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S O D  ASPECTS OF MODEL TUNING PROCEDURE: 
I N F O R M A T I O N - m o m c  ANALYSrS 

1. LNTRODUCTION 

Computer or mathematical models are not exact representation of reality: lack of 

knowledge, technical restrictions and particular modeling goals make i t  necessary to 

approximate the real system in various ways. Nevertheless, the procedures by which 

the models are adjusted to observed data are  often based on the assumptions that  the 

real system has  the  same structure as the model and differs only in the values of cer- 

tain parameters. These particular values usually should be included in the feasible 

se t  of the  parameter values, and this fact, together with some additional conditions, 

usually provides the convergence property for many individual algorithms [I]. 

However, in reality all of these assumptions are generally false. Even if the struc- 

ture  of the  system corresponds to the structure of the model, the real parameters 

values often do not belong to the presupposed feasible set. Moreover, mathematicians 

often consciously diminish this set  in order to simplify the estimation algorithms. For 

instance they approximate the bounded compact set of parameter values by a set con- 

sisting of a finite number of points, thus increasing the  chances tha t  the real parame- 

t e r  values will be excluded. 



It is therefore both remarkable and surprising to  find t h a t  despite these false 

assumptions a n d  approximations, the  parameter estimation algorithms often still con- 

verge! The model resulting from this tuning procedure will of course no t  coincide with 

the  real system. and  this rises the  natural  question: how far is this  computer model 

from reality? 

When considering this question it i s  necessary to have some way of measuring the  

distance between individual models. One of measure of divergence was  introduced by 

Bhattacharya [Z] ; Kullback [3] also formulated some measure of information distance. 

However these measures were not proper metrics. Baram and Sandell [4] la ter  intro- 

duced a modified version of Kullback measure, which have been shown to  be a proper 

distance metric. They applied this approach to linear Gaussian systems and models; in 

this  paper i t  is generalized to  a wider class of systems. 

2. NOTATIONS AND DEFINITZON 

Assume t h a t  t he  variety of models of the real system may be character ized by a 

parameter B , which takes values from the parameter se t  B. In view of Bayesian for- 

mulation of t h e  problem, we will assume f i  to  be a random variable defined on some 

probabilistic space (Q. H,P) . Let tn (w),nrO be some random process (observation) 

adapted t o  some nondecreasing family of u-algebras H = (H,) ,~,  H.. = H in R . We 
- 

shall denote by ?i = (i?,)nM, H, = t h e  family of o-algebras generated by the pro- 

cess [, .n > 0 ,  where 

is a-algebra in Q generated by the  process tt u p  t o  time t . 

In the  case of continuous time observation process t t ,  t r O  we assume the  non- 

decreasing r ight  continuous family of o-algebras H = ( H t ) t M  to  be given, where 

H, = H and Ho is completed by P-zero se t s  from H . We also introduce t h e  family of 

a-algebras H = (pt  )tro , where 



If the  s e t  of the parameter  values i s  finite or  denumerable we will denote by 

. r r j (n)  , (or  n , ( t ) )  the  apos ter ior i  probabilities of events 18 = 13, j ,  j E B given obser- 

vations t,., k < n , ( t , ,  u < t ). 

For any A EH ,z E B we denote by P ( A )  , t he  family of probability measures 

Let P , f ( A ) ,  P ( A ) ,  z E B,  n r 0 be the  restrictions of the  P ( A )  on a-algebras 
- 

??, , respectively. Assume also t h a t  for any z.y E B we have Fz - Pz. Define 

z . v  as a Radon-Nicodim derivative 

and  le t  

a,l.v = &Z.V(&Z,Y,)--l. 

I t  is  easy to  see t h a t  if t he  ~ - l - c o n d i t i o n a l  distributions of cn ,  n r 0 have densities 

f = ( z  I an-1). z E B then  

3. SOME BAYESIAN P-  TIO ON ALGORlTHM 

Before deriving our main results,  we will first consider some Bayesian parameter  

estimation algorithms for different observation schemes. 

a)  Assume t h a t  tn,n r 0 is given by the  formula 

where dn satisfies the  recursive stochastic equation 



Here E ~ , , . E ~ ~ ,  n 2 0 are the sequences of independent Gaussian random variables with 

zero mean and variance equal to one, and p is an unknown parameter. Assuming that  

/3 takes its values from some finite set Bk = 1p1,p2, . , . , pk] the aposteriori probabili- 

ties are 

where 4 are Kalman estimates of +, given f p  = pi j and Dj(n) are functions of 

the conditional variance yj (n)  [ 5  ] 

b) Consider the continuous (in time) observation process tt given by the sto- 

chastic differential equation 

where Wt, t r 0 is the H-adapted Wiener process, p is an unknown parameter and 

Ct is H-adapted positive function. Assuming again that  the number of parameter 

values is finite, we have for rrj(t) = P(p = pi IRt) [ 6 ] .  

where 



c) Consider an observation made by a continuous-state jumping process with unk- 

nown transition intensities h t j  . Once again assuming a finite number of values for /I 
we have the following equations for a posteriori probability ni ( t  ) [7 ] 

where 

The necessary and  sufficient conditions of convergence with probability one for a 

posteriori probabilities t o  respective indicators were given in t h e  papers [I, 8.91 in 

terms of absolute continuity a n d  singularity of some special families of probability dis- 

tributions. Papers demonstrated the  applications of t h e  general theory to various par- 

t icular forms of t h e  random processes. 

One of the  central  places in the  proof of t he  main convergence resul t  in [5,9, I.] 

was the relation between a posteriori  probabilities and likelihood ratio in t h e  case of 

denumerable or finite number of the parameter values. More exactly the  following 

lemma is true: 
- 

Lemma 1 .  Let for any  i = j and n 2 o measure is equivalent to  the meas- 

ure  , m e n  - a .  s .  the n e z t  equality is t rue:  

The proof of this lemma follows from the  definition of t h e  likelihood ratio G.j. 
The equality (1) yields tha t  



According t o  the  papers [I, 8,9] this property guarantees  the following result  of con- 

vergence: (remind tha t  we still deal with the case when the  parameter  value 

corresponding to  t h e  real  system belongs to  the  feasible set  of t he  parameter values 

B). 
- .  - .  

Theorem 1. Let for  a n y  i = j . n 2 0, PA - Pi . Then the condition 1 is 

equivalent to the condition 

limnj ( n )  = I(#I = #Ij), P-a.s 
n -.- 

The proof of th is  theorem is based on the  property tha t  singularity se t  for t h e  

measures and  @ coincide @-a. s. with the  se t  !#I = #Ij]. 

If t h e  real  parameter value #Ik does not belong to  the  feasible set variables 

n i (n )  ,i E B calculated in section 3 are already not  t he  a posterioriprobabil i t ies,  but  

some functionals of the  observable process t, . 
Taking them as  a posteriori  probabilities, t he  observer expects t o  get  the  conver- 

gence one of n i ( n )  ,i E B (say nio(n)) to  1 and in terpre t  this resul t  as  if the  real  

parameter  value is equal to  io . However this is actually a false conclusion. The ques- 

t ions which arise in  this relation are: When does the  convergency fact for some of t h e  

n i (n) ,  i E B really take place? What does i t  mean when nio(n) tends to 1 for some 

i, E B ? In order  t o  answer these  questions we need some auxiliary results. 

Assume t h a t  t he  real system corresponds to  a parameter  value k such tha t  k EB . 
Introduce the  function g ( z , y )  = I$ In aE.v [4] and define the measure of distance 

Lemma 2. Function d, , ( i . j  ) is pseudo-metric. m a t  is, the following e q d i t i e s  

hold: 



& ( ~ s k )  + & ( k ~ y )  2 &(ZPY) 

The proof of this lemma is done in [4]. 

Lemma 3. fir a n y  z ,  y E B, n r 0 we have 

G(2.y) 2 0. 

Proof. From the  definition of the c (z ,  y )  

C ( ~ - Y )  = Ez(ln <.*I pn-1) = Ez (&(In a,"JI Bn-l)) = ~,(q(@(a,"J)  I irn-l) 

where $ ( t )  = t In t . According to t h e  theorem of t h e  mean, ( a )  can  be 

represented a s  follows: 

where 6E.y varies between a,Z.' and 1. It  is not difficult t o  see t h a t  

1  (a,"." - 1)2 
q (@(Gmy) I %-,I = +( 1 Bn-l) 2 o a: 

Lemma4. Let &(k,z) I d,(k,y) . m e n  

I,"(z,y) 2 0 

Proof. From the  definition of the  C(z,y), we can write 

g(z,y) = In a,Z.' = E~ In fZ ( tn  IH, -~)  - E~ In fy(t, IHn-l) 

From Lemma 3 for any z EB 

Ek ln a,"." 2 0 



and thus 

5. RESULTS 

Assume t h a t  t he  process In a,Z*" is ergodic, i.e., 

Theorem2. If d ( k , z )  > d ( k , y )  then 

z*" 0, P-a.s. 

lf i t  is known that z-' 4 0 P -as.  , then 

Proof. Note tha t  from Lemma 4, the  inequality d ( k  , z )  > d ( k  , y )  yields 

P ( z , y )  < 0 andconsequently 

1 "  
lim - In a%' < 0 P-a.s. 
n - n , = 1  

This means t h a t  

and  consequently 

t h u s  proving the  first par t  of t h e  theorem. 

In order  t o  prove the second par t  of the theorem we assume t h a t  z-' -r 0 but  

tha t  d  (k  ,z ) < d  (k ,y ) . This yields 



from which 

and the theorem is proved by contradiction. 

Example. Assume that  the  sequence #, is a finite s tate ergodic Markov chain on 
- -. 

any of the probability spaces (R,H,Pa), i E B ,where B is a finite set. Let pfm,  

1 , m  = l,k be the transition probabilities for one step. I t  is not difficult to find (see 

also [8 ] ) tha t  a i j  is given by the formula 

Well known results from the Markov chain theory (see [ l o  ] for instance) she; that 

the process In cxA.j is ergodic. Thus if the  Bayesian algorithm for ~ ( n )  converges to 

1 for some particular j o  i t  means t h a t  this j o  is the point from B that  is the nearest 

(in the sense of information distance d (k  ,z) ) to the real parameter value k . 
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