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LINEAR-QUADRATIC PROGRAMMING PROBLEMS 

WITH STOCHASTIC PENALTIES: 

T H E  FINITE GENERATION ALGORITHM 

R . T .  Rockafellar' and R .  J.-B. Wets1 

Much of the  work on computational methods for solving stochastic programming problems 

has been focused on the linear case, and with considerable justification. Linear programming 

techniques for large-scale deterministic problems are highly developed and offer hope for the even 

larger problems one obtains in certain formulations of stochastic problems. Quadratic program- 

ming techniques have not seemed ripe for such a venture, although the ultimate importance of 

quadratic stochastic programming has been clear enough. 

There is another kind of approach, however, in which quadratic stochastic programming 

problems are no harder t o  solve than  linear ones, and in some respects easier. In this approach, 

for which the  theoretical groundwork has been laid in Rockafellar and Wets [ I ] ,  the presence of 

quadratic terms is welcomed because of their stabilizing effect, and such terms are even introduced 

in iterative fashion. The underlying stochastic problem, whether linear or quadratic, is replaced 

by a sequence of deterministic quadratic programming problems whose relatively small dimension 

can be held in check. Among the novel features of the method is its ability t o  handle more kinds 

of random coefficients, for instance a random technology matrix. 

In this paper we present a particular case of the problem and method in [I] which is especially 

easy to  work with and capable nevertheless of covering many applications. This case falls in the  

category of stochastic programming with siniple recourse. I t  was described briefly by us in [2], 

hut with the theory in [ I ]  now atailable, we are able t o  derive precise results about convergence 

and the nature of the stopping criterion tha t  can be used. This is also the one case tha t  has been 

implemented so far and for which numerical experience has gained. For a separate report on the 

implementation, see King [3]. 

For the purpose a t  hand, where duality plays a major role and the constructive use of 

quadratic terms must be facilitated, the format for stating the problem is crucial. The following 

deterministic model in linear-quadratic programmiilg serves as  the starting point: 

' This work was supported in part by a grant from the Air Force Ofice of Scientific Research 

at the University of California, Davis. 



maximize f ( 2 )  = Clcjzj - t r , ~ : ]  - C p ( t l t ;  p r y  t r )  

subject t o  0 5 z,  5 8, for j = I , .  . . , n, 

a .  .z. < b, for i = 1,. . . m. C . I , -  
] = I  

n 

v k  = C l k l r j  - h k  for k = 1 , .  . . , t ,  
, = I  

where p is a penalty function depending on two parameters p k  and q k  and having the form shown 

in Figure 1 ,  namely 

for v k  < 0, 

~ ( u k ;  ~ k ,  q k  ) = f o r 0 5  v k  i p k q k ,  (0.1) 
q k u k -  i ~ k q i  for ~ 1 p k q k .  

This is convex in v k ,  so the  object function f in ( P d e t )  is concave; it is assumed that p k ,  q k ,  ri 

and 8, are nonnegative. For p k  = 0, one takes 

for u k  < 0, 
for v k  2 0. 

slope 

= 0 2  

FIGURE 1 

The penalty terms in ( P d e t )  represent a weakened incorporation of constraints 

Ctk,z, 5 hk for = 1 ..... t 

into the problem. They vanish as long as these constraints are satisfied, but  charge a positive 

cost when the!; are violated. The cost grows linearly in the special case of (0.2), but otherwise it, 

first passes smoothly through a quadratic. phase. 



The stochastic programming problem (PSt,) t ha t  we want t o  consider is obtained by allowing 

tkl ,  hk .  pk and qk all t o  be random \ariables and replacing each penalty term by its expectation. 

(In any one application, of course, only a few of these variables miglit actually be random.) The 

interpretation is that  the 2,'s are decision variables whose values must be fixed here and now. 

The constraints 0 5 z, 5 8, and 

a .  x .  < b, for t = 1, ..., m c 1 1 1 -  

are known a t  the time of this decision, but  about the random variables in question there is only 

statistical information (their distributions). The constraints (0.3) therefore cannot be enforced in 

the selection of the r,'s without severe consequence. Instead of trying to  guard against all possible 

violations by being extremely conservative, we imagine there is a way of coping with violations 

of the  constraints (0.3), if they should occur. Some recourse action is considered t o  be possible 

after the  values of the random variables have been realized, and this recourse has an associated 

cost which depends on the extent of violations. This cost is represented by the  penalty terms 

p(vk;pk ,qk) ,  and its expectation is subtracted from the here-and-now expression in the x,'s that  

is being maximized. 

Besides the direct applications of this model, we see i t  as  potentially valuable in problems 

t h a t  until now have been formulated deterministically, but  in which some of the da ta  may be 

rather uncertain. By putting such problems in the form of (PSt,) i t  should be possible, even with 

every crude guesswork about penalty costs and probabilities, t o  gain some appreciation of how 

the choice of the r,'s should be modified t o  hedge against the uncertainties. Certainly this ought 

t o  be better than merely assigning specific values to  the fuzzy data. 

\Ye mention again tha t  although our basic problem is nominally quadratic ( a  formulation 

t h a t  sidesteps the -piecewisen nature of the  penalty terms will be recorded later, in §3), we are 

also very much concerned with the linear case where r, = 0 and pk = 0. Our  plan is first t o  

display a method whose characteristics are most attractive in the  strictly quadratic case where 

t, > 0 and pk > 0, and then apply i t  t o  problems lacking in strict quadraticity by means of the 

prosimal point technique (41, [I].  

OPTIMALITY CONDITIONS AND DUALITY 

The approach we are taking depends very much on duality. A subproblem of a certain dual 

problem will explicitly be solved a t  every iteration. The  Lagrange multipliers in this process will 

generate the optimizing sequence for the primal problem. 

For the deterministic problem (Pdet)y the appropriate dual would be 



minimize g ( y ,  t )  = C b,y, + C [ h k  t k  + t p k  t:] 

subject to 0 5 y, for i = 1 , .  . . , m, 
0 5  z k  5 q k  for k =  1, ..., t ,  

w I = c - -  , C&al1 - C t k t k ,  for j = I ,..., n. 

Here p is t,he same fiinct,ion as before (cf. Fig. I ) ,  except that  the symbols for the variables have 

been switched: 
for w, 5 0 
for 0 5 ur, 5 r, 8 ,  

8.W.  - I. 
(1.1) 

I 2 t j 8 ;  for wj 2 r j w j .  

The terms p ( w j ;  r,, G ~ )  in ( D d e t )  are to be viewed as penalty repre~ent~ation replacements for 

constraints 
rn L 

C y , o 1 j + ~ ~ k t k J  _>c ,  for j= 1 ,..., n. (1.2) 
1=1 k=l 

This form of duality is a special ca.se of the scheme used in monotropic programming [5]. It, 

results from the conjugacy between the convex functions 

if05 ~ k  I q k ,  
otherwise. 

One can show that  as long as the constraints ( P d e t )  are consistent, one has 

m x  (Pdet) = min (Ddc t ) .  

In the stochastic case we are directly concerned wit.h in this paper, the appropria.tely modified 

primal and dual problems are 

. - 

maximize J ( Z )  = C [ c j z j  - t r j z ? ]  - E{C p(:t; ~ k ,  z k ) )  

subject to 0 5 zj 5 6j for j = 1 , .  . . , n.  

a - . z -  < b ,  for i =  1,  ..., m, C 1 1 1 -  

tqk = C ! k l ~ ,  - h k  for k = 1 ,..., e, 
rn h 



minimize g ( y ,  t) = C biyi + E{C [ k k L k  + i ~ ~ i : ]  ) 

subject t o  0 5 yi for i = 1 ,  ..., m, 

The ra.ndom variables i:? these problems have been indicated by -1 t,he symbol E denotes ma.th- 

ematical expectation. 

In order t o  avoid m.nor technical complications t,hat, have nn real importance in our present 

task of setting up  a computational framework for (Psto), we shall rely henceforth on two assump- 

tions. 

There is a t  least. one vecdor x satisfying 
(A 1) 

O < z j  < 6, for j =  1 ,..., n, and En a,,r, 5 b, for i =  1 ,..., nx. 
,= I  

(A2) The  given random variables L,, , h k ,  P k ,  Q k  take on only finitely many values. 
W N N  

Only (A2) needs comment. We are assuming tha t  whatever the "truen distribution of these 

variables might be, we are treading them here in terms of finitely many values to  which probability 

weights have been assigned. Such a discrete distribution luiglit be obt,ailied by approximating a 

continuous distribution, or by sampling a continuous distribution, or empirically. For now, tha t  

need not matter; the  question of the source of the discrete distribution and how i t  might be 

"improvedw is quite separate. The  important t,hing is tha t  we impose no further conditions on the 

random variables. Aside from (A2), their distribution can be completely arbitrary. In  particular 

a joint distribution is allowed; the variables do not have to  he independent. 

THEOREM 1. Under assumptions (Al )  and (A2), problems (Psto) and (Dsto) both have opti- 

m d  solutions, and  

m a  (Psto) = min (Dsto).  

Moreover in the strictly quadratic case w h e r ~  r, > 0 and Pk > 0, the following conditions are 
w 

necessary and sufficient in order tha t  F be optimal for (PSt,j and (3.z) op t imd  for (Dsto): 



m I 

T, = p ' ( ~ j ; 5 , 8 , )  jor E, = c ,  - E p , a , ,  - ~ { E z k ! k , } ,  

In these relations the deriva.tives p' refer to  the first argument. indicated, not the parameter 

arguments. Thus 
i fw ,<O 

p1(wj;r j ,8,)= i f O < w , < r l s l  
if W ,  2 fj8, 

and likewise, with just a change of notation, 

I t  is clear then that  (1.5) entails 0 < f, 5 s,, and (1.6) entails 0 I z, < !I,. This is why 

these basic requirements do not appear explicit,ly in the theorem along with the fea.sibilit,y and 

complementa~  slackness conditions (1.4). 

Formula (1.5) serves as a mea,ns of obtaining the optimal solution to (PSt,) from the optimal 

solution to (Dst,), or an approximately optimal solution to (Psto) from an apprcximately optimal 

one for (Dst0), the ma,pping being continuous. Formula (1.6): on the ot,her ha,nd, sa.ys that  the 

component of an optimal solution to (Dsto) is a random variable expressible in terms of the 

known random variables ,., f k,,  hk, . . , A , N  Pk, qk, and the (nonrandom) optimal solution ?I? to (Pst,). More 

generally, by means of this formula as applied to various ilonoptilnal vectors r that  arise in the 

solution process, it is possible economically to represent (and store in a. computer) some of the 

elements 5 that  will be needed in the solution process. 

PROOF OF THEOREM 1. The dualit,y will be obtained from a minimax representation i11 

terms of the sets 

X = { Z = ( X ~ , . . . , Z ~ )  I O < Z , < ~ ~ ) ,  

and the function L on S x 2' x Z defined by 



Here because of assumption (A2) we could think of each of the random ~ r i a b l c s  as functions on 

a, single finite probability space n, or equivalently as vectors indexed by w E n. The11 in (1.1) we 

could write 0 5 z,k 5 qwk for all w and k ,  while in (1.12) we could write 

1 2 
~ { r k  [hk V - x ~ k j z j ]  + i ~ k r : }  = x ( Z W ~  [nwhwk - x ncotwkjzj] + jnwpwkl,k), 

where nu > 0 is the probability weight assigned to  the element (*, of n. This makes it plain t.hat 

Z ,  like X and Y, is simply a finite-dimensional convex polyhedron, although the dimension may 

be very large, and L is a quadratic function which is concave in r and convex in (y, z).  
I t  is easily verified that  

f (z) if z is feasible in (PSto), 
inf L(z, y, z )  = 

( Y , ~ ) E ' x Z  - otherwise, 

y(y, 5) if (y, 5) is feasible in )(Dsto), 
sup L(z ,  y, :) = 
ZE.Y otherwise, 

where f (z) and g(y, E )  arc the objective functions specified for (P,to) and (D,,,). Thus (Psto) 

and (D,,,) are the primal and dual problems associated with the minimax problem for L on 

X x (I' x 2 ) .  Because L is quadratic concave-convex, and the sets X and Y x Z are convex 

polyhedra, we may conclude from generalized quadrat,ic programming theory (see 11, Theorem 11) 

that if the optimal value in eit,her problem is finitme, or if both problems have feasible solutions, 

then both problems have optimal solutions and max(Pst0) =min (Dst0). This is indeed the rase 

here, because (D,,,) trivially has feasible solutions, and our assumption (Al)  guarantees that  

(Pst0) has feasible solutions. 

The optimality conditions (1.4), (1.5), (1.6), are just a restatement of the requirement that  

(Z,g,zj be a saddlepoint of L on X x (Y x 2) .  For instance, the part of the saddlepoint property 

that  corresponds t,o maximization in decomposes into 

In t,erms of t.he conjugate convex functions in (1.3) and the notation 

this can be written as 
- 
.t,k E argmin {$,k (3,k) - Ewkz,k), 

z u t E H  

or o E a $ , k ( ~ k , k )  - Ewk, and then equivalently as Fwk E atjuk(%k) or Z,k E i)pwk(Eu,k). The 

lat,t,er reduces to Zk,k = pLk(F,k) and condition (1.6) when p w k  is differentia.ble, as is the case 

when y,k > 0. The derivation of (1.5) from the saddle point property is similar. 



This formulation of stochastic prograulming duality differs somewhat from the one in our 

basic paper 111. In order t o  facilitate the application of the results in [ l]  t o  the present context, 

an explana.tion of the connection is needed. In [I], problem (Pst0) is associated with a different 

minimax problem, namely for 

on X o  x Z, where Z is still the set in (1.11) but  Xo is the set of feasible solutions t o  (PSto): 

This leads to the dual problem 

minimize go ( z )  over all z E 2, 

where 

go(:) = m i n g ( y , ~ ) -  
yEY 

Indeed, one has in parallel t o  (1.14): (1.15), t h a t  

min L O ( X , ~ )  = f (x )  for all x E X O ,  
z E Z  
N 

and by quadratic programming duality (using (Al ) )  

max Lo(x,.z) = max inf L ( z , y , z )  
% E X 0  ? E X  yEY 

(1.20) 
= min max L(x,  y, 2 )  = min g(y, .z) for all 2 E 2. 

yEY % E X  YEY 

(Actually in [ I ]  one has minimization in the primal problem a.nd maximiza.tion in the dual, but, 

t ha t  calls for only a. minor a.djustment.) Obviously, then,  the  pairs (jj,?) t ha t  solve (Dst0) a.re 

the ones such t,hat solves (D:to) and jj provides the corresponding minimum (1.18). 

2. FINITE GENERATION ALGORITHM IN T H E  STRICTLY QUADRATIC CASE 

The basic idea of our computational proc.edure is easy to  describe. We limit attention for the 

time being t o  the strictly qua.dratic case where rj  > 0 and P k  > 0, because we will be able t o  show 
N 

in section 4 tha t  problems tha t  are not strictly quadratic can be made so as pa.rt of an additional 

iterative process. This limitation also simplifies the exposition and helps us focus on the results 

we believe t,o be the  most significant. I t  is not truly necessary, however. A more general version 

of what follows could likewise be deduced from the fundamental theory in [I]. 



In problem (Dst0) we minimize a certain convex function g(y,z) aver Y x Z ,  where Y and 

Z are the convex polyhedra in (1.10) and (1.11). As we have seen in the proof of Theorem 1, this 

corresponds t o  finding a saddlepoint (5,g,z) of the function L in (1.12) relative t o  ,Y x (Y x Z),  

where X is the polyhedron in (1.9). Indeed, if (J , z )  is optimal for (D,to), then thc Z obtained 

from formula (1.5) gives us the saddlepoint,. This F is the unique optimal solution t o  (PSto'). 

The trouble is, however, that because of t,he potentially very high dimensionality of Z (whose 

elements 2 have components zUk for k = 1, .  . . , t and all w E n, with n possibly very large), 

we cannot hope to  solve (Dst0) directly, even though i t  is reducible in principle to  a qua.dratic 

programming problem. What we do instcad is develop a method of descent which produces a 

minimizing sequence {(T", r ) ) F = l  in (Dst0) and a t  the same time, by formula (1.5), a maximizing 

sequence {5"):=, in (P,to). 

In this method we "generate Z finitely from within". Let Z be expressed as 

Z = Z 1  x . . . x Z t  with Z k = { z k  I O S z k I g k ) .  (2.1) 

h 

.4t iteration v we take a finite subset Z i  of Zk, and instead of minimizing g(y, 5) over Y x Z we 

minimize i t  over E' x Z", where 

Z U =  2," x ... x Z i  with Z[ = co{O,g[). (2.2) 

By employing a parametric representation of the convex hull co{O, 2;) and keeping the number of 

elements in 2; small, which turns out always to be possible, we are able to express this subproblem 

as one of qua.dratic pr~gra~mming in a relatively small number of variables. This subproblem is 

deterministic in character; the coefficients are certain expectations in terms of the given random 
h 

varia.bles t k, , hk , Pk and the chosen random variables in 2,". 
V % N  

The details of the subproblem will be explained in due course ($3). First we state the 

algorithm more formally and establish its convergence propertics. 

FINITE GENERATION ALGORITHM (version under the strict quadraticity assumption 

that r, > 0 and Pk > 0 . )  
N 

h 

Step 0 (Initialization). Choose finite subsets ZL C Zk for k = 1 , .  . . , C. Set v = 1. 

Step 1 ((Quadratic Programming Subproblem). Calculate an optimal solution (vu, z" ) to the 

problem of minimizing g(y,z)  over Y x ZL', where ZL' is given by (2.2). Denote the minimum 

value by  E,. Define 2' from (T",?) bjrformula (1.5). 

Step 2 (Generation of Test Dat.a). Define 2" from F" by  formula (1.6). Set a,, = Lo(T", z" )  in 

(1.16). 



Step 3 (Optimality Test). Drfine E, = ?i, - a,, 2 0. Then 5" is  an E, -optimal solution t o  (P,,,), 

( j ? " ' ~ " )  is an  E,, -optimal solution to  (Dst0), and  

(Stop if this  is good enough.) 

Step 4 (Polytope Modification). For each k = 1. . . . , (, choose a finite set .?[+' c Zk whose 

convex hull contains both and 2". Replace v bj- v + 1 and  return to  S tep  1. 

Note the very mild c.ondit,ion in Step 4 on the choice of 2;". One could simply t,ake 

or a t  the opposite extreme, 
h 

Another possibility would be 

= 2; u {z;, Zk 

in all iterations, with 2; selected initially to provide a certain richness of representation. Although 

the number of elements of 2; (which determines the dimensionality of the quadratic programming 

subproblem in Step 1) would continue to grow indefinit,ely under (,2.4), it stays fixed under (2.3) 

or (2.5). 

For the statement of our convergence result we introduce the vector norms 

and matrix norm 

THEOREM 2. Under the  strict quadraticity assumption t ha t  r ,  > 0 and  P k  > 0, the sequence 
w 

{zLJ ) 102 
r l = l  produced by the finite generation algorithm converges to  the unique optimal solution Z 

t o  (Pst0). hloreover i t  does so a t  a linear rate, in the following sense. 

Let a be a n  upper bound to the range of the (finitely discrete) random variable ( 1  T l l p q r  in 
* N 

(2.8). where T is the  matr ix with entries Lk,. Let T E [O,l) be the factor defined by 
P.. 



Then in term8 of the oduee 

-& = max (Psto) = min (Dsto) and F, = -& - 5, I E, (2.10) 

one hae 

< TYE, for dl v = 1,2: . . . , and p = 1 ,2 , .  . . , Z,tY - (2.11) 

~li; - P+'II, <- [ ~ T ~ E , ] " ~  for dl v = 1 .2? .  . . , and p = 1 ,2 , .  . . . (2.12) 

Obsenre well tha t  in (2.11) and (2.12) the  estimates are claimed for dl v a.nd p ,  not just when 

v is sufficiently large. Most convergence results are not of such type, so this is rather surprising, 

especially in view of the fact, t ha t  the factor T E [0, 1) can in principle, at, least, be estimated in 

advance of computation, rignt from the  given data. Moreover T does not depend on any da t a  in 

the problem other than t k , , E k  and 5.  In the special case of nonrai~dom tki and pk (the only 
I* 

random variables in the prob em being h k  and !Ik)? one can simply take o = IITllp,r. 
N N 

P R O O F  O F  THEOREM 2. The  procedure specified here is a special case of t,he algorithm 

presented in [I] .  as can be seen in the following way. In calculating a pair ($',T) tha t  minimizes 

g(y, 2 )  over 1' x ZL' in the subproblem in St$ep 1, we obtain a solution to t,he different subproblem 

of [I] ,  in which go(?) is minimized over Z" (with go t8he function in (1.18)). The number b, is 

the optimal value in both subproblems, and I" furnishes the saddle point F',gu,y t o  L on 

X x (E' x 2" )  in the present formulation, hut  also the saddlepoint ( F L ' , r )  t o  Lo on X x Z Y ,  as 

required by Step 1 of the algorithm as formulated in [I.]. 

The  elements N 2'' and a, calculated in Step 2 satisfy 

Thus these are the same as the elements calculated in the version of Step 2 in [ I ]  (except for a 

notational switch between maximization and minimization). Of course they are given here by 

closed formulas, whereas in the far more general setting of [ I . ]  they might have to  be calculated 

by solving a large collection of quadratic programming subproblems in the random components 

Zwk.  

Tlie updated polyhedron ZY+'  does contain aiid 5" under the conditions in Step 4, a s  

required by the conditions in the more generd version of Step 4 in [I]. 

Thus all the conditions in Theorem 5 of [ I ]  are fulfilled, and the stated convergence properties 

follow, provided tha t  we reconcile the choice of o given here with the corresponding one in [I.]. 

The condition specified in [I.  Theorem 51 is t ha t  



for all reali~at~ions of the random vector and matrix T and all possible choices of the vector r.  
N 

Here we are using the notation r-' = ( r y l , .  . . , r;'). The norm 11 . ) I , - l  is the d u d  of the norm 

11 . Ilr in (2.6), so 

IIr* 5 Ilr-1 = m a x { ( ~ *  5 ) .  3: ( l l~ l l r  < 1 ) -  

(T* = transpose of T.) Therefore one has 

as defined in (2.8). This shows that  (2.14) is equivalent to 

and the proof of Theorem 2 is thereby completed. 

3. SOLVING THE QUADRATIC PROGRAMMING SUBPROBLEM. 

Returning now to  the elucidation of the finite generation algorithm and how i t  may be 

implemented, we demonstrate tha t  the subproblem in Step 2 can be represented easily as an 

ordinary quadratic programming problem of relatively low dimension and thereby solved using 

standard codes. Explicit notation for the elements of the finite sets 2; selected from Zk is now 

needed. Let us suppose that  
h z: = 1 o =  1 , . . . , m u } .  (3.1) 

This yields 

a=' a= 1 

In Step 2 we want t o  minimize the objective g(y,z) in (DSt,) not over al l  of Y x Z (the 

variables wj standing for linear expressions in y and ;), but only over E' x Zu.  By virtue of (3.2) 

we can substitute for the elements 5 of interest in this subproblem certain linear expressions in 

the parameters Ak,,. In this way we get the fun~t~ ion  

where 



But these complicated expressions can greatly be reduced by carrying the expectation operation 

through the  sums to  get explicit coefficients for t h e  parameters A k p .  Specifically, let 

Then 

where 

Finally let us observe t h a t  the penalty expression p ( w j ;  r, ,  e j )  in these formulas, as given by 

(1.1) satisfies 
p(wj ;  r j ,  5 )  = minimum of s, w l ,  + + o i j / r j  

subject t o  w l ,  > 0, url, + w2]  > w, .  

Moreover 
p l (w j ;  r , ,  s j )  = Lagrange multiplier (2 0) for the constraint 

With these facts in mind we pose the quadratic programming problem 

minimize x bi y; + x [ejwll  + ~ w ~ ~ / T , ]  

subject t o  y; 2 0, U 1 l j  > 0, Aka  > 0, 
mu 

C Yiail + x C Araf*aj + rl j + W Z ,  > c, for j = 1, .  . . , n. 

We then have the following implementmation. 



SUBALGORITHM (for Step 2). Given the sets  2: in the notation (3.1), calculate the co- 

efiicien t s  (3.5). (3.6), (3.7),  for the quadratic programming problem (Du).  Solve (DL') b y  any 

method,  getting from the optimal solution values ~ : ' , F ~ l , ~ l  and %La the elements 

T h e  rninimu~ll value in (D") is the desired a,, and the Lagrange multiplier vector obtained for 

the constraints (3.12) in (D") i s  the desired approximate s o l ~ t i o n  P t o  (Fsto). 

Thus i t  is not actually necessary in Step 2 to  invoke formula (1.5) t o  get Z". Instead, 5" can 

be obt.ained as a byproduct of the solution procedure used for the minimization. 

4. APPLICATION T O  PROBLEMS THAT ARE N O T  STRI(:TLY QUADR,ATIC. 

If in the  given problem (P,t,) i t  is not t rue t h a t  r, > 0 and Pk > 0 for all j and k, we use the  
% 

proximal point technique [4] (as ada.pt.ed t o  the Lagrangian L o ( x ,  z)  in (1.16)) t o  repla.ce (PSto) by 

a sequence of problems (PS',,), p = 1,2 , .  . . , t ha t  do have the desired character. To each problem 

(P$,) we apply the finite generation algorithm as above, but  with a certain stopping criterion in 

Step 3 t h a t  ensures finite termination. This is done in such a way tha t  the overall doubly iterative 

procedure still converges a t  a linear rate. 

To obtain the problems (Prto), we introduce alongside the  given values r, and pk some other 
C- 

values TI > 0, B k  > 0 and set 
% 

where q > O is a, paramet,er ~ a l u e  tha t  wil play a role in theory but  can be held fixed for the  

purpose of computation. We also introduce elements 

-IL x, - - (x,, -P , . . . , ztn) and zt = (ztl,. . . , -P ,[), 

which are t o  be thought of as estimates for the  optimal solution values in (Psto) and (D,,,). In 

terms of t,hese we set 
c/' - -+  -+ ,, - C, - qr,r,, and k t k  = h_k - q k i j k .  (4.2) 

Then 
(Pfto) ,  (Dfto) are the problems obtained by replacing 

r I , ~ , k , c ,  and * hk in (Psto) ,  (Dsto) b4- ~*],!+k,ct, and _ h t k .  
(4.3) 

These modified problems are, of course, strictly quadratic: one has r,, > 0 and p jk  > 0. 
w 

MASTER ALGORITHM. 



Step 0 (Initialization). Choose 5: E X and z: E 2. Set p = 1. 

Step 1 (Finite Generation Algorithm). Apply the finite generation algorithm in the manner 

already described t o  the strictly quadratic problems (Prto)  and (Dft,) in (4.3). Terminate in Step 

3 when the stopping criterion given below is satisfied. 

Step 9 (Update). For the elements 5V and with which Step 1 terminated, set 52+' = -' 1' and 

?,+I = -;.u * ,,, ,w L. . Replace p by p + 1 and return to Step 1. 

The stopping criterion is as follows. In terms of the norm 

and a sequence of values 8,, with 
rXI 

we define the function 

We stop in Step 3 of the finite generation algorithm when the computed elements E,,,Z" and EL' 
satisfy 

E" 5 E * , ( T ~ , ~ ~ ) .  (4.7) 

This stopping criterion will eventually be satisfied, when v is high enough; the only exception 

is the case where 52 happens already to be an optimal solution Z t o  (Psto) and zc the ?-component 

of an optimal solution (jj, F )  t o  (Dsto). (See [ I ,  $61 for details.) 

THEOREM 3. If the master algorithm is executed with the specified stopping criterion (4.7). 

then the sequences {Z$ and {22);?=, converge to particular elements 5 and F ,  where 5 is 

an optimal solution to (Psto) and,  for some jj, the pair (jj,z) is an optimal solution t o  (Dst,). 

Mo~.eover there is a number P ( q )  E l o l l )  such tha t  (z$, 5:) converges to  ( F ,  z) a t  a linear rate  

with modulus P(q). 

PROOF. This is an immediate specialization of Theorem 6 uf (11 t o  the case a t  hand, the 

path of sperialization having been established already in the proof of Theorems 1 and 2. 

The theory of proximal point technique in [4], as applied in the derivation of Theorem 3, 

shows a c t u d y  tha t  linear convergence is obtained a t  the rate 



where 7 1 0 is a number depending only on the da ta  in the original problems (P,,") and (D,,,), 

not on q , f ,  or Fk. In particular P(q)  - 0 as rl -. 0. Thus an arbitrarily good rate of convergence * 

can be obtained (in principle) for the  outer algorithm (master algorithm) simply by clloosing the 

parameter value q emall enough. 

At the same time, however, the choice of q affects the convergence rat.e in the  inner algorithm 

(finite generation algorithm). Tha.t rate corresponds by (2.12) t o  a number 7(q)'I2 E [0, 1) defined 

by (2.9) in terms of an upper bound o(q)  for 11 T Ilp.,r., where P+ and r ,  a.re vect.ors consisting of - * N 

the paramet,ers in (4.1). Thus ~ ( q ) ~  is a n  upper bound for the expression 

over all possible choices of the vectors x E Rr' and 2 E R' and all possible values taken on by the 

random variables T, P and B. It follows tha t  ~ ( q )  + 0 as q - oo but  ~ ( q )  -+ 1 as q -+ 0. Thus 
N N  15 

an arbitrarily good rate of convergence can be obtained (in principle) for the  inner algorithm by 

choosing q large enough, bu t  too small a choice could do damage. 

This trade-off between the outer and inner algorithms in the choice of rl could be a source 

of difficulty in practice, although we have not had much trouble with the problems tried so far. 

(See King [3].) 
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