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Mathematical  Approaches ,  l. Casti and A. Xarlqvist, eds. 
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ABSTRACT 

Attempts t o  axiomatize and fo rna l i ze  system complexity a l l  l eave  a feeling of 
basic incompleteness and a sense  of fa i lure  t o  g r a s p  important  a s p e c t s  of t h e  prob-  
!em. This p a p e r  examines some of t h e  r o o t  causes  of these  fa i lures  and outlines a 
framework f o r  t h e  consideration of complexity a s  a n  implicate, r a t h e r  than expli- 
c a t e ,  p r o p e r t y  of systems in in teract ion.  



On System Complexity: Identification, 
Measurement, and Management 

J o h n  L. Casti 

Complexity and simplicity+ 

1 have ye t  t o  s e e  any problem, however complicated, which, when 
you looked at i t  t h e  r i g h t  way, did not become st i l l  more complicated. 

PouL Anderson 

The notion of system complexity is much like S t .  Augustine's descript ion of 
time: "What then is time [complexity]? If no one asks  me. I know; if I wish to  
explain it to  one t h a t  asks ,  I know not." There  seem to  b e  fairly well-developed, 
intuitive ideas about what const i tutes a complex system, but  a t tempts  t o  axioma- 
tize and formalize this  s e m e  of t h e  complex all leave a vague, uneasy feeling of 
basic incompleteness, and a sense  of failure to grasp important a spec t s  of t h e  
essential na ture  of t h e  problem. In this c h a p t e r  w e  examine some of t h e  root  
causes of these  failures and outline a framework for  t h e  consideration of complex- 
i ty  t h a t  provides a s tar t ing  point for  t h e  development of operational procedures  
in t h e  identification, characterizat ion,  and management of complex processes. In 
t h e  process of developing th is  framework fo r  speculation, i t  is necessary t o  con- 
s ide r  a variety of system-theoretic concepts  closely allied t o  t h e  notion of com- 
plexity: hierarchies,  adaptation. bifurcation, self -organization, and reductionism, 
t o  name but  a few. The p ic ture  t h a t  emerges is t h a t  of complexity as a l a t e n t  o r  
imp l i ca te  proper ty  of a system. a p roper ty  made explicit  only through t h e  
interact ion of t h e  given system with another .  Just  a s  in baseball where some 
pitches a r e  balls and some a r e  s t r ikes ,  but  " they a in ' t  nothin"' until t h e  umpire 
calls them, complexity cannot  b e  thought of a s  an intrinsic p r o p e r t y  of an isolated 
(closed) system; i t  is only made manifest by  t h e  i n t e r a c t i o n  of t h e  system with 
another ,  usually in t h e  process of measurement and/or  control.  In this sense ,  i t  is 

'3otes and r e f e r e n c e s  r e l e v a n t  t o  e a c h  s e c t i o n  a r e  given at t h e  end of t h e  c h a p t e r .  
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probably more meaningful to consider complexity more as a p roper ty  of t h e  in ter -  
action than of t h e  system, although i t  is clearly associated with both.  The explora- 
tion and exploitation of this observation provides t h e  s tar t ing  point for  an emer- 
gent  theory  of complex processes. 

Before embarking upon a detailed consideration of complexity in natural and 
human phenomena, i t  is useful to  consider for a moment why a d e e p e r  understand- 
ing of complexity, p e r  se ,  is of e i t h e r  theoret ical  o r  pract ical  importance. The 
basic reason is t h e  seemingly inherent  human need to simplify in o rder  to under- 
s tand and d i rec t  (control). Since most understanding and virtually all control is 
based upon a model (mental. mathematical, physical, o r  otherwise) of t h e  system 
under study,  t h e  simplification imperative translates into a des i re  to  obtain an 
equivalent, but  reduced,  representat ion of t h e  original model of t h e  system. This 
may involve omitting some of t h e  original variables, aggregating o the rs ,  ignoring 
weak couplings, regarding slowly changing variables as  constants ,  and a variety of 
o t h e r  subterfuges.  All of these  simplification techniques a r e  aimed a t  reducing t h e  
degrees of freedom t h a t  t h e  system has a t  i ts  disposal to  in terac t  with i t s  environ- 
ment. A theory  of system complexity would give us knowledge as  to  t h e  limitations 
of t h e  reduction process. For example, it is well known t h a t  t h e  three-body prob- 
lem of celestial mechanics cannot be  resolved in analytic terms; however, t h e  two- 
body problem is completely solvable, but  a sequence of two-body problems cannot 
be combined to  solve t h e  three-body problem. Thus, t h e  complexity of t h e  three-  
body problem is intrinsically g rea te r  than any sequence of two-body problems and 
t h e r e  is an irretr ievable loss of information in passing to  such a reduced 
representat ion.  A useful theory  of system complexity would provide conditions 
under  which such a decomposition would work and perhaps  even suggest novel, 
nonphysical, simpler representat ions tha t  would be valid when t h e  "natural" sim- 
plif ications fail. 

What a r e  t h e  distinguishing s t m c  t u r d  and behavioral charzcter is t ics  of 
those systems w e  intuitively think of as being complex? Perhaps t h e  easiest way 
to  approach this  question is to  consider i t s  converse: what fea tures  do w e  associ- 
a t e  with s imple  systems? Some of t h e  most evident proper t ies  of simple systems 
a re :  

A'edictable behavior .  There  a r e  no surprises:  simple systems exhibit  a 
behavior p a t t e r n  tha t  is easy to deduce from knowledge of t h e  external  
inputs (decisions) acting upon t h e  system. If w e  drop a stone,  i t  falls; if w e  
s t r e t c h  a spring and let  i t  go, i t  oscillates in a fixed pa t t e rn ;  if w e  put  money 
into a f ixed-interest  bank account i t  grows to  a sum according to an easily 
understood and computable rule. Such predictable and intuitively well- 
understood behavior is character is  t ic  of simple systems. 

Complex processes,  on t h e  o the r  hand, display counter-intuitive, s eem-  
ingly acausal behavior full of unpredictable surprises.  Taxes a r e  lowered and 
unemployment and stagflation persist ;  low-cost housing projects  genera te  
slums worse than those t h e  housing replaced;  construction of freeways 
results  in unprecedented traff ic  jams and increased commuting times. For 
many people, such unpredictable and seemingly capricious behavior d e f i n e s  
a complex system. 
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f i w  i n t e r a c t i o n s  a n d  feedback/feedforward Loops. Simple systems gen- 
erally involve a small number of components, with self-interaction dominating 
the mutual interaction of the  variables. For instance, primitive bar te r  
economies involving only a small number of goods (food, tools, weapons, cloth- 
ing) a r e  generally much simpler and easier to understand than the developed 
economies of industrialized nations, in which the pathway between raw 
material inputs and finished consumer goods follows a byzantine route involv- 
ing large numbers of interactions between various intermediate products, 
labor, and capital inputs. 

Besides involving only a few variables, simple systems generally have 
very few feedback/feedforward loops. Such loops enable the  system to re- 
s t ructure ,  or  a t  least modify, the  interaction pat tern of its variables. 
thereby opening-up the possibility of a wider range of potential behavior 
patterns.  A s  an illustration, imagine a large organization characterized by 
the variables: employment stability, substitution of work by capital, and level 
of individuality (personal level). Increased substitution of work by capital 
decreases t he  human level in the  organization, which in turn may decrease 
employment stability. Such a feedback loop exacerbates any initial internal 
stresses,  potentially leading to a collapse of the process. This type of col- 
lapsing loop is especially dangerous for social resilience and is a common 
feature of complex social phenomena. 
Centralized decision-making. Power in simple systems is generally concen- 
t ra ted in one or ,  a t  most, a f e w  decision-makers. Political dictatorships, 
privately owned corporations, and the  Roman Catholic Church a re  good exam- 
ples of such systems. These systems a re  simple because there  is very little 
interaction, if any a t  all, between the lines of command. In addition, the  
effect of the central  authority's decision upon the system is usually ra ther  
easy to  trace.  

By contrast ,  complex systems display a diffusion of r e a l  authority. 
There is generally a nominal, supreme decision-maker, where the buck stops, 
but in actuality the  power is spread over a decentralized s t ructure ,  with the  
actions of a number of units combining to generate the  system behavior. Typ- 
ical examples include democratic governments, labor unions, and universities. 
Systems exhibiting distributed decision-making tend to  be somewhat more 
resilient and more stable than centralized s t ructures ,  as they a re  more for- 
giving of mistakes by any one decision-maker and a re  more able to absorb 
unexpected environmental fluctuations. 
Decomposable. Typically, a simple system involves weak interactions among 
its constituent components. Consequently, if we sever some of these inter- 
actions t he  system behaves more-or-less as before. Relocating American Indi- 
ans to  reservations produced no major effects on the  dominznt social struc- 
ture in Arizona, for example, since, for cultural reasons, the Indians were 
only weakly coupled to  the  local social fabric. Thus, the  simple social inter- 
action pat tern could be fur ther  decomposed and studied as two independent 
processes, the  Indians and the  sett lers.  A similar situation occurs for the  
restricted three-body problem, involving the Sun, Earth,  and Moon. For some 
purposes, this system can be decomposed by neglecting the  Moon and so 
studied as a simpler two-body problem. 



On the other  hand, a complex process is irreducible. Neglecting any 
par t  of i t  o r  severing any connection usually irretrievably destroys essential 
aspects of the  system's behavior or  structure.  W e  have already mentioned 
the unrestricted three-body problem in this regard. Other examples include 
the t r ipar t i te  division of the  U S  government into executive, judicial, and leg- 
islative subsystems, an RLC electrical circuit,  and a Renoir painting. 

The picture that  emerges from the foregoing considerations of simple sys- 
tems is a notion of complex phenomena characterized by counter-intuitive 
behavioral modes that  a r e  unpredictable from knowledge of environmental inputs; 
by relatively large numbers of variables interacting through a rich network of 
feedback/feedforward connections; by decentralized decision-making structures 
and a high level of functional indecomposability. Since such features a r e  charac- 
teristic of many of the  human systems of modern life, i t  is necessary to develop 
effective procedures for managing and planning the  future course of such 
processes. Let us briefly consider some of the  issues involved in obtaining a han- 
dle on complex systems. 

Management of the Complex 

Some problems a r e  just too complicated f o r  rat ional,  
logical solutions. They admit of insights, not answers. 

J. Wiesner 

We have already noted that  system complexity is a contingent property aris- 
ing out of the  interaction I between a system S and an observer/decision-maker 
0 .  Thus, any perception and measure of complexity is necessarily a function of S, 
0,  and I. Conditioned by the  physical sciences, w e  typically regard S as the  
active system, with 0 being a passive observer o r  disengaged controller. Such a 
picture misses the crucial point that  generally the  system S can also be regarded 
as an observer of 0 and that  the  interaction I is a two-way path. In other  words. 
for a given mode of interaction I ,  the system S displays a certain level of complex- 
i ty relative to 0 ,  while a t  the  same time 0 has a level of complexity relative to S. 
For the  sake of definitiveness, let us denote the  former as des ign  complexity and 
the la t ter  as control complezity.  It is our contention that  the  behavior of S 
becomes uncontrollable when these two complexity levels a re  too fa r  apar t ;  hence 
the "golden rule" for management of complex systems is to  arrange matters so that  

design complexity = control complexity. 

The distinction between design and control complexity has been blurred in 
the  natural sciences because of the  almost universal adoption of the  tacit assump- 
tion that  the  interaction I is one-way, from 0 to S. When S is a system of macro- 
particles as in, say, the  observation of an oscillating pendulum in mechanics, i t  is 
defexsible to argue that  the  pendulum cannot "see" 0 or ,  a t  least, the  pendulum 
has no awareness of 0 as a system with which i t  is in interaction. Hence, there  is 
no notion of control complexity and the rewlation and management of S by 0 
proceeds according to  classical principles. But when w e  pass to the  microscopic 
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and quantum levels or to the global and cosmic levels, the  assumption of no control 
complexity becomes iccreasingly difficult to defend. And by the time w e  move to 
systems possessing even primitive levels of self-awareness in biology and the 
social sciences, w e  can no longer neglect the inherent symmetry in the  interaction 
I. The f i r s t  s tep  in addressing management issues for complex systems is the 
explicit incorporation of control complexity into the modeling and decision-making 
framework. 

To illustrate the  above points, consider the  s t ructure  associated with 
representative government a t  the  regional or  national level. Here we have a sys- 
tem S composed of the  political leaders (mayor, governor, etc.) interacting with a 
system 0 consisting of the  general public. If the  complexity of S as perceived by 
0 is high, then the public sees its leaders as taking incomprehensible actions; 
they see a byzantine and unwieldy governmental bureaucracy and a large number 
of independent decision-makers (government agencies) affecting their  day-to-day 
life. In short ,  what would be observed is exactly what is seen in most countries 
today. On the  other  hand. if the  political leadership were to perceive the  public 
as being very complex, what would their  observations be? They would see a seem- 
ingly fickle, capricious public. composed of a large number of independent self- 
interest  groups clamoring for more and more public goods and services. Further- 
more, there  would be a perception tha t  the  public interest  groups were connected 
together in a ra ther  elaborate network that  could not be decomposed into simpler 
subgroups. Consequently, actions or  decisions taken to address the  interests of 
one group could not be isolated in their  effect, which may possibly be contrary to 
the  interests of another. O r ,  even worse, because of the  dense web of intercon- 
nections and feedback loops comprising the public s t ructure ,  unpredictable and 
unpleasant side effects may emerge from actions taken to  satisfy some subgroups. 
It goes without saying that  these observations form par t  of the  everyday life of 
most public officials in the  western world (and. most likely, the  eastern. too). 

From the above considerations, w e  can conclude that  the  crux of the  problem 
of modern government v e r s u s  its citizenry is that  both the public and the  govern- 
ing officials regard each other  as complex systems. If e i ther  recognized the other  
as simple, much of the  tension and dissatisfaction with contemporary political 
structures would disappear. The ideal situation would be for each to perceive the 
other  as simple, in which case both parties would be  happy. Failing this, simple 
government with a complex public o r  complex government with a simple public 
would a t  least reduce the difficulties and tensions in one direction. but with possi- 
bly increased tensions in the  other.  Local administration in a small, rural commun- 
i ty would be representative of the  former, while a political dictatorship of some 
sor t  would be typical of the  la t te r  situation. Unfortunately, a t  the  regional and 
national level throughout most of the  western world, w e  have the complex/complex 
case, which requires a deeper consideration of how each side comes to attach the  
label "complex" to the  other ,  before the  question of complexity management can 
be meaningfully addressed. 

As emphasized earlier, complexity as a system groperty  emerges from the  
interaction of a given system with another. If a system S can interact  with 0 in a 
large number of n o n e q u i v a l e n t  ways, then S regards 0 as complex; conversely, if 
S has only a small number of modes of interaction with 0 ,  then 0 appears simple. 
In the  governmental context,  a dictatorship appears more complex to the  public, 
because the public has many different modes of interaction with the  government 
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since, in such situations, most of the  agencies of day-to-day life (police, military, 
communications, transport ,  agriculture, etc.) a r e  directly in governmental hands. 
Such centrally planned s t ructures  require a high level of control complexity to 
maintain and a r e  perceived as complex by other  systems which have to  in teract  
with them. 

A system is counted as simple if there  a r e  only a small number of non- 
equivalent ways to interact  with it .  The pen I used to  write this manuscript is a 
simple system to  me. The only mode of interaction with i t  tha t  I have available is 
to use i t  as a writing instrument; however, if I were, say, a chemical engineer, then 
many more modes become available. I could analyze t he  plastic compound of which 
i t  is made, the  composition of chemicals forming the  ink, the  design of t he  writing 
ball a t  i ts  tip, and so forth. So, for a chemical engineer my ballpoint pen becomes 
a far  more complex object than it is for me. 

If w e  adopt t h e  position of this chapter  that  effective management of com- 
plexity consists of arranging systems so that  design and control complexity a r e  
approximately equal, preferably a t  a relatively high or  low absolute level, then w e  
operationally face t he  question of how to  formally characterize the  idea of a sys- 
tem, an interaction between two systems, and the  notion of equivalent inter- 
ac t  ions. 

Systems, Observables, and Models 

For the things of this world cannot be made known 
without a knowledge of mathematics. 

Roger Bacon 

To progress beyond the  obvious and trivial. i t  is necessary to formalize the  
common language and linguistic terms used earlier to  describe system complexity 
and its management. Only through such a formalization can we t ransfer  these intui- 
tive, but fuzzy, terms into a mathematical setting that  provides t he  possibility of 
gaining operational insight into the  way complexity is generated and suggests how 
procedures can be developed to  cope with the  complex. 

For us, a s y s t e m  S is composed of an abstract  s e t  of s ta tes  R, together with a 
collection of real-valued observab les  f : R + R. For example, le t  t he  system S 
consist of the  rotational symmetries of an equilateral triangle. There a re  then 
several candidates for t he  abs t rac t  s ta te  space R, as  shown in Figure 6.1. Thus, 
there  is nothing sacred about t he  s t a t e  space 12; i t  is just a collection of elements 
that  n a m e ,  or  label ,  t h e  possible positions of the  triangle. A typical observable 
for this system would be t he  map f , which assigns to  t h e  s t a t e  o E R the  minimal 
number of rotations through 2n/3 needed to  reach o from the  s t a t e  [a, b ,  c]. 
Thus, f : fl + [O, 1,2 1 C R .  In this case, if w e  take R = n3, then f (o) = o, but if w e  
use R = Ql or  Q2, then f (o) E R3. Co~sequently,  for t h e  observable f i t  is possi- 
ble to code any of t he  s ta tes  in Q2 or R3 by an element of R3; in a certain sense, 
R3 is a u n i v e r s a l  s ta te  space for this system, relative to t he  observable f . 
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Figure 6.1 

In physics and engineering, i t  has become common practice to use R = R n  as 
a universal s ta te  space for a system involving n observables, f f In fact ,  a 
good deal of the  a r t  behind mathematical modeling in the physical sciences lies in 
a judicious choice of observables f 1, so that  the  points of Rn serve as a univer- 
sal coding scheme for the  actual abstract  states of S. It is both remarkable and 
unfortunate that  this procedure works as well as it does: remarkable since there  
is no a p r i o r i  reason to expect  that  the  natural world is constructed so as to mi -  
formly lend itself to such an encoding scheme; unfortunate, since the successes in 
physics and engineering have generated a certain sense of unjustified confidence 
that  a similar procedure will work equally well in the social and behavioral sci- 
ences. It does not, which accounts for a great  deal of the  difficulties found in 
many attempts to mimic the methods of physics when modeling human affairs. All 
that  having been said, let us re turn  to the  formalization of system descriptions 
and complexity. 

From the  (possibly infinite) se t  of all observables characterizing S , we select 
a subset (usually finite), F = t f f 2,..., f N j ,  and call F an abs t rac t ion  of S. Asso- 
ciated with the abstraction F is a relation, or a set  of relations, a, between the  
observables f of F ,  
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Such a relationship cf, is termed an e q u a t i o n  of s ta t e  or  a d e s c r i p t i o n  for the  
system S. Since the  observables a r e  all real-valued functions of 0, if there  a r e  m  
relations, 9 : Rn -, Rm. 

As a simple illustration of the  preceding ideas, let  t he  system S be the  
citizenry of a country. The abstract  s ta tes  R of such a system might characterize 
t he  political mood of t h e  populace. For this, w e  could take 

where ol = very content, w2 = weakly content, o3 = divided, w4 = some dissatis- 
faction, w5 = great unrest. Two (of many) observables for this system could be f  l, 
t he  fraction of t he  population favorably disposed to  t he  political par ty  in power, 
and f  2, t he  fraction neutral o r  opposed to  t he  current  regime. The actual numeri- 
cal values of f  and f when t h e  system is in any s ta te ,  o E R,  need to  be  deter-  
mined on empirical grounds. However, w e  always have the  equation of s ta te  

for any w E R. 
In t he  above situation, t he re  is no notion of causality. The observables of F 

and the  equation of s ta te  cf, a r e  simply quantities tha t  represent  our view of t he  
system S ;  they compactly summarize our experimental and observational 
knowledge of S ;  tha t  is. t he  data. The common manner in which a causal s t ructure  
is imposed upon the  observables is through the  recognition that  in all systems 
there  a r e  noticeably different time-scales according to  which the  values of the  
observables change. We can employ (tacitly o r  directly) these time-scales to 
induce a notion of order,  o r  a causal s t ructure ,  upon F. 

To see how a causal s t ructure  can be  introduced, imagine a system S charac- 
terized by an abstraction F = f f N  j involving N observables. Further,  assume 
that  observation has shown tha t  t he  observables change on three  time-scales, 
slow, medium, and fast ,  for example. For t he  sake of exposition, let  t he  observ- 
ables be labeled so that  

u = l f k + l ' . . . p f g ]  = medium , 

Let A ,  U ,  and Y represent  t h e  range of values of t h e  observables a ,  u ,  and y ,  
respectively. By the  preceding argument, w e  have A C R ~ ,  U C Rn , and Y C Rm , 
where n = q  - k and m  = n - q  . The causal relationship is induced by invoking 
the  principle that  slow dynamics force, o r  cause, fast dynamics. Thus, w e  regard a 
and u as causing y .  In common parlance, the  slow variables a a r e  generally 
termed p a r a m e t e r s ,  while t h e  medium-speed, causal variables u a r e  termed 
i n p u t s  ( con t ro l s ,  dec i s ions ) .  The response variables y a r e  the  system o u t p u t s .  

Usually, there  is a feedback effect  in that  u ,  and sometimes a ,  is modified 
by the  output y .  But the  important point here  is that  when w e  think of some 
observables causing others,  it is the  rate-of-change of the  observables that  pro- 
duces the  temporal ordering which we assign to  t h e  system. Thus, causality is not 
necessarily a natural o r  i n t r i n s i c  aspect of S ,  but ra ther  is introduced by the  
way the observer perceives the  various time-scales a t  work in the  system. In the  
classical physical sciences, this point is not usually particularly important and 
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becomes significant only a t  cosmic and quantum levels; however, in t he  social and 
behavioral sciences i t  is an issue a t  t h e  very outset ,  and partially accounts for  t he  
difficulties in economic and social modeling of deciding what causes what, a ques- 
tion which lies a t  t h e  hea r t  of any sor t  of predictive modeling. 

A be t t e r  intuitive understanding of t h e  partitioning of t he  system observ- 
ables is obtained if w e  employ an evolutionary metaphor. The slow variables a can 
be  thought of as  specifying t he  system genotype; t ha t  is, t h e  aspects  of S tha t  
enable us to  recognize t h e  system as S and not some o the r  system Sf. For 
instance, in an  urban environment, a might code information about t he  local geo- 
graphic, cultural,  political, and economic s t ruc tu re  tha t  allows us to  know w e  a r e  
in Omsk r a t h e r  than Tomsk. The medium-speed observables u correspond to  t h e  
system's e n v i r o n m e n t .  Thus, u represents  e i the r  natural environmental factors 
o r  those created by decision-makers. Finally, t he  outputs y characterize t h e  mor- 
phostructure,  o r  form, of S ,  t h e  so-called system phenotype.  For many social 
systems, y represen t s  t h e  behavioral responses of S to genetic mutation (change 
of a )  and/or environmental fluctuation (change of u ) .  In t he  urban context ,  u may 
reflect  various actions by policymakers, such as imposition of zoning restrictions, 
urban renewal legislation, and t h e  like, while y would then display t he  effects  of 
those environmental decisions, together with t h e  given genotype (city), as new 
housing developments, modifications of t ranspor t  channels, redistribution of 
industry, and so forth.  The important point is t he  relative time-scales of t he  
processes. 

Now le t  us tu rn  to  t h e  centra l  question of this section: how to  decide whether 
two descriptions, o r  models, of t h e  same system a r e  equivalent. In t he  above termi- 
nology, w e  have t h e  description 

and t h e  description 

both purporting to  describe t h e  same system S ,  and our question is whether t h e  
two descriptions convey t he  same information about S o r ,  what amounts to  t he  
same thing, do @ and 8 provide independent descriptions of S? 

Mathematically. t h e  descriptions 4, and a r e  equ iva l en t  i f  t h e r e  exis t  
maps g  and h , depending on a and G ,  such tha t  t h e  following diagram commutes: 

The existence. propert ies,  and construction of t he  maps gats and haS8 depend 

strongly upon t he  mathematical s t ruc tu re  assumed for  the  se t s  U and Y and t h e  
descriptions Qa and 6;. W e  do not discuss these  matters  here .  A purely 
matheaatical t reatment of t he  above question forms t he  core  of singularity 
theory,  which is covered in detail by Golubitsky and Guillemin (1973), Lu (1976), 



and Gibson (1979). The systems view of singularity theory as outlined above is 
t reated in Casti (1984). 

It is worthwhile to pursue, for a moment, t he  implications of system 
equivalence. If 0, and gg a r e  equivalent, i t  means tha t  a change of t he  parameter 
a to a^ can be neutralized, o r  cancelled out, by a corresponding relabeling of t he  
elements of the  sets  U and Y. Speaking metaphorically, if w e  regard S as an organ- 
ism described by @, , then the  genetic mutation a -, a^ can be made invisible by an 
appropriate modification of t h e  environment U and t h e  phenotype Y. When put in 
such terms, t he  notion of system equivalence is strongly reminiscent of the  theory 
of biological transformations originally developed by dlArcy Thompson in the  early 
1900s. In that  theory, an attempt was made to  show that  a common genetic struc- 
tu re  in the  past could be inferred from phenotypic equivalence in the  present. In 
other  words, two species (y, c) with different genotypes ( a  # 6 )  in t he  p re sen t ,  
would be considered to have arisen from a common ancestor (a = a^) in the  past, if 
there  is a phenotypic transformation h which transforms one species into t he  
other.  This is clearly a special case of our diagram when the  environment U is held 
fixed (g = identity). 

For given genotypes a and 6 ,  i t  may be that  t he re  exist no transformations 
g and h which enable us to  pass from 0, to gg. In this case, t he re  exist muta- 

tions & near a that  result in qualitatively different ?henotypic structures.  Such a 
situation forms the  underlying basis for a theory of bifurcat ion and catas- 
trophes,  which w e  consider in more detzil below. 

The Emergence of Complexity 

The electron is not as simple as it looks. 
Sir Wll ian Bragg 

The complexity of a system S is a contingent property,  depending upon the  
nature of the  observables describing S, the  observables characterizing the  sys- 
tem 0 measuring S, and their  mutual interactions. Imagine that  0 sees S in an 
operational mode which 0 describes by the  equation of s ta te  4,. Further,  suppose 
that  a t  another time 0 sees S in the  mode bg. If 0 and dg are equivalent, in t he  

sense described above. 0 concludes that  S is manifesting essentially the  same 
behavior in the  two modes, and 0 is able to use equally well e i ther  description to 
characterize both modes of S. On the  other  hand, if 0, P SB (i.e.. they a re  not 
equivalent), 0 is unable to reduce one description to  t he  other  and regards t he  
operation of S as being more complex, since 0 sees more variety in the  possible 
modes of S ' s  behavior. This simple idea forms the  nucleus of our main thesis that  

complexity of S = t he  number of nonequivalent descriptions 
(relative to 0) 0, tha t  0 can generate for S .  

Interchanging the  roles of S and 0 ,  the  conplexity of 0 relative to  S is defined in 
a similar manner. Let us denote these two complexities as Co(S) and CS(0), 
respectively. Thus, Co(S) is what we earlier termed design complexity, while 
CS(0) is the  control complexity of the  joint system S and 0. 
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A crucial aspect  of our notion of system complexity is that  i t  is a compara- 
t i ve  concept: there  is a tacit  assumption tha t  in order  to compute CO(S), 0 must 
have available a f ami l y  of descript ions  of S and a method for deciding whether 
o r  not two descriptions from the  family a re  equivalent. If Q denotes the  family of 
descriptions, t he  above procedure defines an equivalence relation on Q ,  thereby 
partitioning i t  into appropriate equivalence classes. Since, by definition, all 
descriptions belonging to a given class a r e  equivalent, t he  number CO(S) is just 
equal to the  number of classes that  Q is separated into by our concept of system 
equivalence. To operationally implement this procedure, the  following s teps  a r e  
needed: 

(1) Beginning with a fixed description S construct a family  Q of descriptions 
containing S as a member. One fairly standard way of doing this has already 
been described above, when w e  begin with the  description 4Cfl,..., f N )  and 
isolate some observables as parameters a .  The values of a then provide a 
parameterized family of descriptions of S .  

(2) Partition Q into equivalence classes in accordance with the  equivalence rela- 
tion "-" described earlier. To accomplish this task,  i t  is necessary t o  employ 
the  machinery of singularity theory, once the  mathematical character  of Q 
and the  equivalence relation a r e  fixed. 

(3) Calculate CO(S) = card Q/- = the  number of classes into which Q is split by 
the  relation -. 

In terms of management and decision-making, i t  is 0 who must select t he  fam- 
ily Q and the  relation -; different selections lead to different levels of complexity 
as perceived by 0 .  Similar remarks apply to  the  view of 0 as seen by S .  

A simple example in which the  above concepts a r e  explicitly displayed is 
when cf, : U -+ Y is linear with U = R n ,  Y = Rm . In this case, cf, can be represented 
by an m x n matrix, once bases a r e  chosen in U and Y. In order  to  parameterize 
t he  description (6, let us suppose that  w e  regard the  f i rs t  diagonal element of as 
a parameter; that  is a = [@Il1. Then the  family Q = cf,, : Rn -+ Rm , a E R I .  Now 
let  P and Q be linear coordinate transformations in U and Y, respectively, and 
suppose w e  consider an alternative description. that  is, we change the  value 
of the  element [@Il1 from a to  6. W e  ask if cf,, - (6 - or ,  what is the  same thing, 

a 
does the  diagram 

commute? Well-known results from matrix theory tell us that  in this case cf,, - cf, .. 
a 

if and only if 

rank iPa = rank 9; . 
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Thus, if w e  let  a = min lm, n j, w e  can asse r t  tha t  

complexity Q ,  4 a + 1 
The exac t  complexity, of course, depends upon t h e  s t r u c t u r e  of t h e  fixed ele- 
ments of a,. If, for  example, rank Qa is constant  for  all a E R ,  then  complexity 
a ,  = 1. Thus, 

complexity Qa = number of different  values t h a t  rank 
9,  assumes a s  a ranges over R.  

In passing, w e  note t h a t  t h e  points a* ER a t  which @, changes rank are 
what w e  ear l ier  termed bifurcation points. They represen t  places where t h e  
inherent  information in t h e  description 9 ,  (he re  represen ted  by  t h e  number of 
linearly independent rows of @,, for  example) is different  from t h a t  in 9,. for  a 
near  a*. W e  r e t u r n  t o  th is  point in a more general context  la ter .  

In summary, complexity emerges from simplicity when al ternative descrip- 
tions of a system are not reducible t o  each o the r .  For a given observer ,  t h e  more 
such inequivalent descriptions h e  o r  s h e  generates,  t h e  more complex t h e  system 
appears.  Conversely, a complex system can b e  simplified in one of two ways: 
reduce t h e  number of potential descriptions (by res t r ic t ing  t h e  observer 's  means 
of interaction with t h e  system) and/or use a coarser  notion of system equivalence, 
thus reducing t h e  number of equivalence classes. The f i rs t  s t r a tegy  is exemplified 
by  a decision-maker who listens to  only a f e w  advisors before making a decision 
r a t h e r  than gathering a full spectrum of views on a part icular  issue; a failure to  
dig deep  enough t o  get  all t h e  fac ts  surrounding a situation before taking action 
would be  representa t ive  of t h e  second approach to  simplification. Both 
approaches are considered in more detail  below, but  f i r s t  !et us examine some of 
t h e  ways in which t h e  complexity of a system can change in a natural manner. 

The Evolution of Complexity 

In shor t ,  the  notion of s t ruc tu re  is  comprised of t h r ee  key ideas: the idea 
of wholeness, the  idea of transformation, and the  idea of self-regulation. 

J. Piaget  

I t  has been recognized, a t  least  since t h e  work of Turing and von Neumann on 
self-reproducing machines, t h a t  in o rder  for  a system to  evolve to  a higher level of 
complexity, i t  is necessary for  t h e  system to contain i t s  own self-description. W e  
might well ask why it would not b e  possible to  design a self-reproducing system 
with given functional character is t ics  using hardware alone, without also requiring 
an internal  linguistic description of what i t  is doing. The answer lies in t h e  condi- 
tions for  reliability, adaptation, growth, and evolution tha t  w e  use to  character ize  
complex systems; w e  are not in teres ted  in a system whose natural tendency is to  
degenerate o r  lose i t s  function. Systems tha t  contain the i r  own genetic descrip- 
tion a r e  one known t y p e  of organization tha t  allows survival and evolution despi te  
e r r o r s  within t h e  system, o r  even e r r o r s  in t h e  description. In general,  w e  have 
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only a feeble understanding of the  explicit conditions for the  linguistic descrip- 
tions needed to achieve the threshold of reliability and adaptability necessary for 
survival and evolution. 

In the  above view, a complex system is a composite consisting of a physical 
s t ructure  (the hardware) carrying out functions under the  instructions of an 
internal description of itself ( the software). This situation would be well under- 
stood, as i t  is in computer science, if i t  were not for the  fact  that  in most systems 
of interest  the  hardware and software a r e  contained in the  same physical struc- 
ture. A key problem in the understanding of complex processes is the  way in 
which the dynamic modes of t he  system interact  with the  linguistic modes, and the  
manner in which these complementary modes a re  combined to  provide an external 
observer with some level of complexity, as outlined earlier. If we  regard a mea- 
su remen t  process as a physical s t ructure  that  executes a rule which relates a 
system to an element of i ts  description, then the  encoding of dynamical processes 
to  linguistic s t ructures  is very closely related to measurement. On the other  hand. 
the  decoding and physical execution of a genetic description is a problem of 
i n t e rp re t a t i on .  

The measurement/interpretation complementarity can be very easily demon- 
s t ra ted  by examining ordinary human speech. W e  can ei ther  say what w e  mean or  
w e  can examine how w e  have said i t ,  but w e  can' t  do both simultaneously. We can 
represent physical structures as descriptions only when w e  recognize that  the  
structures a r e  obeying a coherent s e t  of rules, which w e  call a language. And i t  is 
in this language that  w e  formulate our concepts of complexity or simplicity. The 
irony in this picture is tha t  the  natural language w e  use to  identify complexity 
may cause us to interpret  inherently simple events, as seen by the internal 
language of our self-describing system. as complex messages in our interpretative 
natural language. An important component in the  management of complexity is the 
institution of procedures to  bring the  internal and natural languages much closer, 
and so to prevent the  external observer from receiving a message that  is not 
really in t he  system itself. 

Considerations of s t ructure  and description also bear heavily upon the emer- 
gent complexity arising out of lower level, simpler processes. If w e  think of the  
evolutionary process, in general, as a mapping of environmental variety and con- 
straints into the  s t ructure  of the  evolving system in the form of organizing princi- 
ples and coded information, then i t  is possible to  distinguish th ree  quite distinct 
evolutionary strategies: the  phylogenetic, ontogenetic,  and sociogenic. Let us 
consider these strategies in light of our earlier remarks. 

Phylogenetic. This strategy involves random genetic mutations and gene mix- 
ing which a r e  tested in their  phenotypic forms by interaction with environ- 
mental stresses.  The successful s t ructures  (if any) result in the  blind, 
natural selection of the  corresponding genotypes. In terms of our earlier for- 
malism, the  map @, : U -, Y is modified by purely random changes in a with 
future a ~ t a t i o n s  of a entirely unaffected by the  resulting phenotypes 
y,(u).  Such a strategy is enormously profligate ar?d slow, permitting rapid 
environmental fluctuations to reduce the  viability of species before the  phy- 
logenetic mapping can catch up as, fo r  example, with the extinction of the  
dinosaurs. 



Ontogenetic. If the  system has some means of storing the results of muta- 
tions in a ,  fo r  example, with some neurophysiological s t ructure  like a brain, 
then instead of random genetic changes, w e  have selective trial-and-error 
probings of the  environment. In short ,  the  genetic changes a r e  directed by 
what has gone before in a process called Learning. Such an ontogenetic 
strategy permits a more rapid and refined process of information generation 
about the  environment; there  is an adaptive mechanism by which successful 
phenotypic characteristics a r e  fed back to the  gene pool to promote fur ther  
genotypic changes. W e  might think of this feedback or  learning mechanism as 
embodied in the  neural code of the  system, as opposed to its genetic code. 
However, this strategy also has i ts  drawbacks, principally t he  fact  that  t he  
information is stored in the  system and goes out of existence with i ts  death. 
Saciogenic. This strategy is associated with systems tha t  are not only social, 
as in various insect societies, but also sociocultural, which involves not only a 
permanent social organization. but also an arbi t rary symbolic coding of the  
role relationships in the  society. A t  this level, the sociogenic strategy of 
evolution involves an additional code, the  narmative code, which is stored 
outside the physical system itself. Thus, the  information about the  environ- 
ment does not die with the  system and. in fact ,  can be passed on to new 
systems without their  having to first  directly experience the actual environ- 
mental interactions. In this strategy, besides the  advantage of ex  tra-somatic 
storage of information, there  is the  possibility of the  system 
restructuring itself very rapidly when environmental pressures become great 
enough. 

In the  sociogenic strategy, we pass from a variation of t he  genetic code 
to mutations of the  normative code, which guides the  social and psychological 
development of new generations. Instead of a gene pool comprising the 
system's stock of coded information, there  is an idea pool which is a reser-  
voir of t he  culture's templates for the  coordination and integration of indivi- 
dual actions and interactions. New ideas or ideologies a r e  continually 
generated as mutations, subject to various selection pressures, with repro- 
ductive success measured by the perpetuation of one normative system and 
social s t ructure  as opposed to others. 

As a simple illustration of sociocultural evolution, consider the  develop- 
ment of societal regulatory mechanisms; that  is, the  dominant political struc- 
tures. The appearance of democratic forms of social regulation represents,  
from the purely objective point of view of cybernetics, the  evolution of a 
more adaptive political structure.  For example, a more extensive idea pool, 
fuller information and feedback channels in the  system, and a more extensive 
mapping of the  internal as well as external s ta tes  of the  system and environ- 
ment. 

Of special importance is the  balance between those institutional struc- 
tures and processes designed to  maintain a given s t ructure  and those 
designed to enable be t te r  adaptation to environmental conditions. The former 
structures a r e  much more strongly incorporated into the  micro- and macro- 
s t ructure  of the  political system than the  la t ter ;  hence, pressures tend to  
mount until the  old s t ructure  can be changed only through potentially de- 
structive revolution - a singularly poor strategy for evoluton. 
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Our previous consideration of system complexity as a property of the  
interaction between a system and its observer/regulator applies a t  each level of 
the  above evolutionary scheme. However, w e  can also think of t he  emergence of a 
new type of system complexity as w e  pass from the  phylogenetic to sociogenic 
strategies. This is an evolution not of the  complexity displayed by a fixed system, 
but ra ther  a qualitative change of the  type of system from individual, nonlearning 
units to social collections of adaptive units, each system type requiring i ts  own 
complexity concept. W e  touch on some of these distinctions in t he  next section 
which deals with t he  interrelationships between system complexity and the con- 
cep t s  of adaptation. hierarchy, and bifurcation. 

Complex Systems: Adaptation, Hierarchy, and Bifurcation 

There  is  nothing in t h e  whole world t h a t  i s  permanent. Everything 
flows onward; all things a r e  brought  into being with a changing 

na tu re ;  t h e  ages  themselves glide by in constant movement. 
h i d  (Metamorphoses) 

Treatments of complexity often place great emphasis upon various behavioral 
or  structural  characteristics of a system, which, if present. offer supposed prima 
facie evidence that  the  system is complex. by whatever interpretation the author 
is advocating. Three of the  most commonly cited characteristics are:  

Adaptability. The capacity for the  system to monitor i ts  environment and to 
reconfigure itself on the  basis of its observations in order  to  more effec- 
tively perform its  function. 
Hiararchy. The tendency for t he  system to be structurally organized in a 
stratified manner so that  information and activities a t  lower levels a r e  com- 
bined as inputs to higher levels, while overall direction and control passes 
from higher to  lower levels. 
Bifurcation and novelty. The tendency for complex processes to  spontane- 
ously display a shift from one behavioral o r  structural  mode to another, as 
levels of organization increase. These surprises o r  emergent novelties 
represent points of bifurcation where a previous description of the  system 
breaks down and a new description, not reducible to t he  old, is required. 

While i t  should be clear by now that  w e  do not hold to the  view that  any of 
t he  above features is an infallible indicator of complexity, i t  certainly is true tha t  
many complex phenomena are hierarchically structured,  do display emergent 
behavioral modes, and can adapt to  new situations. Consequently, i t  is of interest  
to examine how well these system properties can be accommodated to the  complex- 
i ty  concept introduced earlier in this chapter.  

Adaptation 

Consider t he  capability of a system to adapt to  changing conditions in the  
environment. This is a functional concept involving a t  least some subsystems 
changing their  functional behavior to accommodate t he  new environment. A 
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political system granting voting rights to women in response to egalitarian social 
currents ,  as  in Switzerland in recent  times, is t he  type of adaptive change a com- 
plex system can often make. So is the  way in which banks have been introduced 
into modern economic s t ructures  as  an adaptation to  provide for intertemporal 
exchanges in disequilibrium. Here, a subsystem whose previous function was only 
to ac t  as  a storehouse of wealth. has changed i ts  function to  provide credit  and 
other  services which allow an economy to sustain a continual s t a t e  of disequili- 
brium. One might say, even. that  all adaptation arises as a result of a principle of 
function change, whereby subsystems created for one function begin to perform a 
quite different function when the  system perceives t he  new function to  be  evolu- 
tionarily more advantageous than the  old. The classical biological example of this 
kind of shift is t he  evolution of t he  human eye, which cannot confer any survival 
advantage until i t  sees and cannot see until i t  is highly evolved and complex. 
Thus, i t  is difficult to imagine how such an organ could arise as  t he  result of 
minute differential changes in a fixed organ, even over millions of years. It  is much 
more reasonable to suppose tha t  originally the  eye performed a function quite dif- 
ferent from sight and an accidental feature of this proto-eye was tha t  i t  was pho- 
tosensitive. As time wore on, the  photosensitivity feature became more and more 
evolutionarily advantageous and the  original function of the  eye was lost. 

The picture of adaptation as being a system response to  changed cir- 
cumstances leads to the  basic evolutionary equation 

variation + selection = adaptation. 

expressing t he  fact that ,  in order  to adapt,  the  system must have many potential 
modes of behavior and a procedure f o r  evaluating t he  relative fitness of the  vari- 
ous alternatives in a given environment. One of t he  difficulties with complex 
human social systems is that  redundancy a t  the  genetic level, which gives the  
capacity for independent variations, is too limited. As a result,  there  is too little 
room for trying new approaches and for exploring alternative pathways to a given 
functional goal when operating circumstances change. Systems such as large 
nuclear power plants, national economies, major ecosystems, and t h e  like have lit- 
tle, if any, degrees of freedom in their  s t ructure  or design with which to experi- 
ment. The consequences of a failure a r e  too great  to allow the  evolutionary equa- 
tion to  operate effectively, a t  least in i t s  natural mode. In our view, until more 
resilient design policies are employed for such large-scale systems, the  only possi- 
ble way to escape this prison of hypotheticality is by way of mathematical models 
and computer exploration of alternative systems, r a the r  than by relying upon 
nature's trial-and-error. On balance this is probably a be t t e r  strategy anyway, 
since we don't have millions or  even hundreds of years to find solutions to our 
energy, economic, and environmental problems. But t he  potential Achilles heel in 
t he  computer simulation strategy is that  i t  is totally dependent upon the  
existence of faithful models of reality, expressible in mathesatlcal terms. Thus, 
t he  weight of the  ent i re  edifice is concentrated upon the  need to develop a sci- 
ence of modeling and effective procedures for t he  identification of "good" models 
of human and natural phenomena. 

To incorporate t he  above ideas into our earlier formalism, we must introduce 
a feedback mechanism through which environmental fluctuations a r e  sensed by 
the  system and used to  generate exploratory variations In t he  system's 
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"genomes". Recalling that  the  basic description (or model) of the  system is given 
by a family of relations 

* , : U - r Y  , 

inclusion of adaptive capabilities requires two steps: 

(1) Feedback/feedfortoard loops. The system genome a is now thought of as 
being a t  least partially determined by ei ther  current  and past s ta tes  of t he  
environment (feedback). in which case a = a [u ( t  - T)] and/or upon 
predicted future s ta tes  of the  environment (feedforward). In the  la t ter  
event, a = a[c(t + T)]. Here T is some time-lag, while 12 denotes t he  
predicted future environmental state.  There a r e  good arguments for both 
feedback and feedforward mechanisms in adaptive s t ructures  and, most 
likely, any truly self -organizing complex s t m c  ture  develops both modes for 
coping with environmental change. 

(2) Se lec t ion  procedure .  Implicit in the  above feedback/feedforward mechanism 
is a selection procedure; the  environment is sensed and predicted and a m l e  
is applied which tells the  system how to modify its genome to best  f i t  the  
changed circumstances. Thus. the  feedback/f eedf orward loops represent  
both random and directed search in the  space of the  genomes, together with 
a procedure to weed out the  "good" genetic pat terns  from the  "bad". 

A t  this point i t  is useful to note the  distinction between the  adaptive capa- 
bility of an individual system and the  effect tha t  the  association of individuals in a 
society has on this capacity. Basically, the  adaptive capacity of an individual is 
reduced, but group adaptive capacity is increased as individuals join together in 
cellular societies. The key point here  is that  the group capacity is increased, but 
on a much longer time-scale than that  for individuals. Thus, individual companies 
join together to  form a multinational conglomerate, thereby gaining a group ability 
to respond to global economic fluctuations tha t  no individual member could easily 
accommodate, but on a much longer time-scale than the  reaction time of a typical 
firm. It  is probably fair to say that  higher-level associations only arise through 
defects in the  adaptive capability of individuals. More than any other  factor, i t  is 
this limited adaptive capacity of individuals that  gives rise to  the  hierarchical 
organizations so typically present in complex systems. 

Hierarchy 

The failure of individual subsystems to be  sufficiently adaptive to changing 
environments results in the  subsystems forming a collective association that ,  a s  a 
unit, is be t te r  able to function in new circumstances. Formation of such an associ- 
ation is a s t r u c t u r a l  change; the  behavioral role of the  new conglomerate is a 
f u n c t i o n a l  change; both types of change a re  characteristic of t he  formation of 
hierarchies. I t  has been argued by Simon (1969, 1981), as well as others,  that  evo- 
lution favors those systems tha t  display stable, intermediate Levels of s t r u c t u r e .  
Furthermore, a complex system is incomprehensible unless w e  can simplify i t  by 
using alternative Levels of d e s c r i p t i o n .  A digital computer illustrates both types 
of hierarchies, where we have structural  or  hardware levels from microchips to 
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functional units like disc drives, terminals, processors, and so on. On the descrip- 
tive side, w e  have t h e  system software which describes what the  structural  levels 
a r e  to do, using a series of descriptive levels from machine languages to high-level. 
natural-language programming languages. 

In a hierarchical s t ructure ,  the  various levels of organization re fe r  primarily 
to different ways in which i t  is possible for us to interact  with t he  system, i.e. 
nonequivalent types of s ta te  descriptions generate different hierarchical levels. 
I t  is not possible. for instance, to understand the  machine language operations 
represented by a particular BASIC statement without moving away from the  level 
of BASIC to t he  more microscopic level of machine instructions. The two descrip- 
tions a r e  incompatible in much the same way that  i t  is impossible to understand a 
biological organism by studying i ts  individual atoms and molecules. Of course, t he  
same situations occur repeatedly in economics under the  rubric micro-macro 
problems, as well as in urban studies, psychology, sociology, and many other  areas. 

It is interesting to note that  in hierarchical organizations, t he  organizational 
characteristics Look t h e  s a m e  a t  each level, in that  t he  dynamics and structural  
interactions a t  each level appear to be models of each other.  This feature was 
noted long ago by Haeckel in his bioenergetic law - "ontogeny recapitulates phy- 
logeny", expressing the observation that  each organism carries t he  ent i re  history 
of the  phylum within itself. Other examples of this principle abound: computer 
programs and their  subroutines, a symphony and its various movements, a neural 
network and the  associated network of genetic control, a book and its component 
chapters.  and so on. Some of these hierarchies a r e  structural ,  while others a r e  
functional, and i t  appears safe to say that  the  central  problem of hierarchy 
theory is t he  understanding of t he  relation between the  structural  and the  
descriptive (or functional) levels. Most of the  classical physical sciences have con- 
centrated upon s t ruc t u r d  decompositons, culminating in today's multimillion-dollar 
searches for the  ultimate particles of matter. This is suitable for the  study of 
physics, but for an understanding of living systems (biological, human, social) i t  is 
necessary to look for f u n c t i o n a l  decompositions: t h e  new reductionism will be  
based upon units of function and description, not units of structure.  

How can the  preceding concepts of hierarchical levels be  incorporated into 
our mathematical formulation? A t  the  structural  level, the atoms of our modeling 
formalism a re  the  real-valued observables f : R + R ,  where R is t he  system's s e t  
of abstract  states.  In a loose sense, I f t  1 a r e  t he  s ta te  variables of the  model. 
Structural hierarchies a r e  formed by combining these s ta te  variables, e i ther  by 
aggregation or  disaggregation, into new quantities. Imagine that  w e  have n observ- 
ables that can be collectively written f = Cfl...., f , ) .  A hierarchy is formed by 
prescribing a rule for combining these quantities into m new observables, 

A 

f = (fl, fz ,..., 1; that  is each ft = f (fl ,..., f , ) .  Diagrammatically, w e  have 



On Sys tem ComplezCt y 19 

in which, the  map @ is e i ther  an imbedding or a projection of Rn + R m ,  depending 
upon whether n < m or  n > m . The interesting par t  of t h e  diagram involves the  
map a and the  new s ta te  space n. Since (n,?) represent a different hierarchical 
level than (Q, f ), i t  is generally t he  case that  Q Z fi; that  is, t he  s e t  of s ta tes  
appropriate for characterizing the  system a t  a given level is not generally the  
s ta te  s e t  appropriate for another level. But t he  diagram makes i t  clear that  t he re  
is some flexibility in passing from fl to  fi. We can ei ther  choose a, thereby fixing 
the  new s t a t e  s e t  fi, o r  w e  can choose 0 and then determine a from t h e  relation 
@ of = 70 a. The picture sketched above provides a prototypical framework for 
all structural  stratifications that  involve the  introduction of hierarchies through 
aggregation and disaggregation. 

The descriptive stratification proceeds on t h e  basis that  t h e  system activity 
is determined by the  equation of s ta te  that  links its observables. Thus, t he  func- 
tion that  t he  system performs is described by the  rule 

Earlier, w e  subdivided the  observables using cause-and-effect arguments and 
wrote this relationship as 

Now let  us consider what is implied when the  system passes to a new descriptive 
level a t  which a new function is performed. In our context i t  can mean only one 
thing: t he  equation of s ta te  @ has been modified to  a new equation 5, possibly (but 
not necessarily) with a change of observables from f -, y; tha t  is, in diagrammatic 
form 

W e  have already discussed the  ramifications of this diagram and note he re  only 
that  the  appearance of a new functional hierarchical level is abstractly the  same 
as the  occurrence of a bifurcation in t he  system description. Consequently, t he  
emergence of new functional hierarchies is completely intertwined with the  con- 
cep t  of system bifurcation, and an understanding of t he  system's functional levels 
of organization can only occur through a deeper investigation of the  number and 
type of its bifurcation points. 

Bifurcation, Ekror, and Surprise 

Earlier, w e  considered the  situation in which there  were two descriptions of 
* 

a given system, say 9, and Q6, and addressed the  question of when w e  could mean- 
* 

ingfully say that  Q, was equivalent to  6&.  It  was argued that  9, - 9 - if maps g 
a 

and h could be found such that  t he  diagram above commutes. In other words. 
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A A - a -  if a change of genotype a + a can be neutralized by appropriate a 
changes, g and h , of the  environment and phenotype, respectively. If no such g 
and h exist (within some appropriate class of maps), then a is called a bifurca- 
t i o n  point for  the  description @ (or, equivalently, 6 is a bifurcation point for t he  
description 6). We then d e f i n e  the  complexity of t he  system in terms of the  
number of bifurcation points. So in this sense, a system S is more complex than a 
system S' if our description of S contains more bifurcation points than our 
description for  S'. Thus, t he  concept of system complexity and the  idea of a bifur- 
cation a re  intimately linked a t  the  very outset of our theory: increased complex- 
i ty  can only emerge a t  a bifurcation point and, conversely, every bifurcation point 
gives rise to a new mode of system behavior tha t  is not reducible (i.e. understand- 
able) in terms of t he  old. Now let  us consider a quite different way in which bifur- 
cations can generate emergent behavior when two systems a r e  made to interact  
with each other.  

Consider t he  simple situation in which we have R = t he  real  numbers R ,  and 
the  observables f = C f  l...., f ,), a re  defined as 

f i :  R 4 R  i = 1 ,2  ,..., n .  
r + i t h  coefficient in t he  

decimal expansion of r 

Then, clearly, r l ,  r 2  E R a r e  equivalent with respect  to the  observables f when 
r l  and T 2  agree in the  f i rs t  n terms of their  decimal expansions. Now choose 
numbers r ;  , r;;! such that  

Now we let  the  1-system interact  with the  2-system through multiplication; tha t  is, 
we form the  products r3= ( r1r2 )  and r j  = (rir;;!  ) and find that .  in general, 
r 3  7L / ~ j  ; tha t  is, t h e  equivalence classes under f a re  split by the  interaction 
(i.e., by the  dynamics). In o ther  words, t he  interaction generates a bifurcation of 
the  f -classes, a bifurcation tha t  we usually call round-off error, In t he  above con- 
text .  I t  is instructive to examine the  source of this so-called e r ror .  

To see t he  way the  e r r o r  is introduced in t he  above situation, le t  us consider 
a numerical example. Let r = 123, r i = 124, r = 234, and r ;;! = 235, and use 
f = C f l ,  f 2 ) ;  tha t  is, the  equivalence relation generated by f is such that  two 
numbers a r e  equivalent if they agree in t he  first  two places. Here we have r1 r 2  
(= 28782) Ic r i r;;! (= 29140), a discrepancy with our expectation based on the  

f -equivalence. Our surprise a t  finding r r 2  7L r ; r i  occurs because t he  s e t  of 
observables f = C f l ,  f 2) is too limited, thereby causing an unrealistic expectation 
concerning the  interaction between t h e  1- and 2-systems. If we had expanded the  
s e t  of observables to the  s e t  7 = C f l ,  f 2 ,  f 3). then no such discrepancy would 
have occurred. since t he re  would be no equivalence. a t  all, of r l ,  r  i under f^. So. 
the  entire source of our observed e r r o r  is purely from the  incompleteness in t he  
description of the  system. 

The preceding arguments a r e  entirely general: e r r o r  (or surprise) always 
involves a discrepancy between the  objects (systems) o p e n  to  interaction and the  
abstractions (models, descriptions) closed to those same interactions. The remedy 
is equally clear, in principle: just supplement the  description by adding more 
observables to account fo r  t he  unmodeled interactions. In this sense, e r r o r  and 
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surprise a r e  indistinguishable from bifurcations. A particular description is inade- 
quate to  account for  uncontrollable variability in equivalent s ta tes  and w e  need a 
new description to remove the  e r ror .  

It is interesting to  note that  since bifurcation and error/surprise a r e  identi- 
cal concepts, and tha t  complexity arises as a result of potential for bifurcation. 
w e  must conclude tha t  complexity implies surprise and error ;  tha t  is, to say a sys- 
tem displays counter-intuitive behavior is t he  same as saying that  the  system has 
the  capacity for making errors ,  although the  e r ro r  is not i n t r i n s i c  to  an isolated 
system, but occurs when a system interacts with another. 

Models, Complexity, and Management 

The man who draws up a program f o r  t he  fu tu r e  is  a react ionary.  
Kar l  Man: 

It .has been said that  t he  reason w e  construct models is to  be able to say 
"because". Coping with complexity involves t he  creation of faithful models of not 
only the  system to be managed, but also of the  management system itself. As w e  
have continually emphasized, complexity, i ts  identification and control, is an 
interactive concept between the  system and its manager and it is impossible for 
t he  management system to effectively regulate the  controlled system without hav- 
ing a concept (read: model) of itself, as well as of the  system to be managed. This 
self-description is essential if the  management system is to survive in t he  face of 
inevitable e r ro r  and environmental disturbances of the  type discussed above. In 
our earlier terms, effective complexity management reduces to t he  simple 
prescription 

design complexity = control complexity. 

But, what is involved in reaching this s ta te  of system-theoretic nirvana? 
One aspect w e  can be certain of is that  the  search for effective management 

of complexity does not necessarily involve simplifying the  process to be regulated. 
A s  Einstein pointed out, things should be as simple as possible, but no simpler, 
which w e  could translate as reducing the  design complexity to  the  level of the  
control complexity, but no lower. Turning this argument around, w e  can also think 
of i n c r e a s i n g  t he  complexity of t he  management system to bring i t  into line with 
t he  design complexity of the  system. Thus, effective complexity management may 
involve e i t he r  simplifying or  complexif ying, depending upon the  circumstances. 
But, in e i ther  case, i t  is f i rs t  necessary to have means for assessing the  levels of 
complexity of the  two interacting systems. Thus, w e  must begin to develop the  
framework for a t heory  of models, one that  includes effective methods for identi- 
fying the complexity of interacting systems and the  means by which the  conflict- 
ing complexity levels can be brought into harmonious balance. 

Imagine, for a moment, that  such a theory of models already exists and con- 
sider the  types of mangement strategies that  would serve to balance design and 
control complexities a t  some acceptably high level. First,  w e  note that  it is not 
sufficient simply to equalize t he  complexity levels of the  system and i ts  
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observer/controller. They must be balanced a t  a sufficiently high level: if I sim- 
plify a Chopin piano sonata by requiring tha t  i t  be  played only on t h e  white keys. I 
have certainly reduced i ts  complexity level to  t he  level of my observational ability 
(complexity) to  understand t h e  piece. However, I obtain very little pleasure from 
this kind of complexity balance; t h e  variety tha t  makes t he  piece interesting has 
been destroyed and I would probably benefit more with no system a t  all to  
observe. In this situation. i t  is fa r  more reasonable to raise t he  complexity level of 
my observing system to  match t he  level of the  piece, which presumably already 
exists a t  a high enough level to  perform i ts  intended function. So, any management 
scheme must begin by taking into account t he  absolute level a t  which t he  design 
and control complexities a r e  to be equalized. 

In terms of general control strategies, t he re  a r e  two complementary 
approaches. One is to develop bifurcation-free and bifurcation-generating feed- 
back policies. As has been noted elsewhere. feedback laws have t he  effect of 
changing the  internal s t ruc ture  of the  system they regulate. Of course, in our con- 
text this means tha t  any feedback policy has t he  potential to  change the  design 
complexity of t he  controlled system. Some illustrations of how this can be done 
are discussed in Casti (1980). although from the  somewhat different perspective of 
optimal control theory,  not t he  more general setting discussed here .  

From a management point of view, there  a r e  some disadvantages to  using feed- 
back policies, t he  principle one being tha t  any error-actuated feedback law does 
not even begin to  ac t  until t he  system is already out of control: tha t  is, if there  is 
no e r ro r ,  t he  system is not being regulated a t  all. For many engineering systems 
this situation is quite satisfactory, but in social and behavioral processes w e  can- 
not usually be  so sanguine about error-actuated control. Generally, in such 
systems w e  would like to  a n t i c i p a t e  difficulties and take action now to  avoid pro- 
jected malfunctions later .  In human systems, w e  cannot afford t he  luxury of wait- 
ing for t he  system to  fail before w e  take remedial action. This basic principle 
leads to  the  idea of a n t i c i p a t o r y  control and feedforward policies. 

The most important feature of anticipatory control systems is tha t  t h e  
manager must have a model of t he  system to be regulated, and his o r  h e r  actions 
a r e  dictated by the  r e g u l a r i t i e s  between t h e  behavior of t he  system, as  
predicted by the  model (which is run on a time-scale fas ter  than real-time), and 
the  actual, observed system behavior a t  t he  future time of t he  model prediction. 
The prediction and observation a r e  then correlated and the  model recalibrated, 
leading to t he  idea of adaptive control. Surprisingly, t he re  seems to  have Seen 
very little study of such processes, although some recent  work by Rosen (1979, 
1984) promises to  redress this imbalance of knowledge between feedback and 
f eedf orward regulators. 

From t h e  above, t he  broad outline of a research program for complexity 
management begins to emerge, and consists of the  following major components: 

(1) A Theory of Models. There is a need for development of a sufficiently rich 
theoretical framework for mathematically representing processes in the  
social, behavioral, and cultural environment. This theory must of necessity 
include methods for identifying relevant observables, s t a t e  spaces, and equa- 
tions of s ta te ,  as well as provide a basis for formally incorporating t he  com- 
plexity, adaptation, hierarchy, and emergence concepts discussed above. 
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(2) A n t i c i p a t o r y  Control .  A deep investigation into t he  nature of feedforward 
policies as opposed to feedback is needed, in order  to  provide the  means for 
balancing complexity levels between the  manager/decision-maker/ 
observer and the  sys tern under consideration. Such an investigation will 
include studies of adaptive mechanisms, as well as t he  role of anticipatory 
policies in reducing/generating bifurcations in t he  managed system descrip- 
tions. 

Each of these points need considerable elaboration before they can consti- 
tu te  a plan for a truly creative research program. But already i t  is clear that  
creative research is what is needed if any progress a t  all is to  be  made in t he  com- 
plexity management problem. And he re  t he  emphasis is on the  word creative: no 
pedestrian. pull-the-pieces-of f -the-shelf -and-put-them-tog t h e  type of program 
will suffice. New ideas and new approaches a r e  t he  only currency of this realm. I t  
seems appropriate to  close by stating a f e w  general features tha t  serve to  identify 
what w e  mean by creative research,  as opposed to  t he  pedestrian. Our advice to 
anyone contemplating creative research is to: 

Avoid the  research literature. 
Avoid practitioner's problems. 
Never put high hopes on any study for any useful information. 
Never plan - especially not in t h e  long term. 
Never apply for a research grant. 
Never give up if everyone thinks you a r e  wrong. 
Give up immediately when they think you a r e  right. 

As Nietzsche said, "that which needs to  be proved cannot be  worth much", so in 
today's world I won't hold my breath waiting for any putative "research" organiza- 
tions to adopt even one of the  foregoing principles as par t  of their  official posture 
and manifesto. Nonetheless, t he  closer an individual researcher  comes to adher- 
ence to these guidelines, t he  closer he or  she will be to  a position from which to 
crack the  nut of system complexity and i ts  management. 

Notes and references 

Complexity and simplicity 

A detailed consideration of the contention that system complexity necessarily 
relates to the interaction of a given system with its observer/describer/controller is 
found in 

Phillips. W. and Thorson, S .  (1975) Complexity and policy planning, in Systems 
Thinking and the Quality of Life, Proc. Soc. for General Systems Research 
Annual Meeting. 

This paper is notable for its review of various concepts of complexity in the field of 
social system management and for its conclusion that " ... no adequate characterization 
of the complexity of a system can be given without specifying the class of observers 
dealing with the system, as well as the specific purposes of the observers". The author's 
arguments supporting this view of complexity culminate in the contention that "which- 
ever approach we take to modeling the outer environment - the policy problem - the 



complexity c h a r a c t e r i s t i c  of t h e  system is contingent upon o u r  descr ipt ion of t h e  re la-  
tions between t h e  inner  environment and t h e  ou te r .  I t  is a function of t h e  theor ies  w e  
bring t o  b e a r  upon problems and t h e  way we view t h e  environment". 

Some f u r t h e r  views along t h e  same lines were  expressed  by one of t h e  cybernet ics  
pioneers,  W. Ross Ashby, in 

Ashby, W.R. (19'73) Some peculiari t ies of complex systems. Cybernetics Medicine 
9: 1-8. 

In th i s  p a p e r ,  Ashby remarked t h a t  "a system's complexity i s  purely  re la t ive  t o  a given 
observer ;  I r e j e c t  t h e  a t tempt  t o  measure a n  absolute,  o r  intrinsic,  complexity; but th is  
acceptance of complexity as something in t h e  e y e  of t h e  beholder i s ,  in my opinion, t h e  
only workable way of measuring complexity". 

Basically, t h e  same points have been emphasized in t h e  philosophy of sc ience 
l i t e r a t u r e  from a somewhat more fundamental perspect ive;  see, f o r  example, 

Quine, W.v.0. (1964) On simple theor ies  of a complex world. in J. Gregg and F. 
Har r i s  (Eds) Form and  S tra tegy  in Science (Dordrecht:  Reidel), 

Wimsatt, W. (1972) Complexity and organization, in K.  Schaf fner  and R. Cohen (Eds) 
Studies  in the Philosophy ofSciences.  Vol. XX (Reidel, Boston), 

and t h e  classic p a p e r  

Simon, H., (1969) The a r c h i t e c t u r e  of complexity, in Sciences of the Artif icial  
(Cambridge, MA: MIT Press ) .  

Management of the complez 

The concepts  of design and control  complexity were introduced by Gottinger in t h e  
somewhat d i f ferent  context  of a n  automata-theoretic t rea tment  of complexity. For a 
r e c e n t  account of h is  ideas see 

Gottinger, H. (1983) Coping w i t h  Complezity (Dordrecht:  Reidel). 

This work r e p r e s e n t s  a n  approach  t o  t h e  problem of system complexity originally ini- 
t ia ted by John Rhodes in 

Rhodes, J .  (1971) Application of Automata l'heory and  ALgebra (Berkeley, CA: 
Lecture  Notes, Department of Mathematics, University of California). 

The importance of t h e  symmetry of t h e  in teract ion between t h e  system and i t s  
obse rver /con t ro l l e r  h a s  been par t icular ly  emphasized in 

Rosen. R. (1984) Ant ic ipa tory  Systems (London: Pergamon). 

and 

Rosen, R. (19'78) Fundamentals  of Measurement and  Representat ion of Natural 
Systems (New York: Elsevier) .  

For a discussion of some of t h e  important matters ar is ing from t h e  in teract ions  
p resen t  in t h e  political p rocess  see 

Kirby, M.J.L. (1980) Reflections on  Management of Government Within a Demo- 
cra t ic  Society in the 1980s. Par t s  I & II. (Ottawa: Plaunt Lectures ,  Carlton 
University). 



On System Complexity 25 

Works emphasizing similar a s p e c t s  of complexity in social and behavioral  a r e a s  include 

Winthrop, H. (1972) Social  systems and social  complexity in re la t ion t o  interdisci- 
plinary policymaking and planning. Pol i cy  Sc i ences  3: 405-420, 

Winham, G. (1976) Complexity in international negotiation, in D. Druckman (Ed) 
Nego t ia t i ons  (Beverly Hills: Sage Publ. Co.), 

as well as t h e  Phillips and  Thorson a r t i c l e  ci ted e a r l i e r .  

S y s t e m s ,  obse rvab le s ,  a n d  mode l s  

A thorough exposition of t h e  ideas surrounding observables,  abs t ract ions ,  and 
equations of state is  found in t h e  Rosen books c i ted  e a r l i e r .  

The fast-slow distinction as a means of inducing causality i s  a specia l  case of 
h ie ra rch ica l  order ing,  but in time r a t h e r  than space.  For  a discussion of th is  c ruc ia l  
point. see t h e  book 

F r a s e r ,  J.T. (1978) Time as Coq t l i c t  (Basel: Birkhauser) .  

Additional discussion of t h e  macro-micro problem is  found in 

Allen, T.F.H. and Starr, T. (1982) H i e r a r c h y  (Chicago: University of Chicago 
Press) .  

Use of a n  evolutionary metaphor t o  charac te r ize  human systems is  f a r  from new, 
dating back at leas t  t o  H e r b e r t  Spencer  and t h e  social  Darwinists. A modern attempt t o  
mimic biology as a guide t o  socia l  development i s  

Corning, P. (1983) The S y n e r g i s m  Hypo thes i s  (New York: McGraw-Hill). 

In t h e  economic a r e a ,  t h e  evolutionary metaphor has  been quite well-developed in 

Nelson. R. and Winter, S. (1982) A n  E v o l u t i o n a r y  Theory  of Economic  C h a n g e  
(Cambridge, MA: Harvard University Press ) ,  

Boulding. K. (1981) E v o l u t i o n a r y  Economics  (Beverly Hills: Sage Publ.). 

Singularity theory  is  t r e a t e d  from a mathematical point of view in 

Golubitsky, M. and Guillemin, V. (1973) Stable  M a p p i n g s  a n d  t h e i r  S i n g u L a r i t i e s  
(New York: Spr inger) ,  

Lu, Y.C. (1976) S i n g u l a r i t y  T h e o r y  (New York: Spr inger) ,  

Gibson, C. (1979) SinguLar  P o i n t s  of Smoo th  M a p p i n g s  (London: Pitman). 

The connection between these  mathematical r esu l t s  and t h e  theory  of equivalent systems 
i s  made in 

Casti, J. (1984) S y s t e m  S i m i l a r i t y  a n d  L a w s  of N a t u r e  IIASA WP-84-1 (Laxenburg, 
Austria: International Institute f o r  Applied Systems Analysis). 

m e  emergence  of c o m p l e x i t y  

For  a discussion of the in terre la t ionship  between t h e  idea of system complexity as 
presented h e r e ,  and t h e  concepts  of system e r r o r  and entropy,  s e e  Chapter  5 in Rosen 
(1978), ci ted ea r l i e r .  

Many attempts have been made to define t h e  complexity of a system in terms of pro- 
pe r t i e s  of t h e  system alone, such as number of components, density of in ternal  
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interactions,  and s o  for th .  Some machine-theoretic e f fo r t s  along these  lines a r e  

Bremermann, H. (1974) Complexity of automata, bra ins  and behavior ,  in S. Levin 
(Ed) Lecture  Notes in  Biomathernatics ,  Vol. 4 (Berlin: Spr inger ) ,  

Bremermann, H. (1974) Algorithms, complexity, transcomputability, and t h e  
analysis of systems, in W.  Reidel, W. Handler, and M. Spreng (Eds) Proc. F i f t h  
Congress  of the  Deutsche  Gesel lschqft  f i r  Kyberne t ik  (Munich: Oldenbourg), 

Gaines, B. (1976) On t h e  complexity of causal  models. EE!C T r a n .  S y s t .  Man & 
m b e r .  SMC-6: 56-59, 

George, L. (1977) Tests f o r  system complexity. Int .  J. Gen. S y s t .  3: 253-258. 

In addition t o  missing t h e  c rvc ia l  point tha t  complexity depends upon t h e  i n t e r a c t i o n  of 
a system with a n o t h e r  r a t h e r  than upon t h e  system itself ,  a n  annoying a s p e c t  of such 
studies i s  t h e  way in which t h e  extremely useful term complexity h a s  been usurped by 
t h e  computer-orientation of such a u t h o r s  and taken t o  mean something v e r y  specific in 
t h e  context  of machines and algorithms. This situation is  by no means new, as t h e  com- 
p u t e r  industry h a s  a long and deplorable  his tory  of taking useful terms and concepts.  
such as information, system, and systems analyst ,  and then warping t h e  terms t o  such a n  
ex ten t  t h a t  t h e i r  original  meanings are totally lost. Normally th is  distort ing p rocess  
could be  dismissed with a casual  sh rug ,  as is  done in mathematics, f o r  instance,  but f o r  
t h e  fact tha t  t h e  computer-industry propaganda machines effectively promote t h e i r  new 
meaning of these  terms t o  t h e  general  public, the reby  creat ing considerable  confusion 
as t o  t h e  more general ,  and f a r  more useful in terpreta t ions  of these  important concepts.  

A fascinating a r t i c l e  involving t h e  use of complexity in assessing aes the t i c  exper i -  
ence  i s  

Goguen, J. (1977) Complexity of h ierarchical ly  organized systems and t h e  s t ruc -  
t u r e  of musical exper iences .  Int .  J. Gen. &st. 3: 233-251. 

This a r t i c l e  introduces t h e  concept of cond i t iona l  complexity, based upon pas t  experi-  
ences  and expectations,  and then applies t h e  idea t o  develop a theory  of s u r p r i s e  f o r  
musical compositions. For  purposes  of aes the t i c  satisfaction. t h e  au thor  concludes t h a t  
if t h e  conditional complexity of a piece  is  too low, then o u r  expectations are too easily 
and too often fulfilled t o  maintain o u r  in te res t ,  whereas if t h e  conditional complexity is 
too high, o u r  expectations a r e  too often f r u s t r a t e d  t o  permit  much listening satisfac- 
tion. This argument leads t o  a n  aes the t i c  law of t h e  mean f o r  musical complexity. 

The e v o l u t i o n  of cornplez i ty  

System complexity depends upon whether t h e  system is  r egarded  as a n  object  o r  as 
a description,  a theme explored in deta i l  in 

Lofgren, L. (1977) Complexity of systems: a foundational study. In t .  J; Gen. S y s t .  3: 
197-214. 

The stabil i ty and evolutionary potential  of self-describing complex systems 
depends also upon t h e  complementary re la t ion between t h e  dynamic (s t ructura l )  and 
linguistic (functional) modes of system description.  This relat ionship is  inextricably 
intertwined with t h e  epistemological problem of measurement. For a detailed considera- 
tion of these  mat ters ,  see 

Pa t tee ,  H. (1977) Dynamic and linguistic modes of complex systems. In t .  J. Gen. 
S y s t .  3: 259-266. 

A discussion of t h e  s e v e r a l  types  of evolutionary s t ra teg ies  is found in 
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Buckley, W.  (1977) Sociocultural  systems and t h e  challenge of sociobiology, in H. 
Haken (Ed) Synergetics: a Workshop (Berlin: Spr inger) .  

Complex systems: adaptat ion,  h ierarchy ,  and  bifurcat ion 

A detailed exploration of biological adaptation as a metaphor f o r  human systems is  
given in 

Rosen, R. (1975) Biological systems as paradigms f o r  adaptation,  in R. Day (Ed) 
Adaptive Economic Models (New York: Academic Press ) .  

Ra ther  thorough expositions of t h e  na tu re  of adaptive mechanisms in both 
engineering and living systems a r e  found in t h e  works 

Holland, J. (1975) Adaptation in Natural and  Artificial Systems (Ann Arbor: 
University of Michigan Press ) ,  

Conrad, M. (1983) Adaptabili ty: The Significance of Variabi l i ty  from Molecule to 
Ecosystem (New York: Plenum). 

The initial s t eps  toward a t h e o r y  of ant ic ipatory  control  involv,ing feedforward 
loops are outlined in 

Rosen, R. (1978) On ant ic ipatory  systems: I & 11. J. Social & B o l .  S t ruc tures  1: 
155-180. 

I t  i s  worthwhile t o  note  t h a t  t h e  formalism f o r  ant ic ipatory  control  i s  in t h e  same sp i r i t  
as t h e  so-called bounded rationali ty models in economics. See ,  f o r  example, 

Day, R.H. (1985) Disequilibrium economic dynamics: a post-schumpeterian contri-  
bution. J. Econ. Behavior a n d  Org. ( to be  published in 1985), 

and 

Simon. H.A. (1981) The Sciences of the Artificial  (2nd edn) (Cambridge, MA: MIT 
Press) .  

The appearance  of h ie ra rch ica l  organizational s t r u c t u r e s  in natura l ,  as well as 
man-made systems is  discussed from severa l  viewpoints in 

H. P a t t e e  (Ed) (1973) Hierarchy Theory (New York: Braziller). 

S e e  a lso  

Jantsch,  E. (1980) The Self-Organizing Universe  (Oxford: Pergamon), 

as w e l l  as t h e  Allen and S t a r r  book c i ted  e a r l i e r .  
R e  emergence of new s t r u c t u r e s  and behavioral  modes through paramete r  fluc- 

tuations and environmental variabil i ty is discussed in some deta i l  in 

Prigogine. I., Allen, P . ,  and Herman, R. (1977) Long t e r m  t rends  and t h e  evolution 
of complexity, in E. Laszlo and J. Bierman (Eds) Goals in  a Global Community 
(New York: Pergamon), 

Prigogine, I. (1980) From Being to Becoming: Time and  Complexity in  the Physi-  
cal Sciences (San Francisco: Freeman). 

The concept  of s u r p r i s e  as a system bifurcation is  explored in 
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Casti, J. (1982) Topological methods f o r  social  and behavioral  sciences.  Int. J. 
Gen. S y s t .  8: 187-210. 

A nontechnical consideration of t h e  same c i rc le  of ideas and t h e i r  applied significance 
is considered in 

Holling, C.S. (Fall 1983) S u r p r i s e ?  I U A  Opt ions  (Laxenburg, Austria: Interna- 
tional Institute f o r  Applied Systems Analysis). 

A formal theory  of surpr ises .  using ideas from algebraic  topology, i s  put f o r t h  in 

Atkin, R.H. (1981) A theory  of su rpr i ses .  Envi ronment  & P l a n n i n g  B, 8: 359-365. 

While AtkinJs theory  does  not explicitly employ t h e  idea of a system bifurcation,  t h e  con- 
c e p t  i s  implicit in his work and a mathematical unification of t h e  two approaches  would 
be  a valuable exerc i se ,  shedding additonal light on t h e  essential  a s p e c t s  of a nonproba- 
bilistic theory  of surpr ises .  

Models, complez i t y ,  a n d  management  

The question of complexity management i s  hardly  a new one. A nontechnical intro- 
duction t o  some of t h e  important managerial issues t h a t  a r i s e  is  

Beer, S. (1970) Managing modern complexity. F'utures 2: 245-257. 

I t  i s  often held tha t  t h e  objective of system management i s  t o  stabil ize a process  in t h e  
f a c e  of a fluctuating environment and,  in th is  context,  t h a t  stability and complexity are 
positively cor re la ted .  Discussions of t h e  p r o s  and cons of th is  dubious argument a r e  
found in 

Chadwick, G.F. (1977) The limits of t h e  plannable: stabil i ty and complexity in plan- 
ning and planned systems. Envi ronment  a n d  P l a n n i n g  A 9: 1189-1192, 

Pimm, S .  (1984) The complexity and stability of ecosystems. Nature  307: 321-326. 

The question of bifurcation-free feedback control  laws is taken up in 

Casti. J. (1980) Bifurcations, ca tas t rophes  and optimal control .  IEEE Tran.  Auto. 
Control .  AC-25: 1008-1011. 

For  a discussion of how l inear  feedback control  laws a l t e r  in ternal  system s t r u c t u r e ,  see 

Casti, J. (1977) Dynamica l  S y s t e m s  a n d  t h e i r  Appl icat ion:  L i n e a r  Theory  (New 
York: Academic Press ) .  

The connection between feedback and feedforward control  laws and t h e  e f fec t  t h a t  each  
type has  on t h e  a l t e ra t ion  of system s t r u c t u r e  is  pursued in 

Kalman, R. (1971) Kronecker  invar iants  and feedback, in L. Weiss (Ed) O r d i n a r y  
D i m e n t i  E q u a t i o n s  (New York: Academic Press ) .  

The problems of anticipatory control  are developed in 

Rosen, R. (1979) Anticipatory systems in r e t r o s p e c t  and prospect .  General  S y s -  
tems 24: 11-23. 

See a l so  t h e  Rosen works ci ted e a r l i e r .  


