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ABSTRACT

Arguments from mathematical system theory are used to show that the
behaviorist-cognitivist debate in psychology is actually a non-issue: abstractly,
the two are equivalent; but from the standpoint of a predictive, scientific theory of
brains and behavior only the cognitivist program holds any promise.

After a brief summary of the algebraic theory of systems, the paper employs
these algebraic tools to propose a functional means by which a brain (human or
artificial) may compactly store and retrieve information. This scheme is then
extended to provide a means for the generation of thoughts and emotions, as well.

Finally, the paper concludes with a discussion of the interconnections between
the brain model suggested here and a number of other models proposed in the
literature.



1. Introduction

In the early 1970s, there was a brief flurry of activity directed toward the
transcription of classical system theory into the terminology of category theory.
One of the consequences of these efforts was a particularly clear and explicit cla-
rification of the relationship between an input/output and a state-variable
description of a dynamical process. In category-theoretic terms, they are
adjoints. Thus, with each input/output description there is automatically associ-
ated a natural state-variable description, and conversely. In this sense, the two

descriptions are abstractly equivalent.

Having been sensitized by a certain amount of reading and a strong personal
interest in problems of mind and human psychology, when I first encountered the
d\;ality between external and internal system descriptions, my immediate thought
was that such a result was a systems version of the behaviorist-cognitivist split in
psychology, and that perhaps the system concepts would provide a framework for
consideration of this dichotomy in more formal and precise terms. During the past
decade I have had occasion to periodically re-consider this duality, each time
armed with somewhat more powerful system-theoretic tools provided by the sub-
stantial advances in mathematical syvstem theory cver this period. The cccasion of
this meeting at the systems interface between brain research, cognitive psychol-
ogy and artificial intelligence provides the opportunity to put forward what
amounts to a model for abstract thought processes. The details of the framework
presented here are almost sure to be wrong; nonetheless, I would be greatly (but
not unhappily) surprised if when the final word is written on the structure of the

brain, the general concepts presented here do not prove to be the foundation upon

which a working theory of any brain, real or artificial, is constructed.

The basic questions that the paper addresses are:
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i) do internal cognitive states exist;
ii) if they do, in what way do they store experiences as memory;
iii) how do such cognitive states interact to produce thoughts;

iv) is it possible for artificial devices like computers and non-neuronal
intelligences to have mental states, or are such states uniquely charac-

teristic of human brains?

The mathematical structure presented here provides a framework for the abstract
consideration of these matters. Their interpretation for real physical brains

remains a topic for future research.

Before moving on, I want to emphasize that this paper is not an attack on
behaviorism; on the one hand, it's fruitless to beat a dead (or, at least, dying)
horse, while on the other hand the system-theoretic arguments given here
strengthen the behaviorist school, at least to the degree that they show that
abstractly behaviorism and abstract cognition are two sides of the same coin. One
side contains mental states; the other doesn’t. But the coin cannot be split apart
and the two halves separated. The best we can do is to view it one side at a time.
Our principal argument {s that one view is more useful than the other, not more

"correct’.

2. DBebaviorism, Structuralism and System Models

Stimulated by the general philosophical idea of logical positivism which was in
vogue at the time, in the early-13820s John Watson made the -radical suggestion that
behavior does not have mental causes. This thesis, further developed and modified
by Hull, Skinner and others, has come to be termed psychological behaviorism. A
principal motivation for adoption of the behaviorist view was to rid psychology of
the dualist attitude that mind is a non-physical entity, somehow disjoint from the

physical brain. The behaviorist solution is to eliminate all notions of mind, mental
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states and mental representation from psychological investigation, concentrating

solely upon externally observable stimulus-response behavior patterns.

By the early-1960s, it was recognized that both the dualist and the behaviorist
approach to human behavior were unattractive, and effort was focused upon
developing a materialist theory of mind that allowed for mental causes. One such
theory, termed logical behaviorism, was quite similar to classical behaviorism and
is really just classical behaviorism in a semantic form. Another ‘t.heory,
central-state identity, postulates that mental events, states and processes are
identical with neurophysiological events in the brain. Thus, under the central-
state identity theory, a behavioral effect is the result of a causal pattern of physi-
cal events in the brain. The problem with the central-state identity notion is that
in either its weak or its strong form, foken and type physicalism, resp., it asserts
that all mental particulars that exist or could ever exis.t. are neurophysiological.
Thus, the logical possibility of machines and other disembodied spirits having men-

tal properties is ruled out because they are not composed of neurons.

During the last decade or so, a way out of these dilemmas has been provided
by the theory of functionalism, an outgrowth of that amalgam of physics, neuro-
physiology, computer science and psychology loosely labeled, "cognitive science.”
Functionalism is based upon the idea that a mental state can be defined by its
causal relations to other mental states and that such mental states can, both in
principle and in deed, be realized by many systems. In essence, behavior is driven
by software, not hardware. A very readable account of thes-e various notions is
given in the popular article by Fodor [1] or the books [2,3,22]. Since it will not be
necessary for us to distinguish between the central-state identity theory and func-
tionalism, we adopt the generic term structuralism to represent any theory of the
mind that involves physical mental states, be they manifested in a human brain, a

disembodied cloud from space or a collection of silicon wafers in a machine.
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The principal aim of this paper is to provide a precise, system-theoretic
argument for asserting the abstract equivalence of behaviorism and structuralism,
while at the same time showing that operationally only the structuralist view
offers the basis for a predictive, causal view of human behavior. Such a conclu-
sion is a natural consequence of the so-called Realization Theorem of mathematical
system theory. Following the path laid out by the structuralist framework, we then
provide a fairly detailed mathematical description of the way in which a 'brain”
would process and store external stimuli in order to generate observed behavioral
responses. The paper then concludes with some speculations based upon the
theory of system invariants for how thoughts are generated as consequences of

internal system dynamics.

3. Stimulus—Response Patterns and External System Models

Let us imagine our information-processing object O (human being, machine,
cloud, ...) as consisting of the proverbial "black-box” connected to its environment
by certain input and output channels (Fig. 1). Assume that at any given moment ¢,
the stimulus u (t) is selected from some set of symbols U, while the observed
response at that moment, ¥ (t), belongs to another set of symbols Y. To simplify

the exposition, assume that ¢t takes on only the discrete values ¢ =0,1,2, - - .

r-- - - === i
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— —— 1
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Figure 1. Information processing object.
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Then a given stimulus-response pattern of O, By, is represented by the sequence

Bp = (u(t),y(t)) , t =012, ---
If we let (1 denote the set of all possible stimuli sequences, with [ representing the

set of all response sequences, then the overall ezxiernal behavior of the object O

can be denoted by a stimulus-response map

f: Q0 - T
wb '
where
o=lu@®u@Q)u@, -}, 0oel, uelU ,
while
y=lwO@yv@Y@), -}, yel', y()eY .

According to the behaviorists, all that can ever be known about O are the sets
land I, together with the map f. The entire content of the behaviorist program is
to determine f, given Q and I, without postulating any internal mechanisms inside
the box. Or, put another way, a behaviorist would claim that to be given f would
be to be given everything that could be known about the disposition of the object
to behave in a certain way, and that it would be nonscientific to assert the
existence of any unobservable internal mechanism generating f. Mathematical

system theory provides an honest, true, clear and direct refutation of this claim.

4. Cognitive States and Internal Models

An internal model ¥ of the behavioral pattern s involves postulating the
existence of a set X of internal state variables, and a dynamic relationship g link-
ing the stimuli © and the states, as well as a rule kA specifying how internal states

combine to generate the response y. More compactly, we have

z(t+1) = g(z(1),u(t)), =(0) ==z,
y(t) = h(z (L), ()
z(t) €X, u(t) eU, y(t) € Y. We would then say that ¥ is an internal model of the

observed behavior f if the stimulus-response pattern By =5p, i.e., if the
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observed input-output behavior of I agrees with that of 0. Note that in order for
Bg = By, it is necessary to construct an appropriate set X, together with
appropriate n;aps
g:XxU-»X ,
h:X-»Y .

From an abstract point of view, the first step in the structuralist program is
to ensure that for any given external model O = ({},I'.f), a corresponding internal
model £ = (X,g .~ ) exists. If this is the case, then it would be natural to associate
the abstract states X with the postulated physical states of the brain in some
fashion, while at the same time interpreting the maps g and 2 as means for encod-
ing and decoding external stimuli and mental states, respectively. It is one of the
great triumphs of mathematical system theory to have been able to provide a
rather definitive resolution of this question.. happily in the affirmative. The
remainder of the paper is devoted to an account of this solution in the above con-
text, together with a detailed exposition of how the encoding/decoding operations
are explicitly carried out, followed by some semi-speculative discussion of the

process of cognition from a systems perspective.

3. Realizations and Canonical Models

Loosely speaking, we can phrase the behaviorist—structuralist problem as fol-

lows:

Given a stimulus—response pattern By, find a "good" internal model

Y suchk that Bo = Bz.

The catch in the above statement is the qualifying condition that the model ¥ be
"good.” It turns out that without imposition of this condition the solution to the

problem is trivially easy: there are an infinite number of models £ = (X,g ,A ) such
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that By = By. But how can we identify a good model from this infinitude? The
answer hinges upon invoking a system-theoretic translation of Occam's Razor, i.e.,
a "good” model is one which is "compact” or "minimal” in some well-defined sense.

Now let us make this idea more precise.

Assume we are given any model ¥ = (X,g,h). Then we say that X is completely
reachable if for any state z* € X, there exists an input sequence w € 1 and a time
T, such that z(T:.z(,0,w) = z*, i.e., the input w transfers the system state from z,
at time ¢ =0 to z* at time T. Notice that the property of complete reachability

depends upon {1, T and g, but is independent of the output function A .

Now let us focus upon the output of £. We call ¥ completely observable if
there exists an input @ € {2 and a time T > 0, such that the initial state £, can be
uniquely determined from observation of the system output ¥ (), 0<t <T. Note

that observability depends upon 2, T, and g, as well as A .

Putting the two concepts together, we call T canonical if it is both completely
reachable and completely observable. The minimality criterion is now clear: the
state space X of a canonical model is minimal in the sense that there are no ele-
ments in X that cannot be accessed using some input, and no two distinct initial
states give rise to the same output sequence. Thus, a canonical model is charac-
terized by a state space containing no elements "extraneous"” to its input—output

behavior By.

Now we return to the problem of modeling the external behavior Bp by a
canonical model £. A compact way of viewing the situation is that we seek to con-

struct a space X and maps g and A such that

i) thediagram



commutes and
ii) the map g is onto, while the map A is one-to-one.

Requirement (i) is just the condition that By = By, while (ii) insures that the model

Z = (X,g.h) is canonical, i.e. reachable and ocbservable.

The main result of mathematical system theory is the following

Realization Theorem. QGiven an input—output map f : Q-+ T, there
always erxists a canonical model L =(X,g,h) such that By = By.
Furthermore, the model £ is unique, up to a change of coordinates in

X.

The proof of this assertion can be found, for example, in [4-5].

Returning now to the behaviorist—structuralist debate, we can re-state the

Realization Theorem in psychological terms.

Cognitive Theorem: Given any stimulus—-response patlern B, there
always exists a structuralist model whose behavior is identical to B,.

Furthermore, this structuralist model is essentially unique.

Remarks

1) The Cognitive Theorem only states that associated with any physically

obseruvable stimulus—response pattern B, there is an abstract set X and abstract
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maps g and kh, such that £ = (X,g.kh) forms a canonical model with By =Bp. In
order for the Cognitive Theorem to form the basis for a structuralist (or material-
ist) theory of behavior, it is necessary for these abstract objects to somehow be
related to actual mental states. The latter part of the paper examines just how

this might be done.

2) At one level, the Cognitive Theorem says that there is no essential differ-
ence between the behaviorist and structuralist schools of thought: they are
abstractly equivalent. On another level, the two theories are worlds apart; it all
depends upon your point of view. The structuralist model provides an explanatory
mechanism (the states X and the maps g and k) for behavior that also has a
built-in predictive capacity, as well (the dynamics z(t+1) = g(z(f),u(t))). The
behaviorist model provides neither; it offers only a catalogue of experimental
observations; the raw data, so to speak. From this point of view, a behaviorist can

only report the data, while a structuralist can actually generate it.

8. Algebi‘aic System Theory — A Brief Review®

The diagrammatic representation of the realization problem given in the last
section makes it transparently clear that the role of the state space X is to
somehow "mediate” between the external inputs from (1 and the observed outputs
from . But what kind of psychological interpretation can we attach to this pro-
cess of mediation? Or, more precisely, what functional interpretation can we
attach to the maps g and A? The only consistent answer to this question is to
assert that the role of g is to "encode" an external stimuli @ and represent w
internally as a state, while the role of A is to ""decode’” a state and thereby pro-

duce an observable output 7. At this level of abstraction, these observations are

* This secticn makes heavy mathematical demerds upon the reader. While the ideas are a
standard part of any introductery course in abstract algebra, many readers may wish to sp

this section upor first reading.
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fairly obvious. But in order to make any meaningful progress toward tieing
together the abstract elements X, g and A and the actual physical structures in a
brain, it is necessary to be much more specific about the precise nature of these
encoding and decoding operations. The hope, of course, is that the specific
mathematical structures involved in coding an input @ as a state will offer a clue as
to the physical structures to look for in a real brain. Similarly, the way in which
an abstract state is decoded to produce an output ¥ provides a suggestion as to

what pathways to look for in the brain to explain actual behavior.

The simplest and most instructive way to proceed on this question is to exam-
ine the case when the input-—output behavior f is linear. The past decade has
seen the development of an elegant algebraic theory of such processes, spear-
headed by the original work of Kalman [5]. A good treatment of the algebraic
theory of linear systems is found in t.hé works [6-7]. Here we shall sketch the

bare essentials of this theory as needed for our subsequent arguments.

The first step in the theory is to show that the input ahd output spaces Qand I'
can be given the structure of k[z J-modules where k is an arbitrary commutative
ring, and k[z] is the usual set of polynomials with coefficients in k. (Remark: for
most purposes, we usually let & be some number field but the added generality of &
= ring comes in handy in certain applications). The module structureon {} and I is
imposed by noting that we can formally associate any finite input o with a polyno-

mial n(z) having coefficients taken from k&, i.e.,

t-1

wNatz‘+at_1z + ot a2z Yoy,

a; € k™, where m is the number of input terminals. The time marker ¢ just indi-
cates the time units prior to t = 0 at which the signal a, was applied.* Thus, under

the above identification w € €™ [z], the set of m vectors each of whose components

* For technical reason, it is convenient to assume that the input starts at time r = —f and
stops at v = 0. The output then begins at time v = 1, Such a convention insures causality
and can be made without loss of generality.
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is a polynomial in k[z]. It is easy to see that under scalar multiplication by k[z],
the set 0 admits the structure of a finitely-generated free module. For us the
importance of this result is that it enables every input to be associated with a

polynomial.

A similar construction associating outputs y € I’ with formal power series
- kP[[z ‘1]] can also be carried out. This construction makes I' a k[z] module, as
well. Since our focus is upon inputs, we omit details of this construction, at least

for the moment.

The linearity of f., together with the above module structures on Q and T,
means that algebraically the input—output behavior f is a k[z]-homomorphism.
Thus, by standard algebraic theory there is a module that is naturally induced by
S : the quotient k[z]-module, {/ker /. Sinc.e this module is essential for our
development, let us examine the system-theoretic content of this quotient module

construction.

We can define a natural notion of equivalence between two inputs w, @ by
w Ry 6 iff fw) =r@).
Let us call this module egquivalence. It is easy to prove that the equivalence
classes X, under N, admit the structure of a k[z]-module which we denote
Xf = (1/ker 7. On the other hand, from a systems perspective a somewhat more
natural type of equivalence on () is the so-called Nerode equivalence, in which two
inputs w, © are Nerode equivalent if and only if thg output sequences f(w), f (&)
are the same and remain identical whenever both w and & are followed by an arbi-
trary v € Q, i.e.,
w~y & Hff f(wov)=s(0o V)

for all v € . If we denote the Nerode equivalence classes by (w)y and the module
equivalence classes by [o]f, the natural question is to ask whether there is any

relationship between the two sets of equivalence classes. The answer is they are
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identical, (W)y = [co]f for all w € Q0.

For a variety of reasons, both substantive and technical, the Nerode classes
constitute the natural definition of the state set associated with an input—output

map f. Thus, we are led to what Kalman [5] terms

The Fundamental Theorem of Linear System Theory. The natural state
sel Xf = (V/ker f associated with a linear input—output map f over k

admits the structure of a k[z]-module.

In addition, we may define two maps Gf and Hf using the state space Xf. They are

Gf Q- Xf
and
Hf . Xf nd r
[l b f(w)

It is easy to verify that both of these maps are k [z ]-homomorphisms. The triple

(Xf.Gf ,Hf) is called the moduleoff.

Now let us turn our attention to a linear system X given in internal form, i.e.,

we want to associate a k[z ]-module structure with the system

z(t+1) Fr(t) + Gu (t),
y() = Hz (t)
z €Xp=k™, u €k™, y €kP, where F, G, H are k-homomorphisms.

(%)

Qur first order of business is to impose a k [z ]-module structure on Xy = 2o
Using standard arguments, since F' is a k-endomorphism of the k-vector space Xy,
we can impose a k [z ]-module structure on Xy given by the rule

(mz)b mz =n{F)z ,
me€k[z], z € Xy, i.e., we evaluate the polynomial 7 on the matrix 7, then apply

the result to the state z.
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The construction of Xy as a k [z ]-module shows us that dynamical action can be
regarded as a type of multiplication. More precisely, if & € {1 is some input, while
z € Xy is the initial state, then after one time unit, the input @ will have shifted =
to the new state

0

z o w=Fltdegoy o pM Fteu(t)
t=—-degw

Thus, we see that dynamical action can be expressed as module action, i.e., the map
z - Fx in vector-space notation is equivalent to £ » 2z-x in module notation.
Using this fact, we can also write the above expression in module notation as

m

zow=z*eE0z 4+ Yo, g,

k=1
where g, = Ge;, e, being the unit vector with a "1" in the k-th position, "0" else-
where, and @, is the input that must be applied to the k-th i_nput, terminal so that

z =00 w.

Just as we could associate maps Gf and Hf with the state module Xf, we can

also associate maps Gy and Hy with Xy. These maps are
Gz 0 - Xz

m
w P 0ow= ) w9
k=1

Hz . Xz -» P
z P (Hz H(z-z)H(z%z), ")
It is straightforward to verify that both Gy and Hy are k [z ]-homomorphisms. We

call Xy,Gyg,Hy) the module of Z.

Now let us turn again to the realization problem, algebraic style. We first of
all note that realizations certainiy exist for any f. For example, take Xy = (),
F = oq, the left-shift operator on 1, ¢ = identity and # = f. This trivial realiza-
tion is highly non-canonical and useless. The module machinery given above pro-

vides the basis for another realization which is natural, non-trivial and useful.
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The underlying idea is to associate with S its module (Xf,Gf,Hf) and to then view
this triple as a dynamical system L. The first problem is to show that, in some
sense, such a realization is the only one that need be considered. To this end, we

have the

Fundamental Theorem of Realization Theory. Any two canonical real-
izations of f are isomorphic as k[z]-modules, and therefore as

dynamical systems.

Recall, we say a realization L = (F,Q,H) is canonical if it is both completely
reachable and completely observable. Algebraically, this means that the following
matrices have full rank

(GFG.F?G, - F*71G) and (H'.H'F' H'(F)% - HEF)™T .

In order to actually construct a canonical realization X from f, we need the
idea of a torsion module. Let R be an arbitrary ring and X an arbitrary k-
module. Then if there existsanr, € R, r, #0, such that r.-x =0 for eachz €X,
we say X is a torsion module. Now let Y be any subset of X. Then the annihilator

Ayof Yis
Ay =lr €eR:ry =0, v €7}
The case of interest for us is when R =&[z]. Then if X is an arbitrary torsion
k{z]-module,
AX =k[2]‘PX ' ?X #0 .

We call ¥y the minimal polynomial of X.

Now let us assume that Xf is a torsion module with minimal polynomial ‘Pf.
(Remark: this is equivalent to assuming that f has a finite-dimensional realization,

i.e., dim Xy < =, when we regard Xy as a k-vector space). Under this condition we

can represent f by a transfer matriz.
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Transfer Function Theorem. Let f: Q »T be any k [z ]-homomorphism
with the minimal polynomial of Xf being \Pf. Then f is unigquely
deltermined by ils pXm transfer matriz Wf whose columns are the p-

vector rational functions w, =f (e, ), &£ =1.,2, -+ ,m.

Since the transfer matrix is entirely equivalent to the module (Xf,Gf ,Hf). we
can construct a canonical realization of f by realizing Wf. To do this, we need to
make use of the Invariant Factor Theorem for matrices over a principal ideal
domain R (such as k[z]). Firstly, let us consider the polynomial matrix ¥W (here
we drop the unnecessary subscript f). By the Invariant Factor Theorem, we can

write

YW =AI10E8 ,

where 4 and B are pxp and m xXm matrices (not necessarily unique) over R,
respectively, with det A, det B = units in R, while

II =diag (Ay, """, Ag.0, - -+ ,0) , Ay €ER
[T is unique (up to units in R), and Ay | A4, 1 =1,2, -+ ,g=1. Here ¢ =rank ¥¥#.
The A; are called the invariant factors of ¥W. But what we need are the invari-
ant factors {¥;] of W. These are easily obtained from the {A;] by the following
procedure. Let 8, = (A;,¥) (= greatest common factor between A; and ¥). Then

¥, =¥,
‘{’2=‘P/82.

&, = ¥/0, ,

r

where r is the smallest integer such that ¥|A; for ¢ =r+1,:-:,g = rank ¥¥. In

other words, the ¥, are the denominators of the scaler transfer functions A; / ¥
after cancellation of all common factors.

In order to carry-out our realization algorithm, it is somewhat more
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convenient to factor ¥Y#W over the ring k[2]/k [z ]¥ rather than over k[z]. This
gives

VYW = PLQ mod ¥ ,
with det P, det @ units in k[z]/ k[z]¥ with L a diagonal matrix unique up to units
in the same ring.

Next, let Fy be a cyclic matrix with characteristic polynomial ¥, e.g., if

1

¥, =2z" +ayz" 7 + -+ + a,, then
0 1 0 0]
0 0] 1 0
F'i =
0 0 0 1
—qr ~Qr_y ~&r_2 —ay

For any such Fy, we have

Y, (z) (2l —Fy) ™t = v (z)w' (z) mod ¥, ,
where the components of v and w are linearly independent over k& and if
D;w'y =vyw’ymod ¥,, then o; =gv,, W, =& 'w;, where & = unit in
k[z]/k[z]¥,. Further, define L =diag (ly,l,, - "), uy =¥/ ¥; andlet p; = i-th
column of P, ¢’y = i-th row of @ in the factorization of ¥W. Lastly, let Gy and H;

be the solution of the equations

Hivy = 4/ uy)p; mod ¥, ,
w6 =g ymod¥ , i=12-"",q )

This system has a unique solution as long as we agree to let the polynomial vectors
on the right sides have degree < deg ¥,;, which can always be done in view of the

"mod ¥, " operation.

Finally, we can state the

Canonical Realization Theorem. FEvery proper rational transfer

matriz W may be canonically realized as the direct sum of the sys-
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tems
2i = (f-'i 1Gi lHi) [
where Fy is a cyclic matriz with characteristic polynomial ‘Pi and Gy

and H; are the solutions to the system (*), 1 =12, - .q.

Remarks: (1) The components Ei are the elementary "atoms” of the linear
system Z, which canonically realizes W (or f). Thus, knowledge of the invariant
factors of the module (Xf.Gf,Hf) essentially determines the realization I.
Schematically, the canonical realization £ = ® Z; is as shown in Fig. 2. The high
level of internal connectivity of this realization should be contrasted with the con-
ventional (and highly non-canonical) realization of W depicted in Fig. 3. This
observation is clearly of some significance in the cont:ext. of brain models, as we
shall see later.

() While it is not necessary for our development here, it is of interest to ask
whether f can be realized without knowing the invariant factors of W. Perhaps
surprisingly, the answer is yes, as first shown in the algorithm of B.L. Ho [8],
which is described in detail in [4-5].

The preceding set-up shows that the canonical state space Xf of the object
Op = (Q,T.r) is isomorphic to an equivalence class of polynomials in k[z] mod \Pf,
where ‘I’f is the characteristic polynomial of the k[z]-module Xf. In other words,
the system Ef is a patiern recognition device: the input pattern w is "remem-
bered”" as the state [w] £ which is represented by any polynomial o* such that
w —-w* =0 mod '{'f. The simplest such polynomial o* is obtained by dividing « by
'{'f and designating the remainder as o=*.

It is well to keep in mind that the abstract property: ”Ef remembers w as o*"

is a coordinate-free property of the system; however, if

w(z)=a; +az + - +a,z" ! mod ¥, is an actual input with a; € k™, the
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Figure 3. Conventional realizationof ¥.

fay ] do depend upon the choice of basis in Xf. Thus, there are many coordinate
maps w H a;(w), and the practical, or operational, realization problem really

amounts to finding good ways to compute these coordinate maps. This crucial fact

was most concisely expressed by Kalman in {9]:
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"In any dynamical system, linear or not, the coordinate maps correspond
to abstracting certain characteristic features of the input relative to
the basis chosen for the state space. The whole problem of realization
may be viewed as the problem of effective computation of coordinate
maps. Even if the internal structure of a system is known, its operation
in response to inputs cannot be fully understood until it is possible to say
exactly what each state says about the corresponding equivalence class
[o]f of inputs.”

While the algebraic development thus far has been confined to linear
input—output maps f, the foregoing statement makes it clear that the underlying
principle has broader currency applicable to any nonlinear behavior. The trick
is to capture the behavior in a usable mathematical form. For linear systems the
relevant form is polynomials; for general nonlinear systems the relevant struc-
tures are unknown. What is known, however, is that for important classes of non-
linear behaviors the structure of the state space Xf can be algebraically charac-
terized as a manifold or, even more specifically, a variety. For example, in [9] it
was shown that the natural state set of a multilinear map f is an n-dimensional
algebraic variety Vf embedded in k¥, where N is the number of coordinates neces-
sary to parameterize the Nerode equivalence classes. Thus, the state of such a
system is given by N coordinates, of which only n need be stored. The remaining
N - n coordinates can then be computed as algebraic functions of the first »n
coordinates. However, even for simple bilinear systems, examples in [9] show that
the state coordinates in ¥ are rather complicated functions of the inputs. All of
this is very suggestive when interpreted in terms of the way a brain may actually

store information. We examine this question in the next section.

7. Pattern Recognition, Brains, and Codes

The algebraic framework outlined above may seem needlessly elaborate, or
even pretentiously eccentric, to those schooled in a more traditional approach to
control and system analysis via conventional tools of real vector spaces, matrices,

Laplace transforms and the like. In this section we attempt to dispel these
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prejudices by displaying the power of the module-theoretic machinery to pain-
lessly deal with a number of basic questions that arise in attempts to model brain
functions as dynamical systems.

To keep things simple, for the moment let us assume that the
stimulus—response map f is linear and that the associated state module Xf is
cyclic, i.e., Xf is generated by a single element ¢ € £{z]. Further, let us suppose
that Q =k[z], i.e., m =1 (a single-input system). Then Q] is generated by 1 (the
polynomial which is identically 1). Thus, Xf = I/ kers is also cyclic and is gen-
erated by g = tl]f, and ker f( =k [z]‘l'f) consists of all polynomials @ such that
J(w) =0. Let ‘I'f be the polynomial of least degree in this set. Putting all these

remarks together, we have the

Representation Theorem. UXf is a cyclic k [z ]-module with annihilat-
tng polynomial \I/f, then Xf is isomorphic to fall polynomials

me€k{z]: deg m < ‘I'fl.

Remark: The importance of cyclic modules in the overall scheme of things
comes from the fact that all finite modules over a principal ideal domain (like
k[z]) are isomorphic to a direct sum of such cyclic modules. The components I, of
the Canonical Realization Theorem of the last section are the concrete embodi-
ments of these abstract cyclic modules. Thus, the subsystems corresponding to the
cyclic components in the decomposition of Xf form the elementary 'building
blocks” of the linear system f. The same type of result can also be shown to hold
for broad classes of nonlinear systems at the expense of a more elaborate

mathematical machinery.

By the Representation Theorem, we may view Xf as essentially a pattern

recognition device. The input @ is coded as the state @, where & is the polynomial
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of least degree in the class [GJ]f. It is potentially of considerable significance that

the coded pattern &, the remainder after dividing w by 'Ilf. may bear no obvious

relationship whatsoever to the original stimulus w. The following examples from

r

[5] illustrate this point. Letting w = ) w,z!, if

(1)

(2)

(3)

(4)

i=1
'Ilf(z) =z, then @ = wp, the last received input value. Such a system
"forgets" everything in the stimulus sequence except the last element.
k-1
Ye(z) = zk, then & = oy z!. This system remembers the last k ele-
1=0
ments of the input sequence.
¥,(z) =z —1, then, @=wy+wy + "+ +w,, r =deg w. Thus, this sys-

tem codes the input w by adding all of the stimuli received, i.e., it is an
integrator.

'Ilf =z% — q, then z¢w = alw mod 'Ilf for any [ =2 0. Thus, the system is
sensitive to inputs of period &, while other non-periodic inputs tend to be
averaged out. The factor a enables past inputs to be either enhanced
(a>1) ‘or diminished (a <1). To see explicitly how this system works,
assume k =2, so that the system is sensitive to inputs of period 2. Let

4

W=y + oz + ozzz + 03-3 + wsz”. Then a simple calculation yields,

G =(wy + awq)z + (wo + aw, + a2w4) .

If @ has period 2, then wy = w; = W, and wy; = wq. Such a structure will
uniformly increase each of the coefficlents in &, while any other struc-
ture in o will tend to affect each coefficient differently. Furthermore,
the form of @ shows that a > 1 will enhance past inputs, while a <1 will

tend to deemphasize earlier signals.

These examples show part of the range of coding possibilities that each of the

cyclic atoms of a linear system can possess. The Canonical Realization Theorem
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shows that however complicated the behavior of f may be, it is composed of a com-
bination of elementary behavioral "atoms' of the above sort, interconnected as in
Fig. 2. It is the high level of interconnectivity seen in Figure 2 that enables an
arbitrarily complicated behavior f to be composed of such elementary behaviors
as those in the preceding examples. From an evolutionary point of view, we would
not expect to see a non-canonical realization of f as in Fig. 3 because it is just too
large and unwieldy (too many complicated components substituting for the high
level of connectivity). In short, it is more efficient to interconnect many simple
behavior modes than to rely on fewer, more complicated types. And this is exactly
what we see when we look at a real brain: thé elementary components (neurons)
have extremely simple behavior, but the density of interconnections is overwhelm-
ingly large. Such experimental observations strongly argue for the view of a
brain as a canonical realization of observed behavior. Now we exploit the
module-theoretic structure in order to address two important issues related to the

relationship of brains and machines: simulation and pattern recognition.

The simulation problem is of direct significance to the question of whether
or not machines can emulate the behavior of brains. Imagine that W, is the
transfer matrix for the stimulus-response behavior of a given organism. We now
ask under what circumstances a "machine” with transfer matrix W, can simulate
W,. The answer to this question involves the notion of one transfer matrix dividing

ancther.

Definition 1. Let W, and W, be transfer matrices. Then W,|W, (¥, divides

W) if and only if there exist matrices V,U over k[z]such that Wy = W,U.
If £, and I, are the canonical realizations of ¥,, then we have

Definition 2. I;|Z, (£, simulates I,) if and only if Xy, !Xgy i.e., if and only
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if le is isomorphic to a submodule of X‘Ez (or isomorphic to a quotient module of

Xz,

From a dynamical point of view, the condition W,! ¥, means that the inputs and
outputs of the machine having transfer matrix W, are re-coded by replacing the
original input w, by wy = U(z)w,, while the output 7, is replaced by 7, = V(z)7,.
Such a change involves delay, but no feedback. If ‘I'WE is the characteristic poly-

nomial of W,, d = deg ‘I';ye, then the re-coding can be physically carried out with d

time units of delay. Under such a re-coding, we clearly have W, | ¥,

which is also satisfied if V and U are reduced mod \ng. Putting all these defini-

tions and observations together, we can easily prove the

Simulation Theorem. I, can be simulated by I, if and only if ¥, (¥W,)

divides ¥, (W), for all i.

Thus, a computer with transfer matrix W, can simulate a brain with transfer matrix
W, if and only if each invariant factor ¥,(W,) of the brain is a divisor of the

corresponding invariant factor ¥, (W,) of the computer.

Now let us turn to the patiern recognition problem. It is clear that one of
the characteristic features of human intelligence is the ability to learn and
respond to a wide array of external stimuli (patterns). Once a pattern is learned,
in some fashion the brain must be able to recognize the pattern again among the
myriad patterns presented by the external world. The module setup provides a

simple criterion for how this can be accomplished.

Imagine the pattern we want to recognize is represented by the input ¢ € )

and we want to build a machine that fails to react to any other input m # ¢, By
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what has gone before, we know that the machine is totally characterized by its
minimal polynomial ¥, so our problem is: find a machine ¥ that recognizes ¢, but
fails to respond to an input 7 # &. In module language the solution is trivial: we
need to find a ¥ such that ¥|{m but ¥ £ $. A solution is possible if and only if
w i &.

Interpretation. The pattern discrimination problem can be solved as long as
the pattern ® to be recognized is not a multiple of the recognition circuit and
every pattern we want to reject is such a multiple. In order to physically carry
out such a discrimination, a brain must clearly have many such elementary '"cir-
cuits” wired-up in various series-parallel combinations. Referring to Fig. 2, we
could imagine each of the blocks in the canonical realization as being one such ele-
mentary circuit, the entire circuit being devoted to recognition of a single such
pattern . Then a brain would consist. of an unimaginably large number of copies of

Fig. 2.

8. Thoughts and Group Invariants

So far, we have created a plausible mechanism at the functional level whereby
external behavioral modes of an organism can be coded and decoded via the inter-
nal merntal states of some kind of "brain"”. Now we wish to explore the manner in
which this mechanism might give rise to what we ordinarily regard as internal
"thoughts,” as distinct from external behavioral activities. Any decent model for a
brain must account for subjective emotional experiences like pain, love, jealousy,
pleasure, etc. and not just externally observed actions like motion, sleep, talking
and so forth. Such considerations edge dangerously close to the classical
mind-body conundrum that has been explored for centuries by armies of philoso-
phers, neurophysiologists, computer scientists and other armchair speculators.
The position argued here is probably closest to a central-state identity view on

this issue, although it is no! incompatible with other materialist views, including
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the dual interactionism of Popper and Eccles [10]. In any case, in this section we
consider how the system-theoretic machinery can be interpreted in a manner that
allows us to use it as a mathematical metaphor for the way thoughts are generated
and put together inside a brain. The ideas underlying our development involve a
combination of the concepts of a change of state and the not.ion of system invari-

ants.

According to recent work in brain physiology, the central cortex of the brain
consists of around 4 million neuronal modules, each composed of a few thousand
nerve cells. Each module is a column that is vertically oriented across the cere-
bral cortex, and is about 0.25mm across and 2 to 3mm long. These modules are now
recognized to be the functional units of communication throughout the association
cortex which forms about 95% of the human neocortex. Thus, in the analogy of
Fccles[11], a human brain can be thought of as something like a piano with 4 million
keys. Carrying the musical analogy a step further, Eccles also postulates four
parameters that the cortical modules utilize in generating the virtually infinite
number of spatio-temporal patterns that constitute the conscious experiences that
can be derived from the brain. These parameters are intensity (the integral of
the impulse firing in the particular module's output lines), the duration of the
impulse firing from the module, the rhythm, or temporal pattern of modular firings

and the simultaneity of activation of several modules.

As a working hypothesis, we will associate each neuronal module with an inter-
nal model Ef = (F,G,H) of a particular behavioral pattern f. The first point to
observe here is that even though a module Ef is originally needed to account for
the pattern s, once the mechanism (wiring diagram) corresponding to Fig. 2 is phy-
sically implemented in the brain, the module X r may generate many other
behavioral responses, as well. It is trivial to verify that the output from Ef is

t—-1
y(t) = Y B Tou(s)
s =0
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Thus, Ef will reproduce the input—output behavior f as long as the input sequence
fu (*){ is that originally given as part of f; however, if a different input sequence
fu* ()] is given, then Ef will, in general, produce an output sequence
y* ={y*() # {y ()| = 7. As a consequence of this observation, each of our neu-
ronal modules Ef will correspond to a particular "learned" behavioral mode f, but
it could also produce an infinite variety of other modes f* # f, once the neuronal
pathways (essentially Lhé connective structure of F', together with the connections
¢ and H linking the inputs and outputs to the st.aies) have been laid down. This
type of ambiguity (or lack of one-to-one correspondence) between f and Ef can be
eliminated by employing the tacit assumption that a standard input sequence is
used, generally w(0) =1, u(t) =0, t #0. It is tempting to conjecture that much
of the processing of stimuli carried out by the body’s receptor organs is arranged
to implement such a normalization prior to the input reaching the neuronal module. ‘
We shall assume that this is the case and that there is a one-to-one match between

cortical modules and behaviors.

Under the foregoing hypotheses, there are on the order of 4 million or so
"elementary” behaviors, one for each cortical module. These elements of life
correspond to the keys on the plano. The intermodular connections coupled with
the 4 parameters of intensity, duration, rhythm and simultaneity, then generate all
behavioral modes. Let us now take a look at how these elementary behavioral

modules could be stored in the brain.

First of all, each module consists of about 2500 neurons capable, therefore, of
storing 2500 bits of information. If we assume that a single real number requires
25 bits, then this means that a given module can store around 100 real numbers. If
the system Ef = (F,CG,H) corresponding to the module has a state-space of dimen-
sion n, and the number of input channels m and output channels p are such that

p.,m <n, then to store Ef requires O(n?) numbers. With a brute force storage
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arrangement of this type, each module can only have a system Ef such that dim
Ef <10. But this seems much too small to be able to account for even reasonably

complex 'elementary' behaviors.

A way out of the foregoing dilemma is to recall that the canonical model Ef is
determined only up to a change of coordinates in the state-space. Thus, any other
model £, = (F,G,H) = (TFTLTG,HT '), det T #0, will display exactly the same
elementary behavior. By standard arguments, it can be shown [4,12] that as T
ranges through the group of non-singular matrices GL(n), there exists a
representative of the behavior class of f, call it flf = @.5.1’?), such that the
number of non-fixed elements in f:f is O(n), i.e., by viewing the states in an
appropriate basis, it is possible to represent the behavior f by storing only O(n)
numbers. These numbers form invaritants of the group action and completely
determine Ef. A reasonable conjecture is that evolutionary adaptation has
arranged matters so that the "hard-wired” neuronal connections in the cortex are
such that the brain represents each learned behavior in something close to this
optimal coordinate system in the state-space. Thus, with the same 2500 neurons in
each module, it is possible to accommodate elementary behavioral modes f requir-
ing canonical realizations Ef such that dim Ef can be on the order of 100 or so, an

order of magnitude increase over the brute-force storage scheme.

Up to now we have considered each cortical module Ef as a means for
representing a given observed behavioral pattern f. But what about internal
thoughts? How can we account for aspects of consciousness involving notions like
hope, fear, paln, jealousy, hunger, thirst, and other such non-behavioral, but
nonetheless real, mental phenomena? Is there any way to accommodate these
aspects of consciousness within the systems framework developed above? We con-

tend that there is.
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To make progress on the problems of emotional states and thoughts, let us
reconsider the diagram of I given in Fig.2 and examine the meaning of the blocks
denoted there as g4y, 24y and (27 —F;) 1. Our contention is that the elements 9y
and h'ij are just pre- and post-processors linking the module to sensory
effectors/effectors, as well as to the parts of the brain and to other modules,
while the elements (zI—F‘i)‘1 and the lines into and out of the blocks (zI—Ft)‘1
represent the internal workings of the cortical module itself. With this picture in
mind, let us consider the question of emotional states and cognitive states

separately.

There is now a great deal of experimental evidence suggesting that most emo-
tional states (hunger, pain, taste, etc.) have their origin in the limbic sysiem, that
collection of nuclei and connecting pathways at the base of the brain. If this is
indeed the case, then as far >as cortical modules are concerned it makes little
difference whether the inputs come from external sensory stimuli or from another
part of the brain, like the limbic system. From the perspective of the cerebral
cortex where our modules Z; "live”, inputs from the sense organs and inputs from
the limbic system are treated equally, and appropriate cortical modules are
developed early-on to handle each. In terms of Fig. 2, some of the input channeis
to the g¢; come from sensory receptors, and others from the limbic system. The
emotional states arising in the limbic system may or may not evoke observable out-
puts depending upon the post-processors h'ij since, as we know, sometimes emo-
tional states generate observable responses (crying, hunger pangs, violent move-
ments) and sometimes not. In any case, in our set-up there is no need to distinguish
emotional states from sensory stimuli, other than that one comes from the outside

world, while the other comes only from outside the neo-cortex.

Accounting for cognitive thoughts poses a somewhat more delicate task, since

such thoughts are assumed to be self-generated within the cortex itself, quite
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independently of stimuli from either the sense organs or other parts of the brain.
Our somewhat speculative approach to this problem is to contend that such
thoughts are by-products of primary cortical stimulation through the external
input channels 9ij- We have already asserted that each module Ef is established
by a particular behavioral mode S, with the 944 conditioned to pre-process the
appropriate stimuli, transforming it into a standard form. But it is also the case
that each such cortical module shares connections with 10 or so neighboring
modules, which may generate stimuli that feed directly into the internal blocks
(=1 —Fi)_l, by-passing the preprocessors. Such inputs would, in general, cause the
module Ef to emit outputs to the h'ij that may even result in a behavioral output

different from f if the threshold of the k4, is attained.

In general, we may assume that such direct stimuli from the other modules is
weak compared to that from the pre-processors so when the "real” input signal for
J 1s present, the 'moise” from the other modules is too feeble to influence Ef.
Note also that in order for Ef to be ready to function properly when the right
stimuli for f are applied, it must be the case that the matrix F is stable with
rather quick damping back to the zero state. Otherwise Ef would not be in a posi-
tion to respond properly to rapid repitition of the same stimuli.

Thus, we conclude that thoughts are generated only when the module Ef is in
its quiescent state waiting to perform its main function, and such thoughts are gen-

erated by the noise present in Ef from other modules.

To summarize: the brain's cortical modules correspond to elementary
behaviors f, which are represented internally by the objects Ef. For compact-
ness and efficiency, we further contend that nature has arranged things so that
the objects Zf are stored by the invariants of Zf under the group of state coordi-
nate changes GL(n). Each such collection of numbers characterizes an entire

class of systems Ef. all of which canonically represent the same external behavior
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J. The simplest such element Zf of each class contains O(n) parameters, enabling
the brain to efficiently reproduce elementary behaviors involving state spaces of
dimension on the order of 100. Since there are around 4 million such cortical
modules in the human brain, various series-parallel connections of those elemen-
tary behavioral/cognitive "atoms" provide ample material for the almost unlimited

variety of thoughts, emotions and experiences of human life.

8. Discussion

The work presented here represents a materialistic account of how
behavioral and cognitive phenomena can be represented and/or generated in a
brain-like object. The basic arguments are schematically displayed in Fig. 4. The
central element in this entire scheme is the Realization (or Cognitive) Theorem,
which asserts that Behaviorism and Structuralism are formally‘equjvalent.. The
balance of our argument is then devoted to supporting the thesis that the structur-
alist view, while equivalent to behaviorism at the formal level, is vastly more use-
ful as a means for investigating the brain-mind problem. Let us now examine the

compatibility of the scheme of Fig. 4 with other mathematical models of the brain.

A. The Hoffmann Model — in a series of papers {13-15] over the past two
decades, Hoffman has developed a model of brain function that is based upon the
premise that the neuron is an infinitesimal generator of our perceptions, cogni-
tions and emotions. This model makes extensive use of the correspondence between
a Lie group germ and neuron morphology to give a very stimulating account of
many aspects of form memory and vision. In this theory, memory consists of invari-
ant recognition under time changes. Hoffman uses the usual mathematical struc-
ture governing invariance in the presence of an infinitesimal generator, namely
Lie transformation groups together with their prolongations, to establish higher
order differential invariants. These structures then show how the memory engram

is stored within the brain.
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Pehaviorism vs. Structuralism
@input—output, external) (state—space, internal)
berhavior B, behavior By

rf: Q-1 L =(F.G,H)

Realization Theorem

T

Canonical State Space Xf Group Invariants
Thoughts, Emotions Cortical Modules Ef
({th].[hu ].[(21—1‘-'1)_1] ' (Sf = F.G.HY)

Figure 4. System-theoretic view of a brain.

The extensive development expressed by Hoffman is in no essential conflict
with the view presented here. Our treatment of pattern storage (the states Xf) has
remained deliberately at the functional level, omitting any conjecture as to exactly
how these residue classes are physically stored in the brain. The treatment by
Hoffman provides a quite plausible micro-level means by which the actual brain

. "hardware” implements the coding scheme that we have proposed.

B. The Pribram Model — the neurophysiologist Karl Pribram and the physi-
cist David Bohm have jointly proposed a model of the brain as a Aologram [16-18].
Roughly speaking, their idea is that the physical brain somehow "tunes-in" or
"reads' a holographic universe that exists on some plane transcending space and
time. Philosophically, such a concept is a close relative of the dual-interactionism

hypothesis of Popper and Eccles {10], whereby mind and brain are two entirely
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different entities interacting through some sort of "liaison’ modules in the physi-
cal brain. We neither accept nor reject this notion, although our sympathies tend
toward the central-place identity position outlined earlier. Be that as it may,
there is an interesting physically observed aspect of the holographic model that

bears upon the ideas presented here. This is the issue of distribuied memory.

Beginning with the experiments of Lashley, it has been observed that the
memory of a specific event seems not to be localized in the brain. Patients suffer-
ing extensive surgical removal of brain tissue due to illness or accident report
that memory of specific events is still retained, albeit in a somewhat degraded
form. This is exactly the type of result one would expect from the coding of an
event as a hologram, in which each part of the hologram contains the entire event.
At first hearing, such a phenomena would seem to deal a serious blow to our idea of
each elementary behavioral mode (event) f being associated with a specific corti-
cal module Ef. How can it be that the memory of f would be retained if Ef were
somehow damaged or destroyed? The key to understanding how this can come about

is to recall the way in which Ef codes the behavior 1.

Essentially, the input o« associated with the event f 1is stored as
& = wmod ‘I'f, where ‘Ilf is the minimal polynomial of the module 'Z.‘f. The pr‘obleh
then becomes that of determining how a different module 20 could also code w as
&. But, this is easy. I, will also code w as & if and only if ¥, divides ¥,. So, all
cortical modules whose minimal polynomial contains ‘Ilf as a factor will also code
as o. It is not unreasonable to suppose that with 4 million such modules available,
each having a minimal polynomial of degree around 10%, there will be many such
modules able to act as a "back-up’ for storage of any given event f. Furthermore,
since we can expect that for such a back-up module Eg. we would have deg \[ff <

deg ¥_, implying that while Z.‘g will remember f, it will only do so as a secondary

g

function, its primary function being to recall g. Thus, if Zg must be employed due
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to the removal of Ef. we might expect some corruption or noise in the recall pro-

cess from the interference by the primary pattern g that Eg recognizes.

C. The Grossberg Model — in a long series of papers summarized in the bock
{19], S. Grossberg has presented a theory of learning, perception, cognition,
development and motor control that involves a rather elaborate theory of non-
linear processes, emphasizing the role of "adaptive resonances"” in neural circui-
try to explain behavioral phenomena. While the details differ considerably from
those presented here, the work of Grossberg is very much within the same spirit as
that given here, and a reasonable conjecture would be that extensions and ela-
borations of our scheme for nonlinear behaviors, coupled with a closer adherence
to experimental results, ultimately may lead to a convergence of Grossberg's work

with ours.

The real difference between the Grossberg theory and ours is that we begin
with data (as does Grossberg) and then deduce a canonical model using certain glo-
bal system principles (like feachability and observability) to insure the "'good-
ness” of the model. On the other hand, Grossberg's procedures follow along some-
what different lines. He uses the data to pestulate certain dynamics containing
various tunable parameters which are then adjusted to demonstrate the system's
capacity to adapt, learn, remember, etc. But nowhere in the model itself is there
any global property that a pricri insures that this class of models possesses the
relevant properties; they must be deduced after the fact. Nonetheless, a closer
inspection of thé Grossberg models from the systems perspective offered here‘

would undoubtedly pay considerable dividends.

Given the high degree of compatibility of our proposed structure with these
much more well-developed models, it is well to inquire as to whether the world
needs another brain model such as ours. In what way does our framework hold-out

the promise of being an impfovement over existing models of the above sort? Qur
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justification for putting forth the ideas in this paper are primarily aesthetic. The
main modeling paradigm set forth here is conceptué.lly simpler than any of the
models discussed above and, more importantly, our framework rests on a far less
ad hoc foundation than any of the models presented earlier. This means that the
actual mathematical structure will emerge from the experimental data, rather than

trying to "tune” parameters in a pre-defined structure to fit the observations.

We noted at the beginning of the paper that the approach presented here is
completely speculative, without a shred of experimental existence to directly sup-
port it. Validation of the claims made here would involve a research program of
many years, involving many neurophysiologists, system theorists and computer
scientists. The principal task of such a program is to make meaningful associations
between the abstract elements of our paradigm (the sets (), T, Xf and the elements
F,.G,H as weil as the transducers gu_h.u. etc.) and actual physical structures in
the sensory organs and the brain. Once the associations are made, laboratory
experiments can be devised to investigate the claims made here about the way the
brain stores behavioral modes in memory, the organization of memory, emotional
states, cognitive thoughts and so on. It is easy to make armchair speculations and
develop any number of models of the type considered here: only experiments of

the type suggested can separate the modeling wheatl from the chaff.

At the level of mathematical abstraction, probably the most important work
needed is to explore the precise linkages between the formalism suggested here
and that put forti’x in the Hoffman and Grossberg models cited earlier. We have
already noted that the same dynamical "spirit” as displayed here pervades their
approach as well, but the details are quite different in each case. The advantage
of developing the comparisons and interrelationships is that both Hoffman and
Grossberg have extensively pursued the experimental/physical interpretations of

their models and have correlated many of the abstract mathematical properties



-135-

with actual laboratory results. Thus, both the points of overlap and separation of
our scheme with theirs would provide an indirect means for linking our framework

with experiment.

Let me conclude with a few remarks concerning the emphasis upon linear
structures in this work. After all, given the enormous complexity of the functions
the brain clearly performs, on what grounds can we justify the arguments given
here which seem to be highly dependent upon linearity? There are several
answers to this objection depending upon the level at which the question is con-

sidered. Let us consider some of them in turn.

« Realization Level — our main tool has been the Canonical Realization
Theorem and, as already noted, the equivalence between a behavior f and a canon-
ical internal state model Ef is in no way dependent upon the linearity of f. The
theorem is true under very weak hypotheses on f, {1 and [. So, at this level, there

is no objection.

We have focused most of our specifics upon the case of linear f because it is
the situation in which the algebraic ideas can most easily be made explicit, and
accessible to non-algebraists. An important aspect of our development was the
description of the canonical state space as an equivalence class of inputs. For
linear processes, this space can be described explicitly by simple mathematical
gadgets — polynomials. For more general f, an explicit characterization is either
impossible, or at least algebraica.lly much more complicated as, for instance, when

f is bilinear, in which case the state space is an algebraic variety.

Thus, we don’t necessarily claim that the intrinsic brain modules are actually
linear, only that they are based upon the same concepts as given here explicitly
for the linear case.

e Dynamical Level — at another level, one might object that the dynamical

processes of observed neural phenomena are so complicated that there must be
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complicated nonlinearities at work. Perhaps so, but much recent work by Wolfram
with cellular automata [20] and a whole array of researchers in chaos theory [21]
seems to indicate otherwise. The main message of all of this work is that very com-
plicated dynamics can and do emerge from simple (even linear) local interactions,
when the number of interconnected sub-systems is great enough. And with at least
4 miilion or so cortical modules, it is not unreasonable to suppose that almost arbi-
trarily complicated patterns might arise in the brain from linear or almost linear

building blocks.

o Approzimation Level — as discussed, we do not claim that the cortical
modules are necessarily linear; however, if they are truly nonlinear we have the
comforting system-theoretic fact that any reasonably smooth behavior f can be
arbitrarily closely approximated by a bilinear process of the type discussed
briefly in Secét.ion 5. And, as we have noted, such processes are amenable to the

same sort of algebraic treatment we have presented for linear processes.

So, in summary it is not the linearity of f that is important; it is the concept
of a canonical realization and the algebraic structure of its associated state

space. These are the ingredients that make our magic work.
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