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ABSTRACT 

Stochastic convex programs with recourse can equivalently be formu- 
lated as nonlinear convex programming problems. These possess some 
r a t h e r  marked characteristics.  Firstly, the proportion of l inear  t o  non- 
l inear variables is often la rge  and leads t o  a natural partition of the con- 
s t raints  and objective. Secondly, t he  objective function corresponding t o  
the  nonlinear variables can  vary over  a wide range of possibilities; under 
appropriate  assumptions about the  underlying stochastic program i t  could 
be, fo r  example, a smooth function, a separable  polyhedral function o r  a 
nonsmooth function whose values and gradients are very expensive t o  com- 
pute. Thirdly, the  problems are often large-scale and linearly constrained 
with special s t ruc ture  in t he  constraints. 

This paper  is a comprehensive study of solution methods f o r  stochastic 
programs with recourse viewed from the  above standpoint. W e  describe a 
number of promising algorithmic approaches that  are derived from methods 
of nonlinear programming. The discussion is a fairly general one, but t he  
solution of two classes of stochastic programs with recourse are of partic- 
ular interest.  The f i r s t  corresponds to stochastic l inear programs with sim- 
ple recourse and stochastic right-hand-side elements with given discrete  
probability distribution. The second corresponds t o  stochastic l inear pro- 
grams with complete recourse and stochastic right-hand-side vectors  
defined by a limited number of scenarios,  each with given probability. A 
repeated theme is the use of the  MINOS code of Murtagh and Saunders as a 
basis fo r  developing suitable implementations. 

This paper is a draft for Chapter 4 of Numer2cal f i chn iqucs  for Stochastic Optimtratitm 
Roblmns, Y.  Ermoliev and R.J.-B. Wets, eds., Springer-Verlag, t o  appear. 
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NONLINEAR PROGRAMMING TECHNIQUES APPLIED 
TO STOCHASTIC PROGRAMS WITH RECOURSE 

J.L. Nazareth and R. J-B. Wets 

1. Introduction 

W e  consider stochastic linear programs of the type 

Find z E Rnl  such that  

AX = b , z  r o  

and z = E,  [c  ( w  )Z + Q(z  , w  )] is minimized 

where Q  is calculated by finding for  given decision z and event w ,  an optimal 

recourse y  E Rne, viz. 

Q ( z , w )  = inf [ q ( y , w ) ( W y  = h ( w )  - T z ]  . (1 .2)  
Y EC 

Here A ( m l x n l )  , T ( m 2 x n l ) ,  W ( m 2 x n 2 )  and b ( m l )  are given (fixed) matrices, 

c ( . ) ( n l )  and h ( . ) ( m e )  a r e  random vectors, y  -, q  ( y  ;) : Rne -, R is a random finite- 

valued convex function and C is  a convex polyhedral subset of Rne, usually 

n 
C =R+'. E  denotes expectation. 

With c = Ew [ c  ( X I  ) ] ,  an equivalent form to (1 .1)  is 

minimize c z  + Q ( z )  

subject to 

Az = b  

z r o  

where Q ( z )  = E w [ Q ( z , w ) ] .  Usually q ( y  , w )  will also be a linear nonstochastic 



function q y .  (For convenience, w e  shall, throughout this paper ,  write cz and q y  

instead of c T z  and q T y  .) 

Two instances of t he  above problem are of par t icular  interest:  

(Cl) Problems with simple recourse  i.e. with W = [I, -I], stochastic right-hand-side 

elements with given discrete  probability distribution and penalty vectors  q + 

and q - associated with shortage and surplus in t h e  recourse  s tage (1.2). 

(C2) Problems with complete recourse and stochastic right-hand-side vectors  

defined by a limited number of scenarios, each with given probability. 

Hencefirth, for convenience ,we shal l  refer to these a s  C 1  a n d  C2 problems 

respect ively .  They can be  regarded as a natural extension of l inear and nonlinear 

programming models into the  domain of stochastic programming. More general sto- 

chastic programs with recourse  can sometimes be  solved by an  i terat ive procedure 

involving definition (for example, using approximation o r  sampling) of a sequence 

of C 1  o r  C2 problems. 

Within each of several  categories of nonlinear programming methods, w e  sum- 

marize briefly t he  main underlying approach fo r  smooth problems, give where 

appropriate  extensions t o  solve nonsmooth problems and then discuss how these 

lead t o  methods f o r  solving stochastic programs with recourse.  Thus, in each case,  

w e  begin with a r a t h e r  broadly based statement of the  solution s t rategy,  and then 

narrow down the  discussion t o  focus on methods and computational considerations 

f o r  stochastic programs with recourse,  where the  special s t ruc ture  of t he  problem 

is now always in the background. (During the  course of t he  discussion w e  occasion- 

ally consider o ther  related formulations, in particular t he  model with probabilistic 

constraints. However i t  i s  o u r  intention t o  concentrate upon the  recourse model. 

(We do not discuss questions concerning approximation of distribution functions, 

except very briefly at one o r  two points in the  text). This paper  i s  not intended t o  

provide a complete survey. Rather,  o u r  aim is to  establish some framework of dis- 

cussion within the  theme set by the  ti t le of this paper  and within i t  t o  concentrate 

on a number of promising lines of algorithmic development. W e  t r y  t o  s t r ike  a bal- 

ance between the  specific (what is practicable using cu r ren t  techniques, in partic- 

ular ,  f o r  C 1  and C2 problems) and the  speculative (what should be possible by 

extending cur ren t  techniques). An impor tant  theme w i l l  be the u s e  of MINOS (the 

Mathematical Programming System of Murtagh and Saunders [49,50]) a s  a basis  for 

implementation. Finally w e  seek t o  set the  s tage f o r  t he  description of an  optimi- 

zation system based upon MINOS f o r  solving C 1  problems, see Nazareth [55]. 



We shall assume that  the r eade r  is acquainted with the main families of optimi- 

zation methods, in particular,  

(a) univariate minimization. 

(b) Newton, quasi-Newton and Lagrangian methods f o r  nonlinear minimization. 

(c) subgradient (nonmonotonic) minimization of nonsmooth functions, possibly 

using space dilation (variable metric), and the  main descent methods of 

nonsmooth minimization. 

(d) stochastic quasi-gradient methods 

(e) the simplex method of l inear programming and i ts  reduced-gradient exten- 

sions. 

Good references f o r  background material are Fletcher [20], Gill et al. [23], 

Bertsekas [4], Lemarechal [42], Shor [66], Ermoliev [16], Dantzig [ I l l ,  Murtagh & 

Saunders [49]. 

W e  shall concentrate upon methods of nonlinear programming which s e e m  t o  us 

t o  be of particular relevance t o  stochastic programming with recourse and discuss 

them under t he  following main headings: 

1. Problem Redefinition 

2. Linearization Methods 

3. Variable Reduction (Partitioning) Methods 

4. Lagrange Multiplier Methods 

A nonlinear programming algorithm will often draw upon more than one of 

these groups and t h e r e  is, in fact ,  significant overlap between them. However, f o r  

purposes of discussion, the  above categorization is useful. 

2. PROBLEM REDEFINITION 

By problem redefinitiion w e  mean a restructuring of a nonlinear programming 

problem to  obtain a new problem which is then addressed in place of the original 

one. This redefinition may be  achieved by introducing new variables, exploiting 

separability, dualizing the  original problem and so on. For example, consider t he  

minimization of a polyhedral function given by 

min max [(af)Tz + bj ]  
a n  j =1, ..., m 

This can be accomplished by transforming the  problem into a linear program 

(2. l a )  

minimize v such tha t  v r ( a j )Tz  + bf , j = 1 ,  ..., m (2.lb) 



which can then be  solved by the  simplex method. 

Problem redefinition often precedes the  application of o the r  solution methods 

discussed in later sections of this paper .  

2.1 Application t o  Recourse Problems 

The following two transformations of recourse problems will prove useful: 

(a) When t h e  technology matrix is  fixed, new variables x , termed tenders. can be  

introduced into (1.3).  This gives an  equivalent form as follows: 

minimize cz  + * ( x )  
subject t o  Ax = b 

- x = o  
z 2 0  . 

(2.2) is useful because i t  is a nonlinear program in which the  number of vari- 

ables occurring nonlinearly is  m instead of nl and usually m2<<n l .  For a 

more detailed discussion of the  use of tenders  in algorithms for solving sto- 

chastic l inear programs with recourse,  see Nazareth and Wets [56]. 

(b) Another useful transformation involves introducing second s tage activities 

into t he  f i r s t  stage. I t  i s  shown in Nazareth [51] t ha t  t ha t  an  alternative form 

equivalent to (2.2) is  

minimize c z  + q y  + * ( x )  
subject  t o  Ax = b 

Ifi: + w y  - x = o  
z 2 0 ,  y  2 0  . 

This transformation also has  significant advantages f r o m  a computational 

standpdint, as w e  shall  see below. These stem, in pa r t ,  from the  fac t  t ha t  dual 

feasible variables, say ( p , x )  satisfy wTx s q . 
me 

For C1 problems, 9 ( x )  in (2.2)  i s  separable,  i.e. * ( x )  = 2 q t ( x r ) .  In such 
t = l  

problems, each component of h ( a )  i s  assumed t o  be  discretely distributed, say with 

hi (.) given by levels hi l ,  ... , hiti and associated probabilities pt 1,  ... ,P*,; also q ( y  ) 

+ + in (1.2)  is  two-piece l inear and can be  replaced by q y  + q -y -, y  + 2 0 ,  y  - 2 0  in 

(2.3) .  This implies that  each q t ( x i )  is  piecewise l inear with slopes, say,  

stl  , 1 = O,.. . , k t .  By introducing new bounded variables z t l ,  1 = 0 , . . . ,k t  w e  can 

reexpress  xi as 



where hi ,  is  the i - th  component of ho the  base tender.  Then ( 2 . 2 )  takes  the form: 

mi? 4 
minimize c z  + x x sil zil 

i = l  l = O  

sub jec t to  A z  = b  

T~ denotes the i - t h  row of T .  Optionally w e  can use t he  transformation ( 2 . 3 )  t o  

introduce W = [I,-I] into t h e  f i r s t  stage. Details of an algorithm based upon ( 2 . 4 )  

can b e  found in Wets [72] and an  alternative simpler version of this  algorithm can 

b e  found in Nazareth & Wets 1561. The latter algorithm is  implemented in t he  

optimization system described [55], where fu r the r  discussion and computational 

considerations may b e  found. 

2.2 Extensions 

The device of introducing new bounded variables,  which was used t o  obtain 

( 2 . 4 ) ,  can b e  applied t o  a wider class of recourse  problems. The assumptions of 

d i sc re te  distribution of h ( - )  and of two (or  more) piece linearity of recourse  

objective are not central ,  although one must still re ta in  t he  assumptions of simple 

recourse  and separable  recourse  objective. Suppose, f o r  example, t h e  distribu- 

tion function of hi ( . )  which need not b e  continuous, is  piecewise l inear with knots 

hil ,  ..., ha,, and q  = ( q + , q - ) .  Then 9 i ( ~ i )  is piecewise quadratic. In general,  if t h e  

distribution is defined in terms of splines of o rde r  s at knots hi l ,  ..., ha, and q  ( y  ) 

2 
is  separable,  say, qi ( y i )  with each qi ( y i  ) convex, then *i ( x i )  can b e  shown t o  

i = I  

b e  convex and piecewise smooth. Suppose i t  i s  given by pieces 9'il ( x i )  over  inter- 

vals (hil ,hi ,l + l ) .  Then, analogously t o  ( 2 . 4 )  w e  can transform t h e  problem ( 2 . 2 )  

into t h e  s t ructured and smooth n o n l i n e a r  program 

mi? 4 
minimize c z  + x *il (hu + zu ) - 'kil (hi, ) 

i = l  l = O  

subject t o  A z  = b 
4 

T'Z - x zil =hie , i =I, ..., m 2  
1 =o 

z 2 0 ,  O s z , s d i l  , l = O  ,..., k t  with di l  = h i , l + l - h i l  . 



(Here again w e  could use t he  transformation (2.3) t o  introduce W = [I,-I] into t he  

f i r s t  stage). Note tha t  (2.4) is a special case of (2.5). The optimal solution of (2.5) 

has an important property which is easy t o  prove. This result  makes the  nonlinear 

program (2.5) very amenable t o  solution by MINOS-like techniques and it  is given 

by the  following proposition: 

Proposition: In the  optimal so lu t ion  of (2.5), s a y  (x8,z;), if fir some 

t , zit  < d i t  t hen  z; = dil f o r  all l < t .  

Outline of Proof: Regard each qil (xi) as the  limit of a piecewise l inear func- 

tion, and then appeal to the  standard argument used in t he  piecewise-linear case. 

The above proposition tells us that  t h e r e  are, at mos t ,  m 2  superbasic vari- 

ables (see Section 4 f o r  terminology) in the  optimal solution of (2.5). This would b e  

t o  the  advantage of a routine like MINOS, which thr ives  on keeping the  number of 

superbasics low. These remarks will become c l ea re r  after looking at Section 4. 

Note also t ha t  Wets [70] discusses a special case of (2.5) when qil (xi) are piece- 

wise quadratic. A well-structured code for solving (2.4), which uses only t he  LP 

facilities of MINOS, would be  capable of a natural extension to solve nonlinear 

problems of the  f o r m  (2.5). MINOS was really designed to solve problem of this  

type. 

The above approach remains limited in scope, because of t h e  need t o  assume 

tha t  recourse is simple and tha t  the  recourse  objective is  separable.  Therefore w e  

would not expect  i t  to be  useful f o r  C2 problems. 

The transformations given by (2.2) and (2.3) are very useful p r ior  to the  

application of o t h e r  techniques discussed in t he  following sections of this chapter .  

Let us consider some possibilities. 

When T is  nonstochastic, use of t he  transformation (2.2) in the  methods 

described by Kall 1301 or the  L-shaped algorithm of Van Slyke and Wets [68] 

(see also Birge [6]) would lead to fewer non-zero elements in t h e  representa-  

tion of the  associated large-scale l inear programs. 

When T is not a fixed matrix, typically only a few columns (activities), say 

T2(w), would b e  stochastic. Say these correspond to variables s, with 

x = (5,s). We could then introduce a redefinition of the  problem in which a 

tender  is associated with t he  non-stochastic columns, say T1 of T; then the  

degree of nonlinearity of t he  equivalent deterministic nonlinear programming 

problem would b e  m2 + dimension (%) instead of nl. For example, f o r  simple 

recourse  with q = (q  + ,q  7 w e  would have 



q ( x . 2 , ~ )  = min [ q + y + + q - y - j y + - y - = h ( u l )  - X  - T Z ( u l ) 2 ]  
Y +BY -a 

me 
Note tha t  * ( x , S )  continues t o  b e  separable  in X ,  i.e. * ( x , S )  = qf ( x i , ; ) .  

f =l 

These observations and the  fu r the r  developments tha t  they imply would be  

useful in a pract ical  implementation. 

3. Another interesting example of t he  use of t he  transformations involving 

tenders  is given in Nazareth [52]  where they a r e  used in t he  solution of deter-  

ministic staircase-structured linear programs. 

3. Linearization Methods 

A prominent fea ture  of methods in this  group is  t ha t  they solve sequences of 

l inear  programs. One can distinguish single-point and multi-point linearization. In 

both approaches convexity of functions is  normally assumed. 

3.1 Single-Point Linearization Methods 

W e  discuss this case very  briefly. 

Consider t h e  problem minimize f ' (z ) ,  where K is  polyhedral and f ( z )  i s  
z EK 

smooth. The approach consists of solving a sequence of problems of t h e  form: 

minimize Vf' ( z ~ ) ~ ( z  - zk ) 
z € K  

where i s  t he  original polyhedral set K, possibly augmented by some additional 

constraints. This leads to a variety of methods. When K = $? w e  obtain t he  

Frank-Wolfe [ Z l ]  method, in which the  solution, say z;, defines a search  direction 

d k  = x i  - z k .  The method has  t he  vir tue tha t  t he  solution is  found in one s tep  if 

the  original problem is  linear. If K i s  augmented by the  constraints l!z - zk 11, 5 6 

for some small positive constant 6 w e  obtain t he  Griffith & Stewart [26]  method of 

approximate programming (MAP); f o r  minimax applications see Madsen & Schjaer- 

Jacobsen [46]  and f o r  extensions t o  t he  domain of general nonsmooth optimization 

see the  monograph of Demyanov & Vasiliev [ I Z ] .  



3.1.1 Applications to Recourse Problems 

For simple recourse when the equivalent (deterministic) nonlinear program is 

smooth, algorithms a r e  given, fo r  example, by Ziemba 1771. Kallberg and Ziemba 

1331 use the Frank-Wolfe method in a setting where only estimates of functions and 

gradients can b e  obtained. The approach has been widely studied within the  con- 

text  of the  general expectation model, see  Ermoliev 1161 and models with proba- 

bilistic constraints, s ee  Komaroni 1371 and references cited there .  In this l a t t e r  

context, however, one needs t o  rely on a variant of the  standard Frank-Wolfe 

method t o  take into account nondifferentiability (infinite slope) of the  objective at 

the  boundary of the feasible region. Given a stochastic program with probabilistic 

constraints of the type 

minimize c z  
subject t o  Az = b 

Prob  [w I Zk > h ( w ) ]  r a 
z r o  

w e  s ee  tha t  i t  is  equivalent t o  

minimize cz 
subject t o  Az = b 

TZ - x r o  
B(X) 2 0 
z r o  

where g (x) = In (Prob [w I x > h (w )] - a ) .  

Assuming tha t  the  probability measure is log-concave, i t  follows tha t  g is concave 

and thus we are dealing with a convex optimization problem with one nonlinear con- 

s t raint .  I t s  dual is 

maximize u b  -1: p(v ) 
subject t o  u A  + vT s c 

v 2 0  
where ~ ( v )  = f n f  [ V X  I ~ ( X ) ~ O I  . 

The function p i s  a sublinear (concave and positively homogeneous) finite-valued 

(only) on the positive orthant.  If the  probability measure is s t r ic t ly  log-concave, 

the  function p is differentiable on the  inter ior  of the  positive or thant  and thus w e  

could use the  Frank-Wolfe procedure t o  solve this dual problem as long a s  the 

i terates  ( u  , u s )  a r e  such tha t  v S  E interior R y e ;  when vS is on the  boundary of 

RTe,  the  standard procedure must be  modified t o  handle the  'infinite' slope case,  

see Komaroni [37]. 



9.2 Multi-Point Linearization Methods 

Consider the  problem 

minimize f ( z )  where gi (2)  S 0 , i =1, ..., m , x EX (3.2) 

where all functions a r e  convex, but not necessarily differentiable, and X is a com- 

pact set .  We shall concentrate in this section on the generalized linear program- 

ming method (GLP) of Wolfe (see Dantzig [ I l l ,  Shapiro [65]) which solves a 

sequence of problems obtained by i n n e r  (or gr id)  Linearizat ion of (3.2) over  the 

convex hull of a se t  of points xl,...,xK, t o  give the following master program: 

K 
minimize 1 Xif (xi ) 

i =1 
K 

sub jec t to  u t K ) :  l X i g i ( z i ) S O ,  i = 1 ,  ..., m (3.3a) 
i =l 

where u and w (K) represent  the dual variables associated with the  optimal solu- 

tion of (3.3a). The dual of (3.3a) is 

maximize w 

subject t o  w 9 p ( ~ ( ~ 1 )  + u g  ( x ( ~ ) )  , k = 1 ,  ..., K (3.3b) 
U ~ O  . 

The next grid point xK+' is obtained by solving the  Lagrangian subproblem 

minimize (x ) + u (K)g (x )] 
z € x  

(3.4) 

where u (K) i s  also the  optimal solution of (3.3b). Convergence i s  obtained when 

p (z (K+l)) + (K)g (Z (K+l)) 2 u, (K) . 

Since the  dual of (3.2) i s  

maximize h ( u  ) , where h ( u )  = min (J ( x )  + u g  (2))  
u20 Z EY 

(3.5) 

and h ( u )  is readily shown t o  be concave, an  alternative viewpoint is to  regard  the  

GLP method as a d u a l  cutting plane (or  outer  linearization) method on (3.5) yield- 

ing (3.3b); new grid points obtained from (3.4) yield a supporting hyperplane t o  

h ( u )  at u ( ~ ) .  



It  is worth emphasizing again that an important advantage of the  inner- 

linearization approach is  tha t  i t  can be directly applied t o  t he  solution of non- 

smooth convex problems without extensions. 

Outer l i n e a r i z a t i o n  could be  applied directly t o  t he  functions in (3.2) t o  give 

a pr imal  cutting plane method which also solves sequences of l inear programs. 

For details, see Kelley [34], Zangwill 1761 and Eaves & Zangwill [13]. 

3.2.1 Applications to Recome Problems 

For recourse  problems, particularly with the  form (2.2) using tenders,  t he  

GLP approach looks very promising. 

Using GLP t o  solve s imple  recourse  problems has  an  ear ly  history. I t  was 

f i r s t  suggested by Williams [74], in t he  context of computation of error bounds and 

also used at an  ear ly  da te  by Beale [2]. Par ikh 157) describes many algorithmic 

details. The method has  also been implemented f o r  specialized applications (e.g. 

see Ziemba [78], f o r  an  application to portfolio selection). However, as a general 

computational technique in par t icular ,  for non-s imple  recourse  i t  has  apparently 

not been studied until recently,  see Nazareth and Wets [56] and Nazareth 1511. 

The GLP method applied t o  (2.2) yields the  following master program: 

minimize EX + 2 Xk +(x(*)) 

subject t o  p(K): Ax = b 

The associated subproblem is  

minimize *(x) + d K ) x  (3.6b) 
x a  

In o r d e r  to complete t he  description of t h e  algorithm i t  i s  necessary t o  

specify X, and if this is  not a compact se t ,  to extend t h e  master program (3.6a) by 

introducing directions of recession (whose associated variables do  not appear  in 

t he  convexity row). In addition, a suitable set of starting tenders  which span R ~ '  

should be specified. A s  discussed in Nazareth 1511 these considerations can be 

largely circumvented by using the  equivalent form (2.3) and solving master 



programs of the  form: 

K 
minimize cx + qy + C hk*(X(k)) 

k =l 

subject t o  Ax = b 

A s  discussed in more detail  in Nazareth & Wets [56], we expect  the  above algo- 

rithm t o  perform well because normally only a few tenders  will have non-zero coef- 

ficients in the  optimal solution and because one can expect  t o  obtain a good set of 

s tar t ing tenders  from the  underlying recourse  program. 

Still at issue i s  how readily one can compute * ( x ( ~ ) )  and i t s  subgradients at a 

given point xk .  This in turn  determines the  ease with which one can solve the  sub- 

problem (3.6b) and obtain coefficients in the objective row of the  master. 

For C1 problems * ( x )  is  separable  and easy t o  specify explicitly (see Wets 

[72]). Algorithms have been given by Parikh [57] and Nazareth [51]. A pract ical  

implementation i s  given in Nazareth [55] where f u r t h e r  details may be  found. 

For C2 problems (i.e. with complete recourse  and a relatively small set of 

scenarios say, hL  , L = 1 ,  ...J with known probabilities f L  , L = 1 ,  ..., L )  one can 

solve the  subproblem (3.6b) and compute * ( x ( ~ ) )  in one of two ways, as discussed in 

Nazareth [51]: 

(i) Formulate (3.6b) as a l inear  program which can  be efficiently solved by 

Schur-Complement techniques, see Bisschop & Meeraus [9], and Gill et al. [24]. 

The values *(x(')) a r e  a p a r t  of t he  solution of this  l inear  program. 

(ii) Use unconstrained non-smooth optimization techniques, s ee  Lemarechal 

[40,41], Kiwiel [35] and Shor  [66]. Information needed by such methods i s  

* ( x ( ~ ) )  and i t s  subgradient Q ( ~ ( ~ ) )  and this  can be  computed by solving a set 

of l inear  programs of t he  form: 

q (X(k ) ,hL)  =min [qy ) Wy = h L  - x ( ~ ) ]  . 
Y 2 0  



Suppose d are the  optimal dual multipliers of t he  above problem. Then 

This can b e  ca r r i ed  out ve ry  efficiently using t h e  dual simplex method coupled 

with techniques discussed by Wets in [73]. 

The method based upon ou te r  linearization mentioned at t he  end of t he  previ- 

ous section has  been widely used to solve stochastic programs with recourse  (see 

Van Slyke & Wets [68], Wets [73] and Birge 16)). This is  a par t icu la r  form of 

BendersB decomposition [3] and i t  i s  well known tha t  approaches  based upon 

Benders' decomposition can  solve a wider class of nonlinear convex programs 

than approaches based upon t h e  Dantzig-Wolfe decomposition, see ,  f o r  example, 

Lasdon 1391). W e  shall  not however discuss this  approach in any detail  h e r e  

because i t  i s  a l ready studied, in depth, in t he  r e f e r ences  just cited. 

3.2.2 Extensions 

When 9(?) and i ts  subgradients are difficult t o  compute, t he  GLP approach 

continues t o  appea r  very  promising but many open questions remain t ha t  cen t e r  on 

convergence. 

Two broad approaches  can  b e  distinguished: 

(i) Sampling: Stochastic estimates of 9(~) and i t s  subgradient can  b e  obtained by 

sampling the  distribution. An approach tha t  uses samples of fixed size and c a r r i e s  

out the  minimization of t he  Lagrangian subproblem (3.6b) using smoothing tech- 

niques i s  descr ibed by Nazareth [51]. Methods f o r  minimizing noisy functions sug- 

gested recent ly  by Atkinson et al. [1] would also b e  useful in this  context. With a 

fixed level of noise, convergence proofs can re ly  upon t h e  resu l t s  of Poljak [58]. 

Another var iant  is  to use samples of progressively increasing size t ied to the  

progress  of t he  algorithm and to solve the  Lagrangian subproblem using s tochast ic  

quasi-gradient methods, see Ermoliev & Gaivoronski 1181. A par t icu la r  algorithm 

(suggested jointly with A. Gaivoronski) is  to rep lace  \ k ( ~ ( ~ ) )  in (3.6) by some esti- 

mate *, ( x ( ~ ) )  which is  based upon a suitable sample size N. When no f u r t h e r  pro- 

g re s s  is  made, then this  sample size is  incremented by A?Y and the  approximation 



refined f o r  all x ( ~ )  in t he  cu r r en t  basis. There are, of course,  many fu r the r  

details tha t  must be specified, but under appropr ia te  assumptions convergence can  

be  established. 

(ii) Approximate Distr ibution and Compute Bounds: A t  issue h e r e  is  how t o  

simultaneously combine approximation and optimization. For example, Birge [?I 
assumes tha t  converging approximations (kK(x) and .kk(x) are available f o r  

K = 1 3 ,  .... and rep laces  * (x (~ ) )  in (3.6a) by the  upper  bound 

.kf(x(k )) , k = 1,. ..,K. In t h e  subproblem (3.6b), if 

then *k+l(X(K+l)) i s  computed. If, f u r the r ,  t he  above inequality is  satisfied using 

this  lower bound in place of t h e  upper  bound, then X(k is optimal. Otherwise t h e  

approximation i s  refined and t h e  process  continued. Approximation schemes f o r  

obtaining bounds r e ly  on t h e  proper t ies  of recourse  problems, instead of purely on 

t h e  distance between t h e  given probability distribution and t h e  approximating 

ones; this  allows f o r  sequential schemes tha t  involve much fewer points as dis- 

cussed by K a l l  & Stoyan [31] and Birge & Wets [8 ] .  

The interpretat ion of t h e  optimal solution in Nazareth [51], suggests t h e  pos- 

sibility of an  al ternat ive approach t o  approximation by an  increasingly l a rge  

number of points. I t  i s  shown t h a t  if A& and X(kj) , f = 1. .. . . (m 2+1) give t he  

optimal solution of (3.6a), then t h e  problem (2.2) is equivalent to t h e  associated 

discretized problem obtained by replacing the  distribution of h ( w )  by t h e  distri-  

bution whose values are X(kj), f = 1. ...,( m 2+1) with associated probabilities A; 
j- 

- 
Note t ha t  A& = 1. A& 2 0, so t h a t  these  quantities do indeed define a proba- 

i =l 

bility distribution. 

Let us conclude this  section with a discussion of some o the r  possibilities. 

1. When the  technology matrix is  nonlinear, i.e. when T is  replaced by a smooth 

nonlinear function, w e  have t h e  possibility of a generalized programming algorithm 

where t he  master program i t s e u  is nonlinear. The question of convergence is  

open. Here an  implementation based upon MINOS would b e  ab le  t o  immediately draw 

upon t h e  ability of this  routine to solve programs with nonlinear constraints.  

2. When some columns of T are stochastic,  t he  transformation discussed at t he  end 

of Section 2 can  also be  used within t h e  context of t he  GLP algorithm t o  keep the  

degree  of nonlinearity low. This time inner approximation of *(x,d) would be  



car r ied  out over  t he  convex hull of ( ~ ( ~ ) , z ^ ( ~ ) )  , k = 1,. . . ,K. 

3. Generalized programming techniques appea r  t o  b e  useful for solving programs 

with probabilistic constraints,  f o r  example, of t he  form: 

minimize cz 
s u b j e c t t o  Az = b  

Prob  [a / Z'k > h (a)]  2 a 

z r o  

With the  usual definition of tenders  Tz = x and under t he  appropr ia te  assumptions 

on the  distribution of h ( a ) ,  w e  can  express  t he  above problem as: 

minimize cz 
subject to Az = b 

Tz - x = O  

g(x) z= 0 
z 2 0  

where g (x) = a - Prob  [ o  / h (o) < X] is a nonlinear function which is  log-concave 

f o r  a wide variety of distribution functions, in which case the  set [X I g ( x )  S 0] is  

convex. In such a situation we can reformulate t he  constraint 

where 

Here p ( a )  denotes t h e  density function of the  random vec tor  h ( a ) .  Assuming tha t  w e  

have already generated xl,...,fl in D such tha t  

we would b e  confronted at s t ep  K with t he  master problem: 

minimize cz 
subject  to dC : Az = b 



where ( &, TS(, zpK) represent  the  dual variables associated with the  optimal solu- 

tion ( X K , ~ K )  of this master problem. The next tender  flfl is  obtained by solving 

the  Lagrangian subproblem, involving only X: 

minimize [TS(x 1 x E Dl 

and this fl+l is  introduced in the  master problem unless 

* x r &  , 

in which case zK is an  optimal solution of the  master problem. To find 

we consider t he  Lagrangian function 

and the  dual problem 

maximize h ( 8 )  , 8 r 0 , 

where 

The function h is  a n  1 -dimensional concave function, i ts  (generalized) derivative is  

a monotone increasing function, and, moreover, under s t r i c t  log-concavity of the  

probability measure, i t s  maximum is  attained at a unique point. To search  f o r  the  

optimal f l  w e  can use a secant  method for finding the  zero  of a monotone function. 

We have that  f o r  fixed 8 ,  

is  obtained by solving the  following system of equations: 

If p is simple enough, o r  if i t  does not depend on too many variables then this sys- 

tem can be solved by a quasi-Newton procedure tha t  avoids multidimensional 

integration. 

This application t o  chance-constrained stochastic linear programming is  an  

open area and certainly deserves fu r the r  investigation. 



4. It i s  also worth pointing out tha t  generalized programming methods have been 

recently applied t o  t h e  study of problems with partially known distribution func- 

tions (incomplete information), see Ermoliev et al. [17] and Gaivoronski [22]. 

4. Variable Reduction (Partitioning) Methods 

Methods in this group seek to r e s t r i c t  t he  s ea rch  region to one defined by a 

subset of t he  variables and c a r r y  out one or more i terations of a gradient (or  

subgradient) based sea rch  procedure.  The sea rch  region is  then revised and the  

process  continued. W e  can make a distinction between 'homogeneouss and 'global' 

methods (using the  terminology of Lemarechal [42]). Homogeneous or active set 

methods, in t h e  linearly constrained case,  r e s t r i c t  t h e  region of search  t o  an 

qfpine subspace within which unconstrained minimization techniques can b e  used. 

W e  shall  concentrate  on the  reduced gradient formulation of Murtagh & Saunders 

[49,50] as implemented in MINOS and seek extensions of an  approach which has  

proved effective f o r  l a rge  smooth problems. However t h e  fact  tha t  extension is  

necessary. in contrast  to the  methods of t he  previous section, and t h e  fact tha t  

t h e r e  are theoretical issues of convergence tha t  remain t o  b e  set t led mean tha t  

such methods are sti l l  very much in t h e  development stage. 

Global methods treat all constraints simuLtaneousZy and define direction 

finding subproblems which usually involve minimization subject to inequality con- 

s t ra in t s  (often just simple bound constraints). Convergence issues are more easily 

sett led here .  W e  shall  consider some methods of this  type. 

W e  also include h e r e  approaches where t he  parti t ion of variables i s  more 

directly determined by the  problem s t ruc ture ,  in par t icular  t h e  grouping into 

l inear  and nonlinear variables.  

Consider f i r s t  the  problem defined by 

minimize f ( z  ) 
subject t o  Ax = b 

z 2 0  

where, initially, f ( z )  is assumed to b e  smooth. 

The variables at each cycle of t he  Murtagh and Saunders [49] reduced gra-  

dient method a r e  partitioned into t h r e e  groups, (zg,zS,zN) representing m basic 

variables,  s superbasic variables,  and nb = n - m - s non-basic variables 



respectively. Non-basics a r e  at their  bound. A is  partitioned as [B IS I N] where 

B is an m xm nonsingular matrix, S is an m x s  matrix, and N is  a n  m xnb matrix. 

Let g = V j ' ( z )  be  similarly partitioned as (gg,gS,gN). 

Each cycle of t he  method can be viewed as being roughly equivalent to: 

(RG1) one o r  more iterations of a quasi-Newton method on an  unconstrained optim- 

ization problem of dimension s determined by the  act ive  set Az = b , z~ = 0 .  

Here a reduced gradient is computed as 

The columns of ZS span the  space in which the quasi-Newton search  direc- 

tion lies, and this i s  given by p = where H is  an inverse Hessian 

approximation obtained by quasi-Newton update methods and defines the  

variable metric, e.g. H = I gives the  usual projected gradient direction. 

Along p a line search  i s  usually performed. (Note tha t  in actual computa- 

tion H would not be  computed. Instead we would work with approximations t o  

the Hessian and solve systems of l inear equations t o  compute the  search  

direction p .) 

(RG2) an  iteration of t he  revised simplex method on a linear program of dimension 

m x n b .  Here components of the  reduced gradient (Lagrange multipliers) 

corresponding t o  t he  nonbasic components are computed by 

This i s  completely analogous t o  the  computation of g i n  (4.2) above. The difference 

is in the  way tha t  A i s  used, namely t o  revise the  active set. In each case above 

pr ices  .rr can be  computed by .rr = g J ~ - l  and p and A computed as 

(It i s  worth noting tha t  t he  convez simplex method i s  a special case of t he  above 

where (RG1) is omitted and (RG2) i s  replaced by a coordinate line search  along a 

single coordinate direction in the  reduced space given by (ZN)k, say, f o r  which 

Ak < 0. When the re  a r e  nonlinear constraints present  t he  above method can also 

be suitably generalized.) 



In the  non-smooth case w e  can proceed along th ree  main directions: 

1. Compute g and A in place of the  above by 

where a f ( z )  is  t he  subdifferential of f ( z )  at z .  In effect  w e  are computing 

s teepest  descent directions in t he  appropriate  subspaces. Note t ha t  i t  is, in gen- 

eral, not co r r ec t  t o  f i r s t  compute a steepest descent direction 5 from 

- 
g  = argmin ~g ' g  I g  E 8.f' ( z  )] 

and then reduce 5 t o  give 

The reason for this is tha t  t he  operations of minimization and projection are not 

interchangeable. However this approach does make i t  possible to restore use of 

t he  .rr vector  and the re fo re  yields useful heuristic methods, as w e  shall see in t he  

next section. In o r d e r  t o  ensure  convergence, i t  i s  necessary to rep lace  8 f ( z )  by 

8$ ( 2 )  - t h e  c-subdifferential (except in special circumstances e.g. when f ( 2 )  is  

polyhedral and line searches  are exact). This is  useful f r o m  a theoretical stand- 

point. However, from the  point of view of computation i t  i s  usually impractical t o  

use t he  subdifferential, l e t  alone t h e  epsilon-subdifferential (except again in 

r a t h e r  special  circumstances). One such instance is  when t h e  subdifferential is  

defined by a small set of vectors ,  say, g l ,  . . . , g ~ .  Then (4.6) leads to t h e  problem: 

minimize 

N  
subject t o  g  = hi ( Z ' g i  ) 

i  -1 

If g' is  i ts  solution, then = z ' Q ' ,  with a similar computation f o r  zJ. We also 

have p = -ZSHZ;g * .  

2. Utilize bundle methods in which the  subdifferential is  replaced by an  approxi- 

mation composed f r o m  subgradients obtained at a number of p r io r  iterations. For 



the unconstrained case algorithms a r e  given by Lemarechal [40,41] and an imple- 

mentable version is given by Kiwiel [35]. An extension of [40] to  handle linear con- 

straints in the reduced gradient setting is given by Lemarechal et al. [45]. How- 

ever,  a s  the authors point out theoretical issues of convergence remain t o  be set- 

tled in the la t te r  case. 

3. Utilize non-monotonic methods (see, fo r  example, Shor [66]) which require only 

a single subgradient a t  each iteration. In effect non-monotonic iterations will be 

carr ied out in subspaces (see RG1 and RG2 above) determined by ZS and ZN, using 

reduced subgradients Z:Q and ZJg. Again convergence issues remain open. 

Line searches suitable for  use in the above cases (1) and (2) a r e  given by- 

Mifflin [48] and Lemarechal [43]. 

The reduced gradient method a s  formulated above benefits from additional 

s tructure in objective and constraints, in particular the partition between vari- 

ables that  occur linearly and variables that occur nonlinearly. W e  shall see 

instances of this in the discussion of recourse problems. In particular, i t  is easy 

to show that when f ( z )  is replaced by cz + *(x), an optimal solution exists fo r  

which the number of superbasics does not exceed the number of nonlinear vari- 

ables X. 

Instead of obtaining an active set from zN = 0, another approach which gives 

a 'global* method is t o  reduce the gradient o r  subgradient only through the  equal- 

ity constraints Az = b (these are always active) and define reduced problems t o  

find the search direction involving bound constraints on the z~ variables. This is 

discussed in Bihain [5]. (See also Strodiot et al. [67].) 

Reduced gradient methods, a s  discussed above, benefit f r o m  the partition of 

the problem into linear and nonlinear variables, but they do -not ezplicitly utilize 

it. It is however possible to take more immediate advantage of this partition. Pos- 

sible approaches a r e  given, f o r  example, by Rosen [62] and by Ermoliev [15]. Con- 

sider the problem 

minimize cz + F ( y  ) 
subject to  Az + By = b 

z r 0,y  2 0 

If the nonlinear variables y a r e  fixed a t  certain values w e  obtain a simpler prob- 

lem, in this case a linear program (which may have further  s tructure,  for  example, 

when A is block-diagonal). The optimal dual multipliers sr' of this linear program 

(assumed feasible), can then be used to  define a reduced subproblem, for example, 



F ( y )  - (r')Tl& , y 2 0. This is  then solved t o  rev ise  t h e  cu r r en t  values of y , fo r  

example, by computing a reduced subgradient by g - T'B , g € F ( y )  and carrying 

out (nonmonotonic) i terations in t h e  positive or thant  of the y variables (see Ermo- 

liev [15]). An al ternat ive approach is  given by Rosen 1621. 

4.1 Applications t o  Recourse Problems 

Since t h e  number of nonlinear variables x in (2.2) is  usually small re la t ive t o  

t he  number of l inear  variables,  the  reduced gradient approach outlined above is  a 

natural choice. When *(x) is  smooth (and the  gradient is computable) the  reduced 

gradient method can be  used directly.  In the form of t he  convex simplex method, 

which is  a special  case of t he  reduced gradient method, i t  has  been suggested f o r  

t he  simple recourse  problem by Wets 1691 and Ziemba [77]. Wets [71] extends the  

convex simplex method to solve problems with simple recourse  when the  objective 

is nonsmooth. 

For C1 problems (xi ) = [vt-,vt+] (see Nazareth & Wets [56]). The computa- 

tion of p and h in (4.6) thus requi res  tha t  w e  solve bound cons t ra ined  q u a d r a t i c  

programs.  W e  can utilize s t ruc tu re  in the  basis matrix in defining these  quadratic 

programs. Since t he  x variables are unrestricted, they can be  assumed t o  be  

'always in t he  basis. A basis matrix will thus have t h e  form 

and i ts  inverse (never, of course,  computed directly) will therefore  b e  given by 

Let gg = (cB,g x) where cg are coefficients of the  objective row corresponding to 

the  x variables in t he  basis and g x  is  a subgradient of * ( x )  at the  cu r r en t  value of 

X. Also, since superbasics and non-basics are always drawn from c ,  we shall use cs 

and cN in place of g s  and g ~ .  Thus we define g = ( c ~ , ~ ~ , c ~ , c ~ ) .  The quadratic pro- 

grams (4.6) then takes  t h e  form 

minimize g T ~ S ~ 2 g  

subject t o  v i -S  ( Q ~ ) ~  s vi+ , i =I,...,m 
(4 . lo )  

1 T where g is  defined above, 22 = (-(B- S) I I, ,, 1 0) with B defined by (4.9a). 

Note tha t  usually g x  will have relatively few components. A similar bound 



constrained quadratic program can be defined f o r  z,$. Both can he solved very 

efficiently using a routine like QPSOL, see [25]. The above approach also requires  

a line search and an  efficient one based upon a specialized version of generalized 

upper bounding, is given in Nazareth [54]. An implementation could thus be based 

upon MINOS, QPSOL and this  line search.  

It  is possible t o  avoid the  use of quadratic programming by using a heuristic 

technique in which a steepest-descent direction i s  f i r s t  computed as the  solution of 

the  expression preceeding (4.7). This i s  given by: 

minimize 9 5 ,  

subject t o  vi- S (g,), S vi+ , i =1, ..., m 

The solution gx is given explicitly by: 

Projected quantities z J ~  and z J ~  can then be computed with 5 defined analo- 

gously t o  g (just before expression (4.10)). This and use of the  line search  in 

Nazareth [54] suggests a very  convenient heuristic extension of MINOS. Even the 

construction of a specialized line search  can be avoided by utilizing line search  

methods designed f o r  smooth problems (again heuristic in this context) as dis- 

cussed by Lemarechal [44]. 

For C2 problems, computing p and.  X by (4.6) again requires  tha t  we solve the  

following special s t ructured quadratic program (Nazareth & Wets [56]): 

find g E R ~ '  such that1lglE i s  minimized 

such that 

L 

g x =  C j l d  and d ~ S q ,  d ( h l  - x ) n ~ ( ~ , h ' ) ,  1 = I  ..... L 
1 =1 

where h 1  and j1 define the  probability distribution of the  scenarios, as in Section 

3.2.1. M defines the  metric and f o r  different choices, the  objective takes the  form 

gTg (or  equivalently, in this case,  g;gx ), gTZSZ2g o r  gTZNZ:g. Again special 

purpose techniques can be  devised t o  solve such problems. I t  is however often 

impractical t o  consider use of the  above steepest descent approach because only 



+(x) and a subgradient are available. In this case an algorithm would have t o  be  

designed around bundle techniques o r  non-monotonic optimization as discussed in 

Section 4, items (2) and (3) (af ter  expression (4.8)), using reduced subgradients 

given by zJg and ~ $ g ,  with g and o ther  quantities defined as in the  paragraph 

preceding (4.10). In this case  an implementation could be based upon a routine f o r  

minimizing nonsmooth functions, s ee  Bihain 151. 

In the  above methods the  x variables would normally always be in the  basis, 

since they have no bounds on their  value. This means tha t  t h e r e  are always some 

variables in the  basis which correspond t o  the  nonsmooth p a r t  of the  objective 

function. An alternative approach is t o  t ry  and r e s to re  a more simple pricing 

s t rategy by keeping the  x variables always superbasic and define a basis only in 

the x variables. The alternating method of Qi [61] is a n  attempt in this direction 

although it is not implementable in the  form given in [61]. Other methods along 

these lines a r e  given by Birge [6]. However, the  numerical resul ts  given by Birge 

[6] show tha t  the approach may not be  as promising as the  method based upon outer  

linearization (the so-called L-shaped method) mentioned at the  end of Section 

3.2.1. 

4.2 Extensions 

A s  with generalized linear programming, w e  think tha t  much can be done by 

extending the  above approach, when 'k(x) and its subgradient are hard  t o  compute, 

but t he re  a r e  many open questions. A s  in Section 3.2.2, two broad approaches can 

be followed: 

(i) Sampling: Potentially t he  most valuable approach seems t o  be an alternat-  

ing  method in which one would c a r r y  out i terations in the  x space and combine 

them in some suitable way with subgradient (or stochastic quasi-gradient) 

iterations in t he  x space (along the  lines suggested by Ermoliev [15]). I t  is 

also possible t o  consider 'homogeneous' o r  active set methods which extend 

the  reduced gradient approach and interleave iterations involving two pro- 

jection operators  into the  space defined by superbasic and non-basic vari- 

ables respectively. 

(ii) Approximate Dis t r ibut ion  and Compute Bounds: For a discussion of this  

approach s e e  Birge & Wets [8]. 



5. L a g r a n g e  M u l t i p l i e r  M e t h o d s  

W e  conclude this chapter  with very brief mention of methods which have 

recently achieved much popularity f o r  smooth and non-smooth optimization and a r e  

thus likely t o  lead t o  useful methods f o r  solving recourse problems. Bertsekas [4] 

and Powell 1591 give comprehensive reviews in t he  smooth case. Lemarechal [42] 

explains connections with minimax optimization and o the r  methods of non-smooth 

optimization. 

A distinguishing fea ture  of methods in this category is t ha t  they combine cut- 

ting plane techniques with use of a quadratic penalty t e r m  in the  computation of 

search directions and tha t  they often treat the  constraints 'globally', again in t he  

sense of Lemarechal 1421. For an example of the use of a (parameterized) qua- 

dra t ic  penalty t e r m  in unconstrained minimization see the  proximal point method of 

Rockafellar [63]; in smooth nonlinear programming, see Wilson 1751 and in 

nonsmooth optimization, s e e  Pschenichnyi & Danilin 1601. 

Consider the  problem 

minimize j' ( z )  
subject t o  Az = b 

z r o  . 

The search  direction finding problem then takes the  form: 

minimize v + (I/ 2 ) d T ~ d  

subject t o  v r -ai + giTd , i E I 

where I denotes an  index set and g i ,  i €1 a set of subgradients of j'(z). cxf is a 

scalar .  If B = 0, I has  only one element and j'(z) is smooth (so tha t  gi corresponds 

t o  a gradient), note the connection with the  method of Frank & Wolfe 1211 (see also 

Section 3.1). When B =I, the  identity matrix, w e  have the  method suggested by 

Pschenichnyi & Danilin, see [60]. 

By dualizing (5.2) i t  is  easy t o  establish t ies  with steepest descent methods 

determined by bundles of subgradients in t he  appropriate  reduced space together  

with the  appropriate  definition of a metric (see (4.8) and also Han [27,28], 

Lemarechal [42], Kiwiel [35] and Demyanov & Vasiliev 1121). Recently Kiwiel [36] 

has suggested a method which fu r the r  exploits the  s t ruc ture  in (4.8) and has also 

considered extensions of methods under consideration in this section when the re  is 

uncertainty in the  value of t he  function. 



Finally, for application of ideas underlying Lagrange multiplier methods to 

stochastic programs with recourse ,  see Rockafellar & Wets [64], Merkovsky, 

Dempster & Gunn [47]. 

References 

E.N. Atkinson, B .W. Brown, J.E. Dennis, J .R. Thompson, Winimization of 

noisy functions", presented at SIAM Conference on Numerical Optimiza- 

tion, Boulder, Colorado, June 1984. 

E.M.L. Beale, Pr iva te  communication. 

J.F. Benders, 'Fartitioning procedures  f o r  solving mixed variables pro- 

gramming.problems", Numerische Mathematik 4(1962) 238-252. 

D.P. Bertsekas,  "Constrained Optimization and Lagrange Multiplier 

Methods", Academic Press ,  New York (1982). 

A. Bihain, ''Numerical and algorithmic contributions to the  constrained 

optimization of some classes of non-differentiable functions", Ph  .D. 

dissertation, Facultes Universitaires Notre-Dame De La Paix, Belgium 

(1984). 

J. Birge, 'Decomposition and partitioning methods f o r  multistage st- 

chastic l inear  programs", Tech. Report 82-6. Dept. of IE & OR, Univer- 

sity of Michigan (1982). 

J. Birge, "Using sequential approximations in t h e  L-shaped and general- 

ized programming algorithms f o r  stochastic l inear programs", Tech. 

Report 83-12, Dept. of IE & OR, University of Michigan (1983). 

J. Birge and R. J-B Wets, 'Designing approximation schemes f o r  stochas- 

t i c  optimization problems, in par t icular  f o r  stochastic programs with 

recourse",  WP-83-111, IIASA, Laxenburg, Austria (1983) and in A. 

Prekopa and R. J-B. Wets eds., Mathematical Programming S tudy ,  to 

appear .  

J. Bisschop and A. Meeraus, "Matrix augmentation and partitioning in t h e  

updating of the  basis inverse", Mathematical Programming lS(1977) 

7-15. 

H. Cleef, "A solution procedure f o r  the  two-stage stochastic program 

with simple recourse",  Z. Operations Research 35(1981) 1-13. 



G.B. Dantzig, L i n e a r  R o g r a m m i n g  a n d  E z t e n s i o n s ,  Princeton Univer- 

si ty P re s s  (1980). 

V.F. Demyanov and L.V. Vasiliev, Wondifferentiable Optimization", (in 

Russian), Nauka (1981). 

B.C. Eaves and W. Zangwill, "Generalized cutting plane algorithms", SIAM 

J. Control 9(1971) 529-542. 

J. Edwards, J. Birge, A. King and L. Nazareth, "A standard input format 

f o r  computer codes which solve stochastic programs with recourse  and a 

l ibrary of utilities to simplify i t s  use", WP-05-03, IIASA, Laxenburg, Aus- 

t r i a  (1984). (Also this  volume, see [19].) 

Yu. Ermoliev, "Methods of nondifferentiable and stochastic optimization 

and the i r  applications", in: E. Nurminski, ed., Progress  in Nondifferenti- 

ab le  Optimization, CP-8248, IIASA, Laxenburg, Austria (1982). 

Yu. Ermoliev, "Stochastic quasi-gradient methods and the i r  application 

in systems optimization", Stochast ics  8(1983). 

Yu. Ermoliev, A. Gaivoronski and C. Nedeva, 'Stochastic optimization 

problems with incomplete information on distribution functions", WP-03- 

113, IIASA, Laxenburg, Austria (1983). 

Yu. Ermoliev and A. Gaivoronski, 'Stochastic quasigradient methods and 

the i r  implementation", WP-04-55, IIASA, Laxenburg, Austria (1984). 

Yu. Ermoliev and R. J-B Wets, eds., Numerical Techniques  &r Stochas- 

t i c  Qut imizat ion Problems, Springer-Verlag, ( to  appear) .  

R. Fletcher,  R a c t i c a l  Methods of Opt imiza t ion ,  Vol. 2: Cons t ra ined  

Qnt imizat ion,  J. Wiley, Chichester (1901). 

M. Frank and P .  Wolfe, "An algorithm f o r  quadratic programming", Naval 

Research Logis t ics  Quarter ly ,  III(1956) 95-110. 

A. Gaivoronski, "Optimization of functionals which depend on distribution 

functions: 1. Nonlinear functional and l inear  constraints", WP-83-114, 

IIASA, Laxenburg, Austria (1983). 

P.E. Gill, W. Murray and M.H. Wright, R a c t i c a l  Opt imiza t ion ,  Academic 

Press ,  London and New York (1981). 

P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, "Sparse matrix 

methods in optimization", Tech. Report  SOL-82-17, Systems Optimization 

Lab., Dept. of Operations Research, Stanford University (1983). 



P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "User's guide f o r  

SOL/QPSOL: A FORTRAN package f o r  quadratic programming", SOL 83-7, 

Systems Optimization Laboratory, Stanford University (1983). 

R.E. Griffith and R.A.Stewart, "A nonlinear programming technique f o r  

t h e  optimization of continuous processing systems", Management Sci- 

ence ?(1961) 379-392. 

S.P. Han, "Superlinearly convergent variable metric algorithms f o r  gen- 

eral nonlinear programming problems", Mathematical Programming 

11(1976) 263-282. 

S.P. Han, "Variable metric method f o r  minimizing a class of nondifferen- 

tiable functions", Muthemutical Programming 20(1981) 1-12. 

IBM Document No. H20-0476-2, 'Mathematical Programming System/360 

Version 2, Linear and Separable Programming - User's Manual", IBM 

Corportion, N e w  York. 

P. Kall, "Computational methods f o r  solving two-stage stochastic l inear 

programs", 2. Agnew. -Math. Phys .  30(1979) 261-271. 

P.  Kall and D. Stoyan, "Solving stochastic programming problems with 

recourse  including e r r o r  bounds", Math. Operat ions Forsch. S ta t i s t .  

Ser. Opt imiza t ion  13(1982) 431-447. 

J. Kallberg and M. Kusy, ''Code Instruction f o r  S.L.P.R., a stochastic 

l inear program with simple recourse", Tech. Report,  University of Brit- 

ish Columbia (1976). 

J. Kallberg and W. Ziemba, "An extended Frank-Wolfe algorithm with 

application t o  portfolio selection", in: P.  Kall and A. Prekopa,  eds., 

Springer-Verlag , Berlin (1981). 

J.E. Kelley, 'The cutting plane method f o r  solving convex programs", J. 

Soc. Ind. Appl. Math. 8(1960) 703-712. 

K.C. Kiwiel, "An aggregate  subgradient method f o r  nonsmooth convex 

minimization", Mathematical Programming 27(1983) 320-341. 

K.C. Kiwiel, "A descent algorithm f o r  large-scale linearly constrained 

convex nonsmooth minimization", CP-84-15, IIASA, Laxenburg, Austria 

(1984). 

E. Komaroni, "A dual method f o r  probabilistic constrained problems", A. 

Prekopa and R. J-B. Wets, eds., Mathematical Programming Study,  t o  

appear .  



M. Kusy and W. Ziemba, "A bank asset and liability management model", 

CP-83-59, IIASA, Laxenburg, Austria (1983). 

L.S. Lasdon, "Optimization Theory f o r  Large Scale Systems", Macmillan, 

London (1970). 

C . Lemarechal, "Nonsmooth Optimization and Descent Methods ", RR-78-4, 

IIASA, Laxenburg, Austria (1977). 

C. Lemarechal, 'Bundle methods in nonsmooth optimization", in: C. 

Lemarechal and R. Mifflin, eds., Nonsmooth Optimization, IIASA Proceed- 

ings Series ,  Vol. 3. 79-102. Laxenburg, Austria (1977). 

C. Lemarechal, '!Nonlinear programming and nonsmooth minimization: A 

unification", Report  No.332, INRIA, France (1978). 

C. Lemarechal, "A view of line searches", in: A. Auslender, W. Otelli, and 

J. Stoer ,  eds., m t i m i z a t i o n  a n d  Optimal Control. Lecture Notes in 

Control and Information Science 30, Sprinter  Verlag, Berlin (1981). 

C. Lemarechal, "Numerical experiments in nonsmooth optimization", in: 

E.A. Nurminski, ed., Progress in  Nondiflerentiable Opt imizat ion,  CP- 

82-S8, 61-84, IIASA, Laxenburg, Austria (1982). 

C. Lemarechal, J.J Strodiot and A. Bihain, "On a bundle algorithm f o r  

nonsmooth optimization", in: O.L. Xangasarian, R.R. Meyer and S.M. 

Robinson, eds., Nonlinear Programming, Academic Press ,  New York 

(1981). 

K. Madsen and H. Schjaer-Jacobsen, "Linearly constrained minimax 

optimization", Mathematical Programming 14(1978) 208-223. 

R. Merkovsky, M.A.H. Dempster and E.A. Gunn, "Some Lagrangian 

approaches t o  stochastic programming with recourse",  Presented at 

l z th  International Symposium on Mathematical Programming, Boston, 

Mass., August 1985. 

R. Mifflin, "Stationarity and superlinear convergence of an  algorithm 

f o r  univariate locally Lipschitz constrained minimization", Mathematical 

Rogramming  28(1984) 50-71. 

B. Murtagh and M. Saunders, "Large-Scale linearly constrained optimiza- 

tion", Mathematical Programming 14(1978) 41-72. 



B. A. Murtagh and M.A. Saunders, "MINOS 5.0 User's Guide", Report No. 

SOL 83-20, Systems Optimization Laboratory, Stanford University 

(1983). 

J.L. Nazareth, "Algorithms based upon generalized linear programming 

f o r  stochastic programs with recourse", in: F. Archetti, ed., Roceed-  

i n g s  of RTP International Workshop on Stochastic Programming: 

Algorithms and  Applications. Springer-Verlag, (to appear) .  

J.L. Nazareth, "Variants on Dantzig-Wolfe decomposition with applica- 

tions t o  multistage problems", WP-83-61, IIASA, Laxenburg, Austria 

(1983). 

J.L. Nazareth, "Hierarchical implementation of optimization methods", 

in: P. Boggs, R. Byrd and B. Schnabel, eds., Numerical f&timization, 

2984, SIAM, Philadelphia, 199-210 (1985). 

J.L. Nazareth, "An efficient algorithm f o r  minimizing a multivariate 

polyhedral function along a line", in R.W. Cottle, ed., Mathematical Pro- 

gramming S tudy ,  (to appear).  

J.L. Nazareth, "Design and implementation of a stochastic programming 

optimizer with recourse and tenders", IIASA WP-85-63 Also this volume, 

see [19].) 

J.L. Nazareth and R. J-B Wets, "Algorithms f o r  stochastic programs: the  

case  of non-stochastic tenders", A. Prekopa and R. J-B Wets, eds., 

Mathematical Programming S t u d y ,  (to appear).  

S.C. Parikh, Lecture notes on stochastic programming, unpublished, 

University of California, Berkeley (1968). 

B. Poljak, "Nonlinear programming methods in t he  presence of noise", 

Mathematical Programming 14(1978) 87-97. 

M.J.D. Powell, "Algorithms f o r  nonlinear constraints tha t  use Lagrangian 

functions", Mathematical Programming 14(1978) 224-248. 

B.N. Pshenichnyi and Yu. Danilin, "Methodes Numeriques dans les  Prob- 

lemes d'extremum", Editions d e  Moscou, Par i s  (1977). 

L. Qi, "An alternating method t o  solve stochastic programming with sim- 

ple recourse",  Tech. Report No.515, Computer Science Department, 

University of Wisconsin (1983). 



J.B. Rosen, "Convex partition programming", in: R.L. Graves and P. 

Wolfe, eds., Recent Advances in  Mathematical Programming, 159-176, 

McGraw-Hill, N e w  York (1963). 

R.T. Rockafellar, "Monotone opera tors  and the  proximal point algo- 

rithm", SUM Journal on  Control and  Opt imiza t ion  14(1976) 877-898. 

R.T. Rockafellar and R. J-B Wets, "A lagrangian finite generation tech- 

nique f o r  solving linear-quadratic problems in stochastic program- 

ming ", WP-84-25, Laxenburg, Austria (1984). 

J.F. Shapiro, "Mathematical programming: s t ruc tures  and algorithms", 

John Wiley, New York (1979). 

N.Z. Shor ,  "Generalized gradient methods of nondifferentiable optimiza- 

tion employing space dilation operators", in: A. Bachem, M. Groetschel 

and B. Korte, eds., Mathematical Programming: m e  S ta te  of the Ar t ,  

501-529. Springer  Verlag, Berlin (1983). 

J. J. Strodiot, V.H. Nguyen and N.  Heukmes, '%ps-optimal solutions in 

nondifferentiable convex programming and some related questions", 

Mathematical Programming 25(1983) 307-328. 

R.  Van Slyke and R. J-B Wets, "L-shaped l inear  program with applica- 

tions t o  optimal control and stochastic l inear programs", SL4M Journal 

o n  Applied Mathematics 17(1969) 638-663. 

R. Wets, "Programming under uncertainty: t he  complete problem", 2. 

Wahrsch. verw.  Gebiete 4(1966) 316-339. 

R. Wets, "Solving stochastic programs with simple recourse 11", 

Proceedings of Johns Hopkins Symposium on Systems and Information, 

1-6 (1975). 

R. Wets, "A statistical approach t o  t he  solution of stochastic programs 

with (convex) simple recourse", in: A. Wierzbicki, ed., Generalized 

Lagrangians  i n  Systems and  Economic Zheory, IIASA Proceedings 

Series,  Pergamon Press ,  Oxford (1983). 

R. Wets, "Solving stochastic programs with simple recourse",  Stochas- 

t i c s  lO(1983) 219-242. 

R. Wets, "Stochastic programming: solution techniques and approxima- 

tion schemes", in: A. Bachem, M. Groetschel and B. Korte, eds., 

Mathematical Programming: The State-of-the-Art, 566-603, Springer- 

Verlag , Berlin (1983). 



[741 A.C. Williams, "Approximation formulas fo r  stochastic linear program- 

ming", SUM Journal o n  Applied Mathematics 14(1966) 668-677. 

[751 R.B. Wilson, "A simplicia1 algorithm fo r  concave programming ", Ph .D. 

Thesis, Graduate School of Business Administration, Harvard University 

(1963). 

1761 W.I. Zangwill, Nonlinear Programming: A U n w e d  Approach, Prentice- 

Hall (1963). 

1771 W.T. Ziemba, "Computational algorithms f o r  convex stochastic programs 

with simple recourse", Operations Research 18(1970) 415-431. 

1781 W.T. Ziemba, "Solving nonlinear programming problems with stochastic 

objective functions", Journal o f f i n a n c i a l  a n d  Quantitative Analys i s  

VII (1972), 1809-1827. 

[791 W.T. Ziemba, "Stochastic programs with simple recourse", in: P. Hammer 

and G. Zoutendi jk, eds., Mathematical Programming in  Theory a n d  

Practice, 213-274, North-Holland, Amsterdam (1974). 


