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ABSTRACT 

We introduce the concept of viability domain of a set-valued 

map, which we study and use for providing the existence of smooth 

solutions to differential inclusions. 

We then define and study the concept of heavy viable trajec- 

tories of a controlled system with feedbacks. Viable trajectories 

are trajectories satisfying at each instant given constraints on 

the state. The controls regulating viable trajectories evolve 

according a set-valued feedback map. Heavy viable trajectories 

are the ones which are associated to the controls in the feedback 

map whose velocity has at each instant the minimal norm. We con- 

struct the differential equation governing the evolution of the 

controls associated to heavy viable trajectories and we state 

their existence. 



DEDICATION 

I would have liked to find an original way to dedicate this 

lecture to Professor Ky Fan, but I did not see any better solu- 

tion than to simply confess that it is both an honor and a 

pleasure to have been invited to this conference held in his 

honor. 

I have been deeply influenced by the theorems discovered 

and proved by Professor Ky Fan, and, in particular, by his 1968 

famous inequality. Let me just repeat what I tell my students 

when I begin to teach the Ky Fan inequality. I tell then a lot 

of stories, how the young Ky Fan came to Paris in 1939 for one 

year with only a metro map, how he had to survive during the 

darkest years of the history of my country, how he met Frgchet 

and worked with him, etc. But most important, I choose the 

Xy Fan inequality as the best illustration of the concept of 

"labor value" of a theorem. 

Indeed, most of the theorems of nonlinear functional anal- 

ysis are equivalent to the Brouwer fixed point theorem. But when 

we prove that statement (A) is equivalent to statement (B), there 

is always one implication, say "A implies B", that is more dif- 

ficult to prove than the other one. Me then can say that state- 

ment (B) "incorporates" more labor value than statement (A). 

An empirical law shows that the more labor value a theorem in- 

corporates, the more useful it is. And my point is that among 

all the theorems equivalent to the Brouwer fixed point theorem 

I know, the Ky Fan inequality is one which is the most valuable. 



SMOOTH AND HEAVY VIABLE SOLUTIONS 
TO CONTROL PROBLEMS 

J e a n - P i e r r e  Aubin 

1 .  VIABLE SOLUTIONS TO A CONTROL PROBLEM 

L e t  X = u : X + X  be a  s e t - v a l u e d  map w i t h  c l o s e d  g raph  

and f  : G r a p h  U + X  be a  c o n t i n u o u s  map. W e  c o n s i d e r  t h e  c o n t r o l  

problem w i t h  feedbacks  

I n s t e a d  of  s e l e c t i n g  a  s o l u t i o n  x ( * )  t o  ( 1 )  which min imizes  

a  g i v e n  f u n c t i o n a l ,  a s  i n  o p t i m a l  c o n t r o l  t h e o r y  ( '  ) .  we a r e  o n l y  

s e l e c t i n g  s o l u t i o n s  which a r e  v i a b l e  i n  t h e  s e n s e  t h a t ,  g i v e n  a  

c l o s e d  s u b s e t  K C X  

I i)  x '  ( t )  = f  ( x ( t )  , u ( t )  ) , 

A f i r s t  i s s a e  i s  t o  p r o v i d e  n e c e s s a r y  and s u f f i c i e n t  con- 

d i t i o n s  l i n k i n s  t h e  dynamics of  t h e  system ( d e s c r i b e d  by f  and U )  

( 1 . 1 )  ii) f o r  a l m o s t  a l l  t > O ,  - u ( t )  E ~ ( x ( t ) )  

iii) x ( 0 )  = xo g i v e n  i n  D o m  u . 



a n d  t h e  c o n s t r a i n t s  b e a r i n g  o n  t h e  s y s t e m  ( d e s c r i b e d  by  t h e  c l o s e d  

s u b s e t  K )  s u c h  t h a t  t h e  v i a b i l i t y  p r o p e r t y  

V x 0 € K  , t h e r e  e x i s t s  a s o l u t i o n  t o  ( 1 )  
(1.3) 

v i a b l e  i n  K 

h o l d s  t r u e .  T h i s  a l l o w s  u s  t o  d e s c r i b e  t h e  e v o l u t i o n  o f  t h e  

v i a b l e  c o n t r o l s  u ( * ) ,  ( t h e  c o n t r o l s  w h i c h  g o v e r n  v i a b l e  s o l u t i o n s ) .  

A s e c o n d  i s s u e  i s  t o  p r o v i d e  c o n d i t i o n s  f o r  h a v i n g  s m o o t h  

v i a b l e  s o l u t i o n s  t o  a  c o n t r 1 3 l  p r o b l e m ,  i n  t h e  s e n s e  t h a t  t h e  

v i a b l e  c o n t r o l  f u n c t i o n  i s  a b s o l u t e l y  c o n t i n u o u s  i n s t e a d  o f  b e i n g  

s i m p l y  m e a s u r a b l e .  

A  t h i r d  i s s u e  i s  t o  g i v e  a  m a t h e m a t i c a l  d e s c r i p t i o n  o f  t h e  

" h e a v y  v i a b l e  s o l u t i o n s "  o f  t h e  c o n t r o l  s y s t e m  w h i c h  w e  o b s e r v e  

i n  t h e  e v o l u t i o n  o f  l a r g e  s y s t e m s  a r i s i n g  i n  b i o l o g y  a n d  e c o n o m i c  

a n d  s o c i a l  s c i e n c e s .  Such large  s y s t e m s  k e e p  t h e  same c o n t r o l  

w h e n e v e r  t h e y  c a n  a n d  c h a n g e  t h e m  o n l y  when t h e  v i a b i l i t y  i s  a t  

s t a k e s ,  a n d  d o  t h a t  as  s l o w l y  a s  p o s s i b l e .  I n  o t h e r  w o r d s ,  h e a v y  

v i a b l e  s o l u t i o n s  a r e  g o v e r n e d  by  t h o s e  c o n t r o l s  who m i n i m i z e  a t  

e a c h  i n s t a n t  t h e  norm o f  t h e  v e l o c i t y  o f  t h e  v i a b l e  c o n t r o l s .  

I n  t h e  case when f  ( x , u )  = u ,  s y s t e m  ( 1 )  r e d u c e s  t o  t h e  d i f f e r e n -  

t i a l  i n c l u s i o n  x '  ( t )  € U ( x ( t ) ) ,  x ( 0 )  = x  : h e a v y  ( v i a b l e )  s o l u -  

t i o n s  t o  t h i s  s y s t e m  m i n i m i z e  a t  e a c h  i n s t a n t  t h e  norm o f  t h e  

a c c e l e r a t i o n  o f  v i a b l e  s o l u t i o n s ;  i n  o t h e r  w o r d s ,  t h e y  e v o l v e  

w i t h  maximal  i n e r t i a .  Hence t h e  name h e a v y  v i a b l e  s o l u t i o n s  

(or  i n e r t  v i a b l e  s o l u t i o n s ) .  ( 2  ) 

F o r  s o l v i n g  t h i s  p r o b l e m ,  w e  n e e d  t o  i n t r o d u c e  a n d  s t u d y  

two  c o n c e p t s :  v i a b i l i t y  d o m a i n s  o f  d i f f e r e n t i a l  i n c l u s i o n s  a n d  

d e r i v a t i v e s  o f  s e t - v a l u e d  maps .  

L e t  m e  m e n t i o n  t h a t  t h e s e  r e s u l t s  w e r e  o b t a i n e d  i n  c o l l a b -  

o r a t i o n  w i t h  H a l i n a  Frankowska a n d  G e o r g e s  Haddad.  

2 .  VIABILITY DOMAINS AND INVARIANT SETS OF A SET-VALUED MAP 

I n  t h i s  s e c t i o n ,  w e  c o n s i d e r  a s e t - v a l u e d  map F  f r o m  X t o  

x s a t i s f y i n g  onze  a n d  f o r  a l l  



( i )  t h e  g r a p h  o f  F  i s  nonempty and c l o s e d  

i i )  VxEDom(F) , s u p  llvll =:  IIF(x)ll - < allxll + b  
vEF ( x )  

( T h i s  i m p l i e s  t h a t  F i s  u p p e r  s e m i c o n t i n u o u s  w i t h  compact  i m a g e s . )  

W e  p ropose  t o  e x t e n d  t h e  c o n c e p t  o f  i n v a r i a n t  s u b s p a c e  K by a  

s i n g l e - v a l u e d  map f ,  d e f i n e d  by 

When w e  t h i n k  a b o u t  t h e  e x t e n s i o n  o f  t h e  c o n c e p t  o f  i n v a r -  

i a n t  s u b s e t  K ,  we have  t h e  c h o i c e  o f  u s i n g  e i t h e r  t h e  p r o p e r t y  

f  ( K )  C K o r  t h e  p r o p e r t y  

b e c a u s e  a  v e c t o r  s u b s p a c e  K i s  a lways  t h e  t a n g e n t  s p a c e  t o  e v e r y  

p o i n t s  o f  K .  ( T  ( x )  = K f o r  a l l  x  E  K . )  
K 

When K i s  any s u b s e t ,  t h e r e  a r e  many ways t o  i n t r o d u c e  

" t a n g e n t  c o n e s "  T ( x )  t o  K a t  x  which c o i n c i d e  w i t h  t h e  t a n g e n t  
K 

s p a c e  when K i s  a  smooth m a n i f o l d  and t o  t h e  t a n g e n t  c o n e  o f  

convex  a n a l y s i s  when K i s  convex .  The 1943 Nagumo t h e o r e m  shows 

t h a t  w e  have  t o  choose  t h e  c o n t i n g e n t  cone  i n t r o d u c e d  by Bou l igand  

i n  t h e  t h i r t i e s .  The c o n t i n g e n t  cone  T K ( x )  t o  K a t  x  i s  d e f i n e d  

by 

d  (x+hv , I;) 
h  = o j  

Nagumo's theorem s t a t e s  t h a t  i f  a  c o n t i n u o u s  map f  s a t i s f i e s  

p r o p e r t y  ( 2 . 3 ) ,  t h e n  f o r  any  x o E K ,  t h e r e  e x i s t s  a  v i a b l e  s o l u -  

t i o n  t o  t h e  d i f f e r e n t i a l  e q u a t i o n  x '  ( t )  = f  ( x  ( t )  ) , x  ( 0 )  = x  0 '  

When w e  c o n s i d e r  t h e  d i f f e r e n t i a l  i n c l u s i o n  

t h e r e  a r e  two ways of  a d a p t i n g  p r o p e r t y  ( 2 . 3 ) .  



Definition 2.1 

We shall say that a subset I:CDom F is a viability domain 

of F if 

(2.6) V x E K ,  F(x)nTK(x) # S 

and is invariant by F if 

(2.7) V x E K ,  F(x)CTK(x) . 

These definitions are motivated by the following thearems. 

Theorem 2.2 (G. Haddad, 1981) 

If F has convex values and if KCDorn(F) is a closed viabil- 

ity domain of F, then for any x o E K ,  there exists a viable solu- 

tion to the differential inclusion (2.5) (vlablllty) 

Theorem 2.3 (F.H. Clarke, 1975) 

If F is Lipschitz and if KCDom F is a closed invariant 

subset by F, then for any x o E K ,  all the solutions to the differ- 

ential inclusion (2.5) are viable (invariance property). 

The concept of invariance in the above sense requires the 

knowledge of F outside K. Let us mention a more intrinsic result. 

Theorem 2.4 (J.P. Aubin and F.H. Clarke, 1977) 

If F is continuous and if KCDom F is a closed invariant 

subset by F, then the viability property holds true. 

We now provide an example of viability domains. 

Let us consider "limit sets" 

of solutions x ( a )  to the differential inclusion x' (t) E F (x (t) ) , 

Theorem 2.5 

If F has convex values, the limit sets of the solutions 

x ( 0  ) to the differential inclusion x' (t) E F (x (t) ) are closed 



viability domains. 

This theorem provides many examples of viability domains. 

Equilibria (solutions to 0 E F ( ~ )  ) ,  trajectories of periodic 

solutions, etc., are closed viability domains. The question 

arises whether there exists a largest closed viability domain. 

Such a largest closed viability domain would then contain all 

the interesting features of the differential inclusion, 

Theorem 2.6 

If F has convex values, there exists a largest closed via- 

bility domain of F. 

Let us mention a consequence of the "coincidence theorem" 

due to Ky Fan. 

Theorem 2.7 (Ky Fan) 

If F has convex values, any compact convex viability domain 

of F contains an equilibrium. 

We also observe that for the set-valued analogues of linear 

operators the concepts of closed viability convex cones and in- 

variant closed convex cones are "dual". 

We recall that closed convex processes A are the set-valued 

maps whose graphs are closed convex cones. 

When P is a cone, we denote by P+ its (positive) polar cone, 

defined by 

We can "transpose" closed convex processes in the following * 
way: A , the transpose of At is defined by 

Theorem 2.8 (J.P. Aubin, H. Frankowska, C. Olech, 1985) 

Let A be a closed convex process defined on the whole space 

X. The two following properties are equivalent 



I i) a closed convex cone P is invariant by A 
(2.11) * 

ii) P+ is a viability domain of A . 

This result plays a crucial role in the study of controll- 

ability of the differential inclusion 

and the observability of the adjoint differential inclusion 

* 
-q' (t) E A  (q(t)) 

It plays also a role in existence theorems of eigenvalues 

and eigenvector, as a consequence of Ky Fan's theorem. 

Theorem 2.9 (J.P. Aubin, N. Frankowska, C. Olech, 1985). 

Let A be a closed convex process defined on the whole 

space X and P be a closed convex cone with nonempty interior. 

If P is invariant by A t  the two following equivalent conditions 

holds true. 

( i) ~ A E  IR such that Im (A-XI) # X 

We can say that a solution A to (2.14)i) is an eigenvalue * 
of A and that a solution q of (2.14) ii) is an eigenvector of A . 

(2.14) 

3. SMOOTH SOLUTIONS TO CONTROL PROBLEMS 

Let us return now to our control problem (1.1), which re- 

duces to the differential inclusion x l E F ( x )  where F is the set- 

valued map defined by 

* 
ii) 3 q # 0 ,  q E P+ such that Aq E A (q) 

Let us introduce the feedback map R associated to a sub- 

set K CDom LJ in the following way: 



( 3 . 1 )  R(x) := {u E ~ ( x )  1 f (x,u) E TK (x) 1 . 

Then Viability Theorem 2.1 implies the following theorem. 

Theorem 3.1 

Let us assume that U has a closed graph and compact values, 

that f :Graph U + X  is continuous, that 

(3.2) Vx E Dom U , sup Ilf(x,u)ll - < allxll + b  
uEU (x) 

and that the subsets f (x, U (x) ) of velocities are convex. Let X 

be a closed subset of Dom U. Then the viability property holds 

true if and only if 

When this tangential condition is satisfied, viable controls 

evolve according to the law 

(3.4) for almost all t, u(t)ER(x(t)) . 

The measurable selection theorem allows to state that we 

can find such viable controls which are measurable. 

Since the definition of heavy viable solutions involves the 

derivatives of viable controls, we have to find sufficient con- 

ditions for having absolutely continuous viable controls. For 

that purpose, we can think to impose an a priori bound on the 

velocity of the viable controls, requiring for instance that 

Theorem 3.5 

Let us assume that the graph of U is closed and that 

f :Graph U + X  is continuous and satisfies for some co E IR+ : 



Then we can associate with any c > c a set-valued map R c C u  - 0 
having the following property: 

vx0 E K , Yuo E Rc (x) , there exists a 

smooth solution to the control problem 

which are viable in the sense that 

' i) x' (t) = f(x(t) ,u(t)) , 

(3.8) Vt - > O  , x(t) E K  and u(t) ERc(x(t)) . 

(3.7) 

Furthermore, Rc is the largest of the set-valued maps 

satisfying the above property. 

ii) u' (t) E c ( l l x ( t ) ~ ~ + l l u ( t ) I I + l ) ~  , B is the unit ball 

If we introduce the set-valued map Gc defined by 

and u EU(x) 

if not 

Then the graph of set-valued map Rc satisfying properties (3.7) 

and (3.8) is the largest closed viability domain of this set- 

valued map Gc. 

We observe that if cl 5 c2, then 

and that the set-valued map c-Graph Rc is upper semicontinuous. 

Hence smooth viable solutions of the control problem are 

governed by controls u(t) evolving according to the feedback law 

(3.11) for all t > 0 , u(t) ERc(x(t)) . 

Since the definition of heavy viable solutions to control 

problems involves the knowledge of the derivative u'(t) of the 

controls u(t) governing (smooth) viable solutions, we are led 



to "differentiate" the feedback law (3.11 and, for that purpose, 

to "differentiate" the set-valued map Rc. 

4. CONTINGENT DERIVATIVES OF SET-VALUED MAPS 

We choose the concept of contingent derivatives (see Aubin 

(1981), Aubin and Ekeland (1984)). When F is a set-valued map 

from a Banach space X to a Banach space Y and when (x,y) belongs 

to the graph of F, then we define the contingent derivative 

DF(x,y) as the closed process from X to Y whose graph is equal 

to the contingent cone to Graph(F) at (x,y) : 

Graph DF(x,y) := T~raph (F) (x,y) . 

In other words, 

(u,v) E T  Graph (F) (x,Y) 

We can check that 

F(x+huf)-y 
(4.3) VEDF(X,~) (u) - lim inf d 

h -+ 0+ h 

u' 'U 

This concept of contingent derivative captures many of the prop- 

erties of the Gsteaux derivative of single-valued differential 

maps. We just mention here the "chain rule" property which is 

relevant to our problem. 

Let x ( 0 )  and y ( = )  be two absolutely continuous functions 

of t satisfying the relation 

(4.4) for all t, y(t)€F(x(t)) . 

Then 

(4.5) for almost all t, y' (t) €DF(x(t) ,y(t)) (x' (t) ) . 



5 .  HEAVY VIABLE SOLUTIONS TO A CONTROL PROBLEM 

S i n c e  s m o o t h  v i a b l e  s o l u t i o n s  x ( t )  t o  t h e  c o n t r o l  p r o b l e m  

( 1 . 1 )  a n d  ( 3 . 5 )  a re  g o v e r n e d  by a b s o l u t e l y  c o n t i n u o u s  c o n t r o l s  

u  ( t )  o b e y i n g  t h e  f e e d b a c k  l a w  ( 3 . 1 1 )  we know t h a t  t h e  v e l o c i t y  

u  ( t )  o b e y s  t h e  l a w  

( 5 . 1 )  f o r  a l m o s t  a l l  t - > 0 ,  u '  ( t )  E D R c ( x ( t )  , u ( t )  ) ( f  ( x ( t )  , u ( t ) )  . 

T h e r e f o r e ,  h e a v y  v i a b l e  s o l u t i o n s  x ( t )  a re  g o v e r n e d  by  c o n t r o l s  

u ( t )  w h i c h  a re  s o l u t i o n s  t o  t h e  d i f f e r e n t i a l  i n c l u s i o n  

( 5 . 2 )  f o r  a l m o s t  a l l  t - > 0 ,  u '  ( t )  E m ( D R c ( x ( t )  , u ( t ) ) ( f  ( x ( t )  , u ( t )  ) ) )  , 

w h e r e ,  when A i s  a s u b s e t  o f  a v e c t o r  s p a c e ,  

Theorem 5 . 1  ( A u b i n - F r a n k o w s k a )  

Heavy v i a b l e  s o l u t i o n s  t o  t h e  c o n t r o l  p r o b l e m  ( 1 . 1 )  a n d  ( 3 . 5 )  

a re  s o l u t i o n s  t o  t h e  d i f f e r e n t i a l  i n c l u s i o n s  

i )  x '  ( t )  = f ( ~ ( t )  , u ( t )  ) 

ii) U '  ( t )  E d ( O I D R c  ( x ( t )  , u ( t ) )  ( f  ( x ( t )  t u ( t ) )  ) )  

w h i c h  a re  v i a b l e  i n  t h e  s e n s e  t h a t  

I f  w e  a s s u m e  t h a t  

( 5 . 5 )  ( x , u , v )  -+ DR ( x , u )  ( v )  i s  l o w e r  s e m i c o n t i n u o u s ,  
C 

t h e n  f o r  a n y  x  EDom Rc a n d  a n y  uo  E R c ( x O )  , t h e r e  e x i s t s  a h e a v y  0  
v i a b l e  s o l u t i o n  t o  t h e  c o n t r o l  p r o b l e m  ( 1 . 1 )  a n d  ( 5 . 2 ) .  



Footnotes 

Optimal control theory does assume implicitly 

( 1 )  the existence of a decision-maker operating the controls 
of the system (there may be more than one decision-maker 
in a game-theoretical setting) 

(2) the availability of information (deterministic or stochastic) 
on the future of the system; this is necessary to define the 
costs associated with the trajectories 

(3) that decisions (even if they are conditional) are taken once 
and for all the initial time. 

Palaeontological concepts such as punctuated equilibria proposed 
by Elredge and Gould are consistent with the concept of heavy 
viable trajectories. 

Indeed, for the first time, excavations at Kenyats Lake Turkana 
have provided clear fossil evidence of evolution from one species 
to another. The rock strata there contain a series of fossils 
that show every small step of an evolutionary journey that seems 
to have proceeded in fits and starts. Williamson (1981) exam- 
ined 3 . 3 0 0  fossils showing how thirteen species of molluscs 
changed over several million years. What the record indicated 
was that the animals stayed much the same for immensely l ~ n g  
stretches of time. But twice, about 2 million years ago and 
then again 700 .000  years ago, the pool of life seemed to explode 
- set off, apparently, by a drop in the lake's water level. In 
an instant of geologic time, as the changing lake environment 
allowed new types of molluscs to win the race for survival, all 
of the species evolved into varieties sharply different from 
their ancestors. That immediate forms appeared so quickly, with 
new species suddenly evolving in 5 . 0 0 0  to 5 0 . 0 0 0  years after 
millions of years of constancy, challenges the traditional 
theories of Darwin's disciples since the fossils of Lake Turkana 
don't record any gradual change; rather, they seen to reflect 
eons of stasis interrupted by brief evolutionary "revolutions". 
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