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OPTIMAL HARVESTING POLTCY FOR THE 
LOGISTIC GROWTH MODEL 

V. Fedorov, Y. Plotnikov and C.S. Binkley 

INTRODUCTION 
Logistic growth functions have been widely used t o  study optimal 

management of f isher ies  (e.g. Clark,  1976), f o r e s t s  (Kilkki and Vaisanen, 
1969; Andersson and Lesse, 1984) and mammal populations (see f o r  instance 
Spence,  1973): Although this simple model does not c ap tu r e  many of t he  
important elements of biological dynamics, i t  does  possess t h e  cr i t ical  ele- 
ment of sa turat ion,  t h e  slowing of biomass accumulation as a "carrying 
capacity" is  reached .  Thus t h e  theoret ical  resu l t s  based on this  ve ry  sim- 
ple growth model are useful in understanding t h e  resu l t s  of more complex 
and more realistic optimal management problems. In th is  light, th is  pape r  
makes four  contributions. 

First ,  w e  introduce constra ints  on t h e  control  var iable  (Heaps and 
Neher,  1979). Rarely if e v e r  are harves t  levels in real is t ic  problems com- 
pletely unconstrained, s o  th is  f i r s t  complication of t h e  tradit ional bionomic 
model provides a n  important added degree  of realism. 

Second, w e  study t h e  situation where t he  boundary conditions of the  
state var iabie  are specified.  Generaliy t he  r e sou rce  manager is  not free t o  
choose t he  initial r e sou rce  conditions (indeed much of r e sou rce  manage- 
ment is concerned with decisions when these  conditions are judged t o  b e  
somehow undesirable) so this  complication of the  model is important. Termi- 
nal conditions are sometimes specified by l a w  o r  administrative direction. 
Fur thermore,  i t  i s  frequently computationally infeasible t o  soive real is t ic  
planning models f o r  a n  infinite time horizon. Examination of t h e  system 
behavior nea r  a specified terminal value is  consequently useful t o  under- 
standing applied management problems. 



Third, we show tha t  the  solution derived by applying Pontryagin's max- 
imum principle is indeed globally optimally. Other treatments of this prob- 
lem do not attend t o  this important detail of sufficiency. 

Finally, w e  state and solve the  dual optimization prcblem. V e r y  often 
the duals of many complex management problems a r e  far eas ie r  t o  solve 
than' a r e  the  primals. In our  case the  dual problem also has a very c l ea r  
interpretation f o r  management: maximize the terminal inventory stock sub- 
ject to  the  condition tha t  harvest  levels should never  fa1 below a prescribed 
level. 

The conclusion outlines a somewhat more realistic model where the  bio- 
logical system is character ized by an  age-class model, and indicates the 
kind of issues which a r e  interesting in that  context. 

1. OPTIldAL HARVESTING POLICY 

System 

where K ,  T a r e  given positive numbers, z  and u  a r e  the  s ta te  and control 
variables correspondingly. The point above the cha rac t e r  stands f o r  the  
time derivative. 

B o u n d a r y  C o n d i t i o n s  

z ( 0 ) = z o > O  , z ( T ) = z T  > O  

C o n s t r a i n t s  

The pair  z (t ),u ( t  ), which satisfies the conditions (1)-(3), will be called 
admissible. 

O b j e c t i v e  f u n c t i o n a l  

I t  is required t o  find out an admissible pair  zO(t ),u ' ( t  ) such tha t  the  value 
I (x  ' ( t  ),u ' ( t  )) is  minimal among the  values I f o r  all admissible pa i r s  z ,  u  . 



Maximum Principle for the Above Problem 

If t h e  optimal p a i r  z O ( t ) , u O ( t )  exis ts ,  then one can t r y  t o  find i t  by 
applying t h e  tradit ional  technique of t h e  maximum principle of Pontryagin 
[1962]. For  t h e  above problem i t  involves t h e  introduction of t h e  Hamil- 
tonian function 

where $(t ) i s  t h e  adjoint  function satisfying t h e  equation: 

a H  4 = - 1  0  o =  -$[K - 2 K r 0 ( t )  - u O ( t ) ]  - ~ ~ u ~ ( t ) e - ~ ~  . az = (6) 

By t h e  maximum principle t h e  optimal p a i r  z O ( t  ),u '(t ) h a s  a p r o p e r t y  t h a t  
f o r  any t E [O,T] 

M(t)  h - H ( t , $ ( t ) , z 0 ( t ) u o ( t ) )  = max ~ ( t , $ ( t ) , z ~ ( b ) . u )  , 
osu sii 

(7) 

where ($(t ), Xo) is not z e r o  vec to r  and M(t ) i s  a continuous function of t 
and f o r  t E ( to ,T) h a s  t o  sa t is fy  t o  t h e  equation: 

T 
a H  

M(t)  = H ( T , $ ( T ) . Z ~ ( T ) , ~ ~ ( T ) )  - ~ K ( ~ . ~ ( i ) . z O ( r ) . u O ( r ) ) d  r 
t 

Equation (7) can b e  used t o  define f i rs t ly  u O as a function of t , z , $ . 

u O = u ( t , z , $ )  , 

Since 
-at) H ( t , $ ( t ) , z ( t ) , u ( t ) )  = -$Kz(l - 2 )  +uz(-$+ Aoe 1 

from (7) and positiveness of z (t  ) i t  follows tha t  

[Z . when (+( t )  + ~ ~ e - ~ ' )  > O  

us , when (-$(t) + ~ , e - ~ ' )  = 0 

O(t lz ") = I (so ?ailed singular control ) ,  (9) 

0 , when (-$(t) + ~ ~ e - ~ ' )  < 0 

Then one can  eliminate t h e  va r iab le  u from equations (1) and (6) and come 
t o  t h e i r  solution as t o  t h e  two-point boundary value ( tpbv)  problem. This 
solution, i f  successful ,  w i l l  give z '(t ) and u '(t ). There  is no r e g u l a r  way t o  
solve t h e  tpbv problem if i t  is nonlinear (as  ours) .  The following is  an  
attempt t o  get  th is  solution f o r  all possible combinations of boundary condi- 
tions (2). 



Singular part of the solution 
If t h e r e  is  an  interval f o r  which @(t ) = Xoe - 6 t ,  then within i t  as follows 

from (6), and from (7), 

K - d  z , ( t )  = z 0 ( t )  = - = const, 
2K (10)  

A t  the  same interval 

6' 
1 -- 

M ( t )  = X o e - 6 t ~  lY2 
4 

Since @ ( t )  = ho e -6 t ,  and ( @ ( t ) , h o )  is nonzero i t  implies tha t  ho > 0 
and can be  taken as ho = 1 f o r  example. 

In general z o  f z, ( 0 )  and Z T  + z ,(T) .  Therefore,  t he  optimal pa i r  
z O ( t  ) , u O ( t )  cannot consist only of z , ( t )  and u , ( t ) .  A t  least  in t he  vicinity 
of t  = 0 and t  = T the  optimal pa i r  should generally differ from 
z , ( t> ,u , ( t> .  

The Structure of the Optimal Solution 
Knowing the  singular p a r t  of the  optimal solution on the  interval 

[ti  ,t,], 0  < ti S t ,  < T ,  one can show tha t  for all possible boundary condi- 
tions (values z ,, and z T )  t he  optimal control u ' ( t  ) consist of t he  saturation 
portions nea r  boundaries, spanned by the  singular control in between. 

To show this, one should check nea r  boundaries t he  existence of a 
function @(t ) fo r  which u ' ( t  ,@,z ) generates t he  admissible t ra jec tory  z ( t  ). 
W e  will do this by studying the  admissibility of t ra jec tory  for t h e  r ight  and 
left  boundary conditions ( 2 ) ,  separately.  

The Right Boundary 
The Case ZT > z ,(T) .  To t h e  boundary condition z~ > z , (T )  one can 

"ascend" f r o m  z , ( t )  with control u ( t )  = 0 , t  > t ,  Time of depar ture  t ,  
from z , ( t )  can be  chosen from the  condition t o  "hit" zT at time T.  If this 
control is  optimal he re ,  then f r o m  ( 9 )  the  corresponding $ ( t )  should b e  
such tha t  

@ ( t )  > ~ ~ e - ~ ~ ,  (13)  

The Case ZT < z, ( T ) .  To the  boundary condition zT < z, ( T )  when - 
K + d  u iT>- 

2 
, and z~ > 1 - -one can "descend" s tar t ing f r o m  the  singular 

k 
level at t  = t ,  with t he  control  u ( t )  = C. If this  is  the  optimal control, 
then from (9 )  the  function @ ( t ) ,  corresponding t o  i t ,  should b e  such tha t  

@ ( t )  <hoe-" . (14)  



The Left Boundary 
The Case  zo < r,(O). From this boundary condition one can "ascend" 

with control u ( t  ) = 0  t o  the singular level. For this ascent to  be the p a r t  
of the optimal t ra jectory i t  is necessary that  - 

+ ( t )  > hoe-6t ,O s t < ti , (15)  

The Case  z > z, (0 ) .  From this boundary condition one can "descend" 

with control u ( t  ) = u (when - +' < a) to  the  singular level. For this des- 
2 

cent to  be p a r t  of t he  opt imaltrajectory i t  is  necessary (as follows from 
( 9 ) ) ,  that 

To prove that  the  inequalities (13)-(16) are fulfilled f o r  the  chosen 
controls w e  introduce the  new variable p  by the  formula 

+(t )  = A, e-6t p ( t )  (17)  

The inequalities +(t )  > ho e -dt and +(t ) < will become equivalent t o  
p ( t )  > 1 and p ( t )  < 1 correspondingly. On the  singular pa r t  p ( t )  = 1. From 
( 6 )  we can get tha t  

p = -p(K - d - 2 K z )  + u ( p  -1). (18)  

This equation is simpler than ( 6 )  and will more easily bring us to  o u r  goal. 
0 C a s e u  G O  ( z T > z , ( T ) a n d z o < x s ( 0 ) )  

For u = 0  
b = - p ( K - d - 2 & )  
x = K x  -&' 

From these two equations and the  fact  that  in the "singular" interval p  = 1 
one can find 

It  proves the optimality of uO( t )  = 0  a t  the boundaries f o r  the  cases  
ZT > Zs ( T )  and Z o  < X ,  (0 ) .  

W e  u ' ( t  ) = u (xT < z, ( T )  and z ,  > z ,  ( 0 ) )  

When u ( t )  = < ,  then by substitution z = - KY y  t o  (18)  and (1) we 
K  

come to  the equation 

K  withy  > l .  y ,  = z z s .  

I t  follows from (20)  and p(y,) = 1 tha t  



From this and (20) one can conclude that  p is decreasing (being positive, 
see p. 7-8) when y  < y ,  and y  is  decreasing and when y  > y, and y  is 
increasing 

That gives also t he  required proof fo r  optimality of u O ( t )  = u a t  t he  boun- 
dar ies  fo r  t he  cases z~ < z,  ( T )  and z ,  > z ,  (0) .  By these four  possible 
boundary conditions t he  s t ruc tu re  of optimal solution w a s  proven valid. 

Equation for the Boundary Portion 
For the intervals with u ' ( t  ) = 0  and u ' ( t  ) = iT t he  state equation has  

the  form 

with a = K  o r  K  - C correspondingly. The solution f o r  t  2 t o  and a + 0 is 

Q z ( t )  = 
( a z  -l(t o )  - K)e -cr(t  + 

and when a = 0 

z ( t )  = (z - ' ( to)  + K .  ( t  -to)-' .  
For given boundary conditions z o  and zT this solution can be used t o  

define the  values of ti and t ,  (ti  < t ,  )-moments of time f o r  joining the  boun- 
dary  portions of optimal solution with the singular arc (10). 

If f o r  t h e  given boundary conditions t ,  s ti then the  optimal solution 
has  no portion with t he  singular arc and consists of only two conjuncted 
boundary portions. 

2. THE GLOBAJ., OPTIHALITY OF THE SOLUTION GIVEN BY THE 
lUXIMlJM PRINCIPLE FOR THE B O W  PROBLEX 

To prove this w e  will use t he  approach t o  global optimality developed 
by Krotov (1962, 1963). In this approach one can prove the  global optimal- 
ity of z O ( t ) . u O ( t )  from the  discussed problem by constructing the  function 

where \k(t , z )  is  the  so-called Krotov's function, and by checking for this 
function the  fulfillment of the following condition 

R ( t , z o ( t ) . u o ( t ) )  = m a x  R ( t , z , u ) ,  OSt ST 
u ,Z 

subject t o O s u  S c .  
Let \k(t , z  ) = $(t )z and let $(t ) be the  adjoint variable from the  dis- 

cussed problem. 

With such Krotov's function the  maximum of R ( t , z , u )  with r e spec t  t o  u 
is  reached along u = u ' ( t  ) since 



where H(t  ,$,z , u )  is the Hamiltonian for  our problem, which reaches its 
maximum with respect to  u along u = u ' ( t  ) . 

Since R ( t  , z  , u )  is the quadratic function of z ,  we will check the vali- 
aR a2R 

dity of (23)  with respect to z by calculating - and - . 
a 2  a 2  

and due to (6) with X o  = 1. 

- *R = -2K$. 
ax2 

If $ ( t )  r 0 then (24)  holds and the global optimality fo r  zO( t ) ,uO( t )  is pro- 
ven. Let us check this. 

On the singular a r c  $(t ) = Xoe -" > 0 .  Then for  the' cases with boun- 
dary conditions z~ > z, ( T )  and zo < z,(O) i t  was shown that 

For the cases z, > z,  ( 0 )  and zT < z ,  ( T )  due to (17)  the positiveness 
fo r  $ ( t )  follows from p ( t )  > 0. This inequality is t rue  because as  follows 
from ( 7 ) ,  (7a) ,  (8) for  z (t ) > z,  ( O ) ,  t < ti , 

p ( t )  > L - 
uz - K  . z (l-z) 

This proves the global optimality for  zO(t ) , uO( t  ) 



3. THE DUAL PROBLEM 

System and Boundary Conditions 
See (1) and ( 2 ) .  

Constraints 

Objective functional 

The optimization problem (I), ( 2 ) ,  (25) ,  (26) can be t rac ted  as a maximi- 
zation of an  inventory stock at the given moment T  with total  harvesting no 
less than the prescr ibed volume W. The straightforward elaboration led to  
the  same conditions of maximum principle fo r  this problem as in Section 1 
with the following additions: $ ( T )  r 0 and the  sign of X o  is initially not 
specified now. 

This means tha t  ou r  considerations concerning the s t ruc ture  of optimal 
control fo r  the  f i r s t  problem a r e  applicable he re  too and will produce the 
same conclusions as before: namely, f o r  all possible initial conditions 
(values of zo)  nea r  boundaries the optimal control u ' ( t )  consists of the 
saturation portions (u ' ( t  ) = 0 o r  u ( t  ) = c) spanned in between by the  same 

0 K f 6 , t i  S t  S t , .  singular control us (t ) = - 2  

If z o  > z s ( 0 )  , then u O ( t )  = O  , t S ti , - 
if z o  <z , (O)  , then u O ( t )  = u  , t S ti 

6  
1 - -  

After t  = t i  the optimal t ra jectory zO( t )  = z , ( t )  = 2  till the time 

t  = t ,  < T which is defined by the moment when 

H e r e f o r t ,  < t  S T  u O ( t ) = O , a n d z O ( ~ )  > z , ( T ) .  

If t ,  > T  then t ,  time of "departure" Fs from z, (t  ) is  defined as 

and in  this case f o r  rs < t  S T  u O ( t )  = c  a n d z O  ( T )  > z , ( T )  



4. CONCLUSIONS 
Bioeconomic models based on logistic biological dynamics are widely 

used in the  fisheries,  fo res t ry  and renewable resource  Literature. W e  
present  a r a t h e r  complete solution to the  resource  management problem 
with logistic growth, showing the  effect of control constraints and a r b i t r a r y  
boundary conditions as w e l l  as demonstrating t he  sufficiency of t h e  maximum 
principle solution and solving the  dual problem. These solutions have some 
utility in t he i r  own r igh t  for prescribing optimal management policies. 
Furthermore, they suggest how a more realist ic system might behave. 

How would one complicate this model t o  cap ture  t he  next degree  of 
realism? Let us consider the  case of forest growth. In many pa r t s  of the  
world forests regenera te  a f t e r  e i ther  natural catastrophic disturbances 
(e.g. f i r e ,  windthrow o r  insect defoliation) o r  anthropogenic ones (timber 
harvesting, agricultural abandonment). The dynamics of t he  resulting 
even-aged forests  can b e  character ized by the  aging of individual stands 
and the  regeneration of new stands through the  harvest  of old ones. 
Optimal control can  b e  studied in this context. 

Heaps (1984) and heaps and Neher (1979) examined the  continuous time 
process.  While some of the character is t ics  of t he  solutions have been 
derived, o the r s  have not. In par t icuiar ,  the  temporal asymptotic behavior 
is  not we l l  understood: under what circumstances does t he  rate of harvest  
converge? What i s  t he  na ture  of t he  asymptotic age  s t ruc tu re  of t he  forest?  
While the  logistic model provides some insight into t he  development of a 
renewable resource.  i t  obscures  the  answer t o  some of these interesting 
questions. 
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