inear equations (linear in 
variables). I t  should be noted tha t  in this paper  a linear model means t ha t  
the unknown parameters  in each equation are embedded linearly. Because 
t he  modeler can transform variables as mentioned in Section 3.1, he  can 
construct nonlinear models (nonlinear in the  original variables). The rea- 
son of o u r  constraint on t h e  par t ia l  description tha t  they should be  l inear 
in variables i s  t ha t  if w e  permit nonlinear equations f o r  t he  par t ia l  descrip- 
tions, by application of t he  self-organization method t h e  computer will often 
find a nonlinear equation with very high degree as the  best  model which 
cannot be  interpreted at all. 

5.2. Class ica l  Procedures 
Suppose now xi is  chosen f o r  an  explained variable,  then from the  

adjacency matrix A = (aij)  w e  have 

which corresponds t o  t he  union of c o r e  and optimal sets of explanatory 
variables fo r  xi. Let us introduce an  N-column vector: 



Y = ( Y ~ , Y ~ .  . . . . where y j  = x v  , j = l . Z . .  . . . N , 

and the relabeled data  matrix corresponding t o  Si : 

with x  0k = 1, all  k , where p = I Si 1 , the number of elements in S f .  In the 
classical regression analysis the disturbances in data  a r e  usually taken into 
account only f o r  the explained variable. We introduce the noise of the 
explained variable as an N-column vector: 

with assumptions: 

E ( u )  = O ,  V a r  (u )  = E ( u u ~ )  = $ I ,  ui - N ( O , $ ) ,  4: unknown , 

where E (  - ) denotes the  expectation and N ( .  , - ) the  normal distribution. We 
write the coefficients t o  be estimated as a @ +l)-column vector: 

8 = ( B 0 . B 1 8  - p P l T  . 
By applying the  least squares method we search  the best approximation 

of the  unknown vector  in the  s e t  of assumed linear equations: 

The least  square estimator b of 0 is  given by 

b = (ZTZ)-I  Z T y  , 

if ZTZ is  nonsingular. The estimator of y and the residual a r e  given by 

respectively. The unbiased estimator of the  variance u2 is  given by 
T 

s2 = e e  - Y  - T y  -b TzTu 
N - p  -1 N - p  -1 t 

where the number N - p  - 1 is called the  degrees offreedom. 

The estimator b is independent of s2  and 
2 T b - N ( @ ,  u  (Z z)-l) . 

This means tha t  b is unbiased, and i t  is  well known tha t  the  least square esti- 
mator has the minimum variance in all unbiased estimators which a r e  l inear 
with respect  t o  measurements. Given a new measurement vector: 

the prediction of the  explained variable is given by 

with variance: 

v a r ( y ^ z ) = ( z T ( ~ T ~ ) - l z + l ) $  . 
The standard e r r o r  s.e. (gz ) of 5, is  the  square root  of var  (5, ) where c? 
is substituted by s2 .  The confidence Limit with significance level a f o r  g, 
is  given by 



where t  (p ,q  ) is  t he  (1  --q ) percentile point of t he  t  -distribution with 
degrees  of freedom p . 

The t  -ratio o r  t  -statistic is  defined by 

t =  
b* -B: 

, where c y :  i .  j ent ry  of (ZTZ)" . 
s G  

If t he  null hypothesis Ho(& =@:) is t rue ,  then this statist ic follows the  
student's t  -distribution with degrees  of freedom N  p -1. The statist ic 
s 6 i s  an  unbiased estimator of d v a r  (bi) and called t he  s t a n d a r d  
e r r o r  of bi. In case tha t  @: = 0 ,  the  confidence limit with significance level 
a is  given by 

On the  o the r  hand the  F-ra t io  is used f o r  another  type of hypothesis 
testing: 

- all o r  some of t he  regression coefficients are zeros,  

- two o r  more regression coefficients are identical. 

The original model is  called the  full model (FM) and a model in which some 
coefficients are specified is  called a reduced model (RM). Let Gi , G i  be  
t he  estimates by FM, RM, respectively. S u m s  of s q u a r e s  d u e  to e r r o r  are 
defined by 

respectively. Assume tha t  t he  RM contains k parameters  t o  be  estimated. 
Then F-rat io  is  defined by 

= JSSE(RM) -SSE(FM)] / (p + l  -k ) 
SSE (FM) / (N p -1) 

which follows the  F-distribution with degrees  of freedom (p +1-k , N p  -1). 
If t he  value of F-rat io  is  less  than a given percentile point of F-distribution 
with degrees  of freedom (p +1-k , N p  -I), then t h e  null hypothesis will be  
re jected.  

I t  should be  noted tha t  t he  hypothesis testing is  meaningful only when 
the  assumptions on the  e r r o r  t e r m  is valid. To check this,  t he  modeler 
should look a t  t h e  residual plots. 

The coemcien t  of m u l t i p l e  corre la t ion  R is  the  sample correlation 
coefficient between y and <, and often used fo r  t he  goodness of f i t  of t he  
regression equation. The square of R i s  called t h e  d e t e r m i n a t i o n  c o e m -  
c ien t  given by (af ter  a li t t le manipulation) 

- - 

~ ~ = 1 -  i , where y = - 1 x y i  . 
C(Y*  -a2 
i 

N i 



This statist ic is the  ra t io  of t he  generated variation t o  t he  total  variation. 
In o ther  words, R2 identifies a good regression, in the  sense of the  
estimated function contributing most t o  t he  total  variation of t he  explained 
variable. If w e  add a fu r the r  explanatory variable t o  an  equation, R2 
increases in r e tu rn  f o r  t he  decrease of degrees  of freedom. The variation 
in residuals will be  smaller, and the  confidence interval will be  wider. The 
most often used cr i ter ion fo r  model selection is then the  controlled deter- 
mina t ion  coeppicient defined by 

This statist ic is useful in prediction application, where w e  want a set of 
explanatory variables which minimizes residual variance. 

We have developed a program package f o r  t h e  modeling support sys- 
tem, which runs  on a personal microcomputer. The system s t ruc tu re  is 
described in Figure 5. The list of subprograms in t he  program package, 
with functions and hierarchical  levels in t he  program s t ruc ture ,  is  shown in 
Table 1, and da ta  files fo r  modeling information t o  be  prepared  o r  gen- 
e ra ted  are summarized in Table 2. 

7. CONCLUDKhTG REMARKS 
The two well known methods t o  infer causal relationships from non- 

empirical data  are Blalock's causal inference (Blalock, 1972) and the  path 
analysis (for instance, Kenny. 1979). The former is used f o r  verification of 
hypothetic causal models, and the  latter f o r  analysis of s t rengths  of causal 
relationships in assumed models. Both fall under t he  category of 
correlation-regression analysis, and could not infer causal relationships 
completely. To express  non-symmetric causal relationships, a set of l inear 
equations which w e  described in Section 3.2 is  often adopted. If t he  rela- 
tionships are asymmetric and acyclic (the so-called recursive system), t he  
treatment of such a system is  relatively easy. Otherwise, some of the  
regression coefficients should be  specified before solving the  problem (see, 
f o r  instance, Johnson, 1972). If t he  whole variables in t he  system can be  
successfully divided into output (endogenous) and input (exogenous) vari- 
ables, one can use a model written in a set of l inear simultaneous equations. 
The so-called simultaneous equation estimation has  been employed in 
econometrics fo r  quite some time now. This method also requires  a pr ior i  
model specification, and an  e r r o r  in model formulation can easily influence 
t he  validity of t he  total  model. 

Most of t h e  theoretical approaches in modeling analysis in 
econometrics, ecology and sociology seem to  en t e r  too many mathematical 
constraints in r e tu rn  f o r  removing human knowledge. The proposed method 
in this paper  is  not mathematics-oriented but application-oriented. The 
interactive modeling support  system is a tool f o r  enlightening both the  com- 
puter  and the  modeler about t he  underlying complex system. The main point 
is  'low effectively ex t r ac t  reali ty from human mental models with computer 
assistance. Even Kalman (1983) states tha t  "in t he  modeling context preju- 
dice may sometimes be  good and in fac t  most valuable, such as a brilliant 



TaSie 1: The program package of the  interactive modeling support system 

code stage level function 

Z le  control  (open, create o r  e r a s e )  
t h e  master menu fo r  s tage  menus 
t h e  menu f o r  t he  f i r s t  s tage  dialogue 
initialization of t h e  modeling 
t h e  menu f o r  measurement da t a  input 
filing t h e  original measurement da t a  
appending da t a  of new variables 
appending up-dated measurement da t a  
cor rec t ion  of mist yped da t a  
t h e  menu fo r  t h e  relat ion input 
filing t h e  relat ion one-by-one 
filing t h e  relat ion by t rans i t ive  embedding 
modification of t h e  cause-effect relat ion 
calculation of t h e  t rans i t ive  closure 
transformations of variables 
digraph models of t h e  initial relat ion 
checking t h e  relation by corre la t ions  
outl ier  checking o r  elimination 
calculation of basic s ta t i s t ics  
t h e  menu f o r  t h e  second s t age  dialogue 
t h e  menu fo r  t h e  regression methods 
t h e  forward selection procedure  
t h e  backward elimination procedure  
t h e  al l  possible selection procedure  
t h e  group method of da t a  handling 
refinement of regression coefficients 
digraph modeling 
digraph models of t h e  revised relat ion 
amendments of t h e  digraph model 
t h e  menu f o r  t h e  th i rd  s tage  dialogue 
model simplification 
t h e  menu f o r  model elaboration 
hypothesis test ing 
residual  plots 
multicollinearity checking 
estimation by t h e  model 
information of regression resul t s  
prediction based on new da ta  
digraph modeling 
t h e  menu fo r  modeling information 
t h e  initial version of t h e  relat ion 
t h e  original measurement da t a  
t h e  standardized da t a  
t h e  averages  and varianoes 
t h e  cor re la t ion  coefficients 
t h e  menu fo r  scatter diagrams 
histograms and soat tergrams 
scatter plots between two variables 
scatter plots between t h r e e  variables 

700 4 2 t h e  c u r r e n t  l inear  model 

guess about t h e  nature  of t h e  data." We admit that  t h e r e  is no unique way t o  
complex-system modeling. But w e  believe tha t  the  proposed method ce r -  
tainly d i rec t s  t o  t he  r ight  way in this field. The development of t he  model- 
ing support system is  st i l l  in i ts  f i r s t  s tage and some important issues are 



Table 2: Data files fo r  modeling information 

code contents  
00 t h e  list  of systems in t h e  disk 
01 commonly used parameters  
02 t h e  list  of names of variables 
03 t h e  list  of outl iers  
04 t h e  original da t a  table 
05 sample means of variables 
06 sample var iances  of variables 
07 t h e  standardized da t a  table 
08 corre la t ion  coefficients 
09 t h e  initial adjacency matrix 
10 t h e  initial reachabil i ty matrix 
11 t h e  initial skeleton matrix 
12 t h e  revised adjacency matrix 
13 t h e  revised reachabil i ty matrix 
14 t h e  revised skeleton matrix 
15 regression resul t s  (s tat is t ias)  
16 t h e  l inear  model (coefficients) 
17 t h e  da ta  tab le  f o r  prediction 

left for  future study. They a r e ,  f o r  example, the problems of non-pairwise 
relationships, non-binary relationships, intransitive relations, cumulative 
connections, dynamics and structural changes. 
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Figure 5: The interactive modeling support system 
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