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Foreword

This paper presents a systematic discussion of decision analysis models for at-
titudes toward risk when the effects of a public policy choice extend into the dis-
tant or unbounded future. Several issues of social risk attitudes are identified and
discussed. Conditions on preferences are presented by which value judgments con-
cerning these issues can be included in a formal model for a public policy evalua-

tion.
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UTILITY FUNCTIONS FOR INFINITE-PERIOD PLANNING*

Charles M. Harvey

1. Introduction

There are a variety of methods for treating the uncertainty of future out-
comes in a multiperiod planning model. Cost-benefit studies often: (1) add a ''risk
premium” to the discount rate (e.g., Sugden and Williams 1878, p. 60), (2) report a
probability distribution of net present values (e.g., Mishan 1876, p. 372), (3) use
the net present value function as a utility function, or (4) subtract a multiple of
the variance of the net return from the expected net return (Markowitz 19858).
These methods do not address preference issues regarding an institution’s or

society’'s attitude toward risk.

Decision analysis models that do address these issues have been developed by
a number of authors. Fishburn (1865a), (1970) has introduced conditions on
preferences that imply a utility function having an additive form. Pollak (1967)
has introduced preference conditions that imply a utility function having an addi-
tive form or a log-additive form. Meyer (1870), (1872) has shown that weakened
assumptions of mutual utility independence imply that the utility function has an ad-
ditive form, a positive multiplicative form, or a negative multiplicative form (see
Keeney 1968, 1974 for similar results in a multiattribute setting). Richard (1875)
has introduced a condition of strict multivariate risk aversion that together with
mutual utility independence implies a negative multiplicative form. Preference
conditions concerning utility dependence, e.g., the dependence of the decision
maker's risk attitude for one period on the outcomes in other periods, have been
introduced by Bell (1977), Fishburn (1965b), and Meyer (1877). Related work in-
cludes that of Barrager (1980), Bell (1974), Bodily (1881), and Fishburn and Rubin-
stein (1882).

This paper is a systemalic study of preference issues regarding attitudes to-
ward risk in multiperiod planning. A number of decision analysis models are
presented that when appropriate can be used to formulate social preferences in a
risk management study or to formulate corporate preferences in a long range

planning study by a private form.

*This regearch is supported in part by the National Science Foundation under Grant no. SES 84-
10665,
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The models in this paper are concerned with infinite-period outcomes, i.e.,
with an unbounded planning horizon. Corresponding results for a bounded planning
horizon can be deduced by assuming that the amounts in the periods beyond the

horizon are a specified, standard amount.

A general type of planning model is presented in Section 2. Its primary
characteristics are that tradeoffs between different periods satisfy conditions of
preferential independence and that risk attitudes satisfy conditions of expected
utility. Then, in Section 3, four preference issues are identified that can be in-
cluded in such a planning model (and six preference issues are identified that can-

not be included).

Sections 4-8 are concerned with special conditions on social or corporate
preferences, and with the implications of these preference conditions for the form
of a utility function in a general type of planning model. Sections 4 and 5 discuss
attitudes toward multiperiod risk; Section 6 discusses concern for intertemporal
equity; and Section 7 discusses attitudes toward present risk. Then, in Section 8, a
number of planning models are presented which use a combination of preference

conditions regarding these issues.

The planning models discussed in this paper are intended to be prescriptive
rather than descriptive or normative; that is, they are intended to clarify the im-
plications from value judgments concerning relatively simple choices to prefer-
ences between the relatively complex actual alternatives. The utility functions
discussed are intended to be an inobtrusive technical means by which the analyst

can evaluate these implications.

A utility function can be determined by the following steps: (1) identify which
preference issues are important, (2) verify preference conditions related to these
issues, and (3) for each preference issue that is deemed important, make a specific
preference assessment. Such a proc;edure has several advantages: it is possible
to choose where to simplify the planning model, the number of value judgments
needed is minimized, and a sensitivity analysis of the effects of the value judgments

is possible.
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2. Expected-Utility Planning Models

This section presents an expected-utility model for infinite-period planning
that is based on the additive-value model presented in Harvey (1986a). The reader
is referred to that paper for a more detailed discussion of the definitions and
results concerning value tradeoffs that are needed for the present discussion of
risk attitudes. Moreover, the reader is referred to Appendix A of this paper for

much of the technical material (definitions and proofs) used in this section.

Suppose that a unit of time is chosen, e.g., a year, and that the future is divid-
ed into a sequence of periods (t-1,t], £ =1,2,..., of unit duration. The outcomes
during a period, t =1,2,..., are to be described by a single, readily interpretable
variable z;, that may involve the pricing out of nonmonetary attributes or the sum-
ming of the costs, risks, and benefits that accrue to the individuals in a specific
group. The consequences over the future are described by sequences (z,,z,,...) of
the single-period amounts z,,¢ =1,2,.... These consequences will be called
infinite-period consequences. Uncertain events having a finite number of
infinite-period consequences as possible outcomes will be called infinite-period

lottleries.

Definition 1. A model having the following structure will be called a planning
model: (a) z* denotes a specified amount of the variables z; to be used for nor-
malization purposes, (b) I denotes a common interval on which the variables z, are
defined, (c) C denotes the set of all infinite-period consequences having amounts
z, in 7, (d) L denotes the set of all infinite-period lotteries having consequences in

C, and (e) 2 denotes a preference relation defined on the set L of lotteries.

The amount z, = z* will be called a standard amount. For technical rea-
sons, it will be assumed that the interval / has one of the forms (z ",z %), [z*.z*),
and (z ~,z*] where each of the amounts z*,z~,z* can be either finite or infinite.
Here, the standard amount z* will be called intermediate, least preferred, and
most preferred respectively. If z* is a least preferred or most preferred amount
in 7, then L is to be restricted to those lotteries not having the extreme conse-

quence (z*,z*,...) as a possible consequence.
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In terms of the above notation, an ordinal-value model is defined in Harvey
(1986a) by the preference conditions (A)-(E) restated in Appendix A. The primary

result is as follows.

Lemma 1. The conditions (A)-(E) on tradeoffs are satisfied if and only if prefer-
ences among the infinite-period consequences in the set C* (defined in Appendix A)

are represented by an infinite-series value function
V(Z1.Zp,...) =v(zy) +a,v(z,) +- - )

such that: V(z;,z,,...) converges if and only if (z,,Z5,...) is in the set C*; the tim-
ing weights a,, t =1,2,..., are positive; and the iradeoffs function v is continu-
ous, strictly increasing, and normalized so that v (z*) = 0.

In this paper, the preference conditions (A)-(E) are augmented by two condi-
tions as follows:

(F) For any consequence (Z,Z,,...) in C*, there exists an indifferent conse-

quence (z{ ,x*,,2*3,...) in C* for some amount z{ in I.

(G) The preference relation 2 satisfies the conditions for expected utility for
the set L* of lotteries in L having consequences in C*. (See, e.g., Herstein and
Milnor 1953). Moreover, any lottery in L* has an indifferent consequence in C*.
(This condition on the existence of certainty equivalents is included to ensure that

the utility function is continuous.)

Theorem 1. A planning model satisfies the preference conditions (A)-(G) if and
only if the preference relation 2 restricted to the set L* of infinite-period lot-

teries is represented by a utility function having the forms:

U(z1,2g..) =7 (v(zy) +azp(zy) + ) ()
U(Zy,Zp,...) = wev N v(zy) +apv(zy) +-- ) (3)
U(zy.23,...) =7 Lou(zy) +agf Lou(zy) +---) . (4)
Here, the value function V(z; z;,..) = v(z,) + ayv(z,) +-- - is as described in

Lemma 1; the multiperiod risk funciion f is a continuous, strictly increasing
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function defined on the range of V; and the first-period wutility function u is a
standard conditional utility function for the first period, i.e., a utility function on

consequences of the form (z,,z,z%,...).

The purpose of Theorem 1 is to provide the general forms (2)-(4) of utility
functions for modeling the preference issues (i)-(iv) discussed in the next section.
The timing weights a, model the issue (i) of the importance of the future; the
tradeoffs function v models the issue (ii) of intertemporal tradeoffs; the first-
period utility function » models the issue (iii) of risk in the present; and the mul-

tiperiod risk function f models the issue (iv) of multiperiod risk.

3. Preference Issues

This section first identifies a number of issues concerning individual and so-
cial preferences that can be modeled by a utility function of the general forms
(2)-(4) described in Theorem 1. It then identifies other issues that are excluded by
the assumptions of Theorem 1. References are provided to more detailed discus-

sions of each issue.

(i) The importance of future periods. This issue is concerned with the
dependence of tradeoffs between two future periods s and ¢ on the futurity of the

periods s and t.

In most cost-benefit and risk analysis studies, preferences regarding this is-
sue are modeled by present value discounting, that is, by assuming that the timing
weights a;, form a geometric sequence, 1,a..a.2,..., for some constant 0 <a <1.
Timing weights of this form are implied by several preference conditions, e.g., the
stationarity condition in Koopmans (1960), (1972) and the pairwise invariance con-
dition in Keeney and Raiffa (1976, p. 480) which states that tradeoffs between two
periods s and ¢t depend only on the (absolute) difference ¢t —s between the periods.
More general timing weights are considered, for example, in Williams and Nassar

(1966) and Weibull (1986).

Another preference condition, called relative timing preferences, is intro-
duced in Harvey (1986a). This condition states that tradeoffs between two periods

s and ¢t depend only on the relative difference ¢ /s between the periods. It implies
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that the timing weights a; form an arithmetic sequence, 1,(1/2)".(1/3),..., for
some constant » > 0. The term relative value discounting is used for a model of

this type.

Relative value discounting models accord more importance to the distant fu-
ture, and hence to future generations, than do present value discounting models.
This distinction between the two types of models occurs because any arithmetic se-
quence (1/t)",r >0, decays more slowly than any geometric sequence

a."1,0<a. <1.

(ii) Concern for intertemporal equity. This issue has two equivalent forms.
The first form is a concern for equity in the amounts z; in different periods; typi-
cally, there is an aversion toward large differences in the amounts z,. The second
form is a dependence of the tradeoffs between two periods s and ¢ on the base
amount, e.g., asset position or social wealth, in one of the periods; for example,
there typically is a willingness to incur greater costs in a period s for a benefit in
a period ¢t if the base costs in period s are low than if the base costs in period s

are already high.

This issue is not included in most cost-benefit studies. Preferences are
modeled by assuming that the tradeoffs function v is linear, i.e., v(z;) = z;. This
form of v is implied by an attitude of neutrality toward intertemporal inequity or,
equivalently, by the condition that tradeoffs between two periods are independent
of the base amount in one of the periods. Preference conditions that do model
aversion toward intertemporal inequity and that imply a parametric form for the
tradeoffs function v are introduced in Harvey (1986a).

(iii) Attitude toward risk in the present. Suppose that (z,) denotes an
infinite-period consequence having the amount z; in period ¢ and standard amounts
z* in every other period. Then, this issue can be described as a concern for risk
in lotteries having consequences of the form (z,), i.e., lotteries such that all of
the uncertainty is in the first period, £ =1.

This issue and that of (iv) below are two components of the overall issue of
risk in infinite-period planning. Most cost-benefit studies either do not include the
risk issues (iii), (iv) or model the overall issue of risk by one of the methods

described in the introduction.
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An attitude of neutrality toward risk in the present implies that the first-
period utility function « in linear, i.e., u(z,) = z,. A number of authors have in-
troduced preference conditions that model an attitude of aversion toward risk in
the present and that imply a parametric form for the function . References are

provided in Sections 4 and 5.

(iv) Atiitude toward mulliperiod risk. Suppose that (zg,z,) denotes an
infinite-period consequence having the amounts z; and z; in two periods s,f and
having standard amounts z* in every other period. One form of the multiperiod
risk issue is a concern for joint probabilities as well as marginal probabilities in
assessing preferences between infinite-period lotteries. For example, suppose
that <(z,.z;), (z5 .z; ) > denotes a lottery having the equally likely consequences
(zs.x;), (¢ ,x; ) and <(zg,z; ), (z5.z;) > denotes a lottery having the equally like-
ly consequences (z,z; ).(zg ,z;). Even though these lotteries have equal marginal
distributions for the period s and for the peried ¢, if z; < zg and z; <z;, then
the second lottery may be preferred to the first because of an aversion to "catas-
trophe” if the consequence (z¢,z,;) occurs. References for this issue are provided

in Sections 4 and 5.

An attitude of neutrality toward multiperiod risk (for example, indifference
between any two lotteries described above) implies that the multiperiod risk func-
tion f is linear, i.e., £ (V) = V. For such a model, the infinite-series value function

V(z4.,x5,...) in Theorem 1 is also a utility function.

In contrast to the issues (i)-(iv) discussed above, the following issues (v)-(x)
are excluded by the preference conditions in Theorem 1 and hence cannot be

represented by the models to be discussed in this paper.

(v) Dependence of the tradeoffs between two periods on the amounts in the in-
tervening periods. This issue is excluded by condition (C) in Appendix A. Such
preferential complementarity is discussed, for example, in Gorman (1968), and

models are proposed in Bordley (1985) and Meyer (1977).

(vi) Dependence of the tradeoffs within a period on the base amounts in that
period. For a multiattribute decision problem, there may be, for example, a
dependence of the pricing-out amounts for the non-monetary attributes on the base

amount of the monetary attribute. For a group decision problem, there may be a
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concern for equity in the consequences to the affected individuals. These issues
are excluded by the requirement that the outcomes in a period ¢t can be described
by a single, readily interpretable variable, i.e., that multiple attributes can be re-
duced to a single attribute by "willingness-to-pay” methods, and group conse-
quences can be aggregated by a "sum-of-benefits” method. Multiattribute tradeoffs
dependence is discussed, for example, in Harvey (1985a) and Kirkwood and Sarin
(1980); interpersonal equity in consequences is discussed, for example, in Atkinson

(1970), Barrager (1980), Fleming (1952), and Harvey (1985b).

(vii) Dependence of tradeoffs comparisons on the period. This issue is ex-
cluded by condition (E) in Appendix A, which requires that for any two periods s,¢
and any two pairs of amounts zl < z? and z3 < z4, if there is a willingness to trade-
off more to increase z; from z! to z? than to increase z; from z3 to z4, then there
is a willingness to tradeoff more to increase z, from z! to z? than to increase z,
from z3 to z4 A general planning model that does not assume condition (E) is
presented in Harvey (1986a); however, there are no known preference conditions

on dependence of tradeoffs comparisons that could be used to structure such a

model.

(viii) Attitude toward intertemporal inequity in risks. This issue must be dis-
tinguished from the issue (ii) of concern for intertemporal equity in amounts. The
present issue can be described as follows. Consider two pairs of amounts z, < z¢
and z; <z/ such that (z;) ~ (z;) and (x4 )~ (z{ ). Then, the consequences (z,z; )
and (z¢ .z, ) are indifferent and have the same inequity in amounts. By the substi-
tution principle, it would follow that the lottery <(z,,z;), (x5 .z;) > is indifferent
to either of the consequences (z;.z; ), (z¢ ,x;). However, the lottery might be
preferred to, for example, the consequence (zg,zr; ) since the lottery presents
equal risk in both periods whereas the consequence (z,z; ) is unfair to the period

s (and thus to the affected individuals in period s).

Such preferences are excluded by the expected utility conditions (G). Inequi-
ty in risk for group decision problems is discussed, for example, in Broome (1982),
Harvey (1985c), Keeney (1980), Keeney and Winkler (1985), Kirkwood (1979), and
Sarin (1985).
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(ix) Regret, Allais paradoxes, and framing effects. These issues are excluded
by condition (G). Discussions of these issues may be found, for example, in Allais
and Hogen (1979), Bell (1983), (1985), Kahneman and Tversky (1979), and
Schoemaker (1982). Models that do not assume condition (G) are presented in Chew

(1983), Chew and MacCrimmon (1979), Fishburn (1982), (1983), and Machina (1982).

(x) Time resolution of uncertainty. This group of issues is discussed by
Mayer (in Keeney and Raiffa 1976, Chapter 9) where several issues are identified,
including: (1) changes in personal or social preferences over time, and (2) the

time at which uncertainty is resolved.

The preferences of a future society are included in a utility function of
Theorem 1 only in that the preferences of current society depend in part on a con-
cern for such future preferences; the planning models in this paper do not include
a probability distribution of future preferences. A separate issue is whether the
social preferences represented in a specified utility function change with time.
For a present value discounting model, the tradeoffs between the years 2050 and
2051 are the same whether the model represents the preferences of current so-
ciety or the preferences of society in the year 2050. For a relative value
discounting model, however, there is more indifference between the years 2050 and
2051 if the model represents current preferences than if the model represents

preferences in the year 2050.

The time at which uncertainty is resolved can be included in a planning model
by the usual backward induction of decision-tree analysis. However, the issue of
anxiety caused by prolonged uncertainty is not included in the planning models in
this paper. This issue of "anxiety along the way" is discussed in the work of Meyer

cited above.

4. Absolute Multiperiod Risk

This section and the next discuss preference conditions regarding the issue of
multiperiod risk. General conditions are introduced in Sections 4.1 and 5.1 to de-
fine the attitudes of neutrality, aversion, and proneness toward multiperiod risk,

and special conditions are introduced in Section 4.2 and 5.2.
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Each general or special preference condition is shown to be equivalent to a
condition on the form of the multiperiod risk function f in Theorem 1. In this
sense, the function f can be regarded as that part of a utility function U(z,,x,,...)
which encodes the multiperiod risk attitude for preferences among infinite-period
lotteries. Table 1 below lists all of the special conditions on multiattribute risk
and the corresponding special forms of the utility function U. The properties

within each of parts (I)-(IV) are equivalent.

Table 1: Conditions on Multiperiod Risk and Forms of U(z,,z5,...)

)] (In

(Absolute) Risk Neutrality (a) Relative Risk Neutrality (a)
(Absolute) Risk Neutrality (b) Relative Risk Neutrality (b)
U linear in v U logarithmic in v
U additive in u U log-exp in u

(I11) (Iv)
Absolute Risk Constancy Relative Risk Constancy
Utility Independence ’ Timing Independence
U linear or exponential in v U logarithmic or power in v
U additive or multiplicative in » U log-exp or power-root in u

Both single-period risk attitudes and multiperiod risk attitudes can be defined
by specifying a period ¢ and considering preferences between those lotteries hav-
ing consequences (z;) in which the amounts in the periods other than period t are
standard amounts z*. For such lotteries, there is no uncertainty except for the
outcome in period t.

For a single-period risk attitude, the consequences (z;) are measured direct-
ly in terms of the amounts z,; in period {. In particular, the tradeoffs between z,
and the amounts in other periods are not considered. For a multiperiod risk atti-
tude, however, the consequences (z,;) are measured in terms of the amounts v (z,)

by considering the tradeoffs between the amounts z; in period ¢ and the amounts in
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other periods; then, changes in the period ¢t will be referred to as changes in

value.

4.1 Absolutie multiperiod risk neutrality and aversion

The multiperiod risk attitudes of neutrality, aversion, and proneness may be
defined by a number of equivalent conditions concerning changes in value. Two
such conditions are specified in this subsection. The following concepts will be

needed for the first of these conditions.

Definition 2. Pairs of amounts z;,z; and ¥,y in a period ¢ will be said to have

equal (absolute) changes in value provided that
(z4,2") ~(z¢,2z) and (y;,2°) ~ (y;.2)

for a common pair of amounts z,z’ in another period. In particular, an amount Et
will be called the (absolute) iradeoffs midvalue of two amounts z, <z; provided

that the pairs of amounts z;,z; and z;,z; have equal changes in value.

As a type of example, suppose that preferences for intertemporal equity are
not included in the model (as is typically the case for cost-benefit models). Then,
two pairs of amounts z,,z; and y,,y; have equal changes in value provided that
z; =z +h, y; = y; +h for the same change h, and the tradeoffs midvalue of two

amounts z, < z; is the ordinary average of z, and z; .

Lermma 2. For a planning model of type (A)-(F), any two amounts z; < z; in any
period t have a unique tradeoffs midvalue "Et- Any two pairs of amounts z,z’ and
v.¥' in the interval / have equal changes in value when they are in a period t if
and only if they have equal changes in value when they are in any other period.
Thus, an amount x is the tradeoffs midvalue of a pair of amounts z < z’ when
z.,z.x’' are in a period ¢ if and only if £ is the tradeoffs midvalue of z < =z’ when

x.z,z' are in any other period.
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Suppose that a single period ¢ has been chosen, and the tradeoffs midvalue Et
of a pair of amounts z; < z{ has been assessed. Multiperiod risk attitudes can be
defined as in parts (a) of Theorem 2 below by comparing the "average' conse-
quence (5,) with the "risky” lottery <(z,).(z; )>. For example, multiperiod risk
aversion can be defined as the condition that (z;) is preferred to <(z;).,(z; )>. In
applications, it may often be convenient to choose the period ¢ as the first period,
it =1.

These definitions are similar to the definitions in Dyer and Sarin (1982) com-
paring strength of preference midvalues and risk midvalues (i.e., certainty
equivalents). The difference to be emphasized is that the above definitions do not
require a precise assessment of the certainty equivalent of <(z;),(z{ )>; instead,

(z;) and <(z;).(z; )> are compared directly.

Multiperiod risk attitudes can also be defined by considering consequences of
the form (z¢,x;) for two periods s and £. Suppose that the periods s and ¢ have
been chosen, and two pairs of amounts z ,z; and z,,z; have been assessed such

s

that
zs <zg, zp <zxf{ and (xg) ~ (z4), (Tg )~ (zf) . (5)

These indifference relations imply that the two infinite-period consequences
(zg.z;) and (z¢ ,x;) are indifferent.

As one type of example, if s and ¢ are chosen to be adjacent periods in the
distant future and the future is valued in accord with the conditions of relative
timing preferences (so that a;/a; 8 1), then z; and z; can be assessed as approx-
imately x; =zg and z; = zg .

Multiperiod risk attitudes can be defined as in parts (b) of Theorem 2 by com-
paring the "average” consequences (zg.,z{), (z¢,x;) with the "risky"” lottery
<(zg,z;).(zg ,x{ ) >. For example, muliiperiod risk aversion can be defined as
the condition that the consequences (z4,z; ), (z¢ .z;) are preferred to the lottery

<(zs 1zt)l(zsl lzt, ) >.
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These definitions are similar to the definitions in Richard (1975) of multivari-
ate risk neutral, strictly multivariate risk averse, and strictly multivariate risk
seeking. The difference is that in Richard’s definitions the consequences (zg - ),
(zs .x;) are not assessed to be indifferent, and the lottery <(zg,z{ ), (24 .z;) > is
compared with <(z¢,z,;),(zg .z; )>. In the terminology of Farquhar (1984), the
comparisons in Richard's definitions are evaluated by a paired-gamble method
while the comparisons in the above definitions are evaluated by a standard-gambile

method.

Theorem 2. For a planning model of type (A)-(G), the properties within each of the

following parts (I)-(II1) are equivalent.

I. Mulliperiod risk neutrality:
(a) There exists a period ¢ such that for any amounts z, < x; the consequence

(z;) is indifferent to the lottery <(z;).(z; ) >.

(b) There exist two periods s and ¢ such that for any amounts as in (5) the

consequences (z,z; ) ~ (z4 ,x; ) are indifferent to the lottery <(z¢.z;),(z4 ,z; ) >.

(¢) Preferences are represented by a utility function (2) in which the mul-

tiperiod risk function f is linear, that is,
U(zq,25,...) =v(z,) +av(zy) +- -

where the tradeoffs function v is to be assessed. Here, v is normalized so that
v(z*) =0.
(d) Preferences are represented by a utility function (4) of the form
U(zy.,23,...) = u(zy) +azu(zy) +- -
where the first-period utility function u is to be assessed. Here, u is normalized

so that u (z*) = 0.

. Multiperiod risk aversion:
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(a) There exists a period ¢ such that for any amounts z, < z; the consequence
(z,) is preferred to the lottery <(z,;),(z;) >.

(b) There exist two periods s and ¢t such that for any amounts as in (5) the
consequences (zg,z; )~ (z4,x; ) are preferred to the lottery <(z;,z;).(zg .z ) >.

(c) Preferences are represented by a utility function (2) or (4) in which mul-

tiperiod risk function f is strictly concave.

II. Multiperiod risk proneness:

Properties analogous to II. (a)-(c) can also be specified.

The salient feature of the two sets (a), (b) of conditions on multiperiod risk at-
titudes discussed in this subsection is that they require tradeoffs assessments.
Part of the assessment task is thereby shifted from risk assessments to tradeoffs

assessments.

4.2 Absolute multiperiod risk constancy
This section discusses two equivalent conditions on multiperiod risk attitudes
that correspond to the condition on single-period risk attitudes of constant risk

aversion (Arrow 1971, Pfanzagl 1959, and Pratt 1964).

Definition 3. Preferences will be said to be absolute multiperiod risk constant
for a period t provided that for any three pairs of amounts w, <w;, z, <z; , and
v: <y{ that have equal absolute changes in value, if (x;) is the certainty

equivalent of <(w,), (y,)>, then (z/ ) is the certainty equivalent of <(wy ), (v; )>.

One procedure for verifying this condition is to select amounts w, < y; and
assess the certainty equivalent (z;) of <(w;).(y;)>. Then, consider an amount
z{ > zx;, assess two amounts w; ,y; such that the pairs w; <w{, z; <z;, and
v; <¥{ have equal absolute changes in value, and ask whether (z{ ) is the certain-
ty equivalent of <(w; ),(y{ )>.

A second condition equivalent to that of absolute multiperiod risk constancy is

the condition of utility independence introduced by Pollak (1967) for multiperiod
models and by Keeney (1968), (1974) for multiattribute models. Consider those lot-
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teries having consequences of the form (z,,z) where z is an amount in a fixed
period s other than period t. Period ¢ is said to be utility independent of the
period s provided that (z;,2) 32 <(w;,2).(y;,2)> implies that (z;.2’')32
< (wt,z'),(yt,z’) > for any amount 2’ in period s, that is, the attitude toward risk

for period t is independent of the fixed amount z in the period s.

For a finite-period model or a multiattribute model, the equivalence of pro-
perties similar to (b) and (c¢) below is discussed by Meyer and Pratt (in Keeney and
Raiffa 1976, p. 330) and in Pollak (1967), and the equivalence of properties similar
to (b) and (d) below is discussed in Keeney (1968), (1974) and Meyer (1870).

Theorem 3. For a planning model of type (A)-(G), the following properties are

equivalent:

(a) There exists a period ¢ for which preferences are absolute multiperiod
risk constant.

(b) There exist periods s and ¢ that are utility independent.

(c) Preferences are represented by a utility function (2) in which the function

J is linear or exponential, that is,

exp(r(v(zy) +au(zy) +-1)), r>0
Uxqy,xg...) ={v(zy) +av(zy) +- -, r=0
—exp(r(v(zy) +ayv(zy) +--1)), r <0

where the tradeoffs function v and the constant » are to be assessed. Here, v is
normalized so that v (z*) =0.

(d) Preferences are represented by a utility function (4) that is additive or

multiplicative, that is

% (a(u(z,) —1) +1)%
U(zl,ZZ,...) = z;':latu(zt)

My (—a (u(z,) +1) +1)%

where the first-period utility function © and the constant a > 0 are to be as-

sessed. Here, u is normalized so that: u (z*) = 1 in the first case, w(z*) =0 in
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the second case, and u(x*)=-1 in the third -case. Moreover,
a(u(z) —1)+1>0forall z in/ inthe first case, and a(u (z) +1) —1 <0 for all

z in 7 in the third case.

Note: As is well known, a utility function in parts (¢), (d) is multiperiod risk

averse in the third cases and is multiperiod risk prone in the first cases.

5. Relative Multiperiod Risk

This section discusses preference conditions on relative (or proportional)
changes in one or more periods. These preference conditions are analogous to the
preference cqndit.ions discussed in the preceding section on absolute changes.
Preference conditions on relative changes appear to be more realistic than
preference conditions on absolute changes for many problems, in particular, for
those problems in which the degree of risk aversion for one period decreases as

the amounts in the other periods become more favorable.

Consider a planning model of type (A)-(G) having a least preferred standard
amount z*. Relative changes will be measured with respect to z* as the amount

having "zero value.” For example, an amount zti will be said to have "one-half the

value” of an amount z-tz provided that zti is the tradeoffs midvalue of z*; and ztz.

Typically, z* will be less than any amount of z, that has an appreciable
chance of occurring. As an illustration, suppose that z; describes the amount of
consumption of a non-renewable resource (e.g., helium) during period £. Then, z*
might be chosen as the outcome of no consumption or of a specified minimal level of

consumption of the resource being studied.

9.1 Relative multiperiod risk neutrality and aversion

This subsection discusses risk attitudes involving relative changes in value
that are analogous to the risk attitudes of neutrality, aversion, and proneness dis-

cussed in Section 4.1.
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Relative changes in value can be defined by means of the concept of a "stan-
dard sequence.” Krantz et al. (1971) contains an extensive discussion of this idea

in a more general setting. An increasing sequence of amounts
0 1 e n
z, <z; < <z

in a period ¢t will be called a siandard sequence provided that the pairs

zf -1 ztk, k =1,...,n, have equal absolute changes in value (Definition 2).

For a planning model of type (A)-(F), a sequence of amounts is a standard se-
quence if and only if v(zt“) - v(zf -1y is constant for £ = 1,...,n. Thus, a sequence
of amounts is a standard sequence in a period ¢ if and only if it is a standard se-

quence in any other period.

Definition 4. Pairs of amounts z;,z; and y;,y; not equal to z* will be said to
have equal relative changes in wvalue provided that for any two standard se-

quences
zl <zl < - <zl and y2<yr< <yl

with the initial amounts zto = yto =z*, if z, =z and y, =y for some m < =n,
then z; < z[* if and only if y; < y{*. In particular, an amount Z; will be called the
relative iradeoffs midvalue of two amounts z, < z; provided that the pairs of

amounts z,,Z; and z;,z; - have equal relative changes in value.

Lemma 3. For a planning model of type (A)-(F), two pairs of amounts z,,z; and
vt .¥{ have equal relative changes in value if and only if v(z; ) = pv(z;) and
v(y; ) = pv(y,) for the same constant » > 0. The relative tradeoffs midvalue of
two amounts z; < z{ is the amount Z; such that v(z;) = pv(z;) and v(z{ ) = pv(Z;)
for the same p > 0. The statements of Lemma 2 are true with the adjective "rela-

tive" added to the terms ""equal changes in value' and "tradeoffs midvalue.”
Suppose that a period £ has been chosen and the relative tradeoffs midvalue
ft of two amounts z; <z; has been assessed. Relative multiperiod risk attitude

can be defined as in parts (a) of Theorem 4 below by comparing the "average’

consequence (Z;) with the lottery <(z,),(z; ) >. The situation is analogous to that
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for absolute multiperiod risk attitudes. In particular, the discussion in Section 4.1
on standard-gamble methods of verification is equally pertinent in the present con-

text.

The condition (a) below of relative multiperiod risk neutrality corresponds to

the single-period risk attitude of logarithmic utility (Harvey 1981, 1986b).

Relative multiperiod risk attitudes can also be defined by considering the
same amount in several different periods. For technical reasons, we will consider
not only actual periods ¢t but also imaginary periods { having arbitrary timing
weights, 0 < a; <1. With the non-restrictive assumption that the sequence of actu-
al timing weights, a;t = 1,2,..., decreases to zero as t increases, these imaginary

periods correspond to actual periods for a different choice of the unit of time.

For a period ¢ > 1 (actual or imaginary), a period m where 1 < m < i will be
called the temporal midvalue of the first period and period ¢ provided that the
tradeoffs between periods 1 and m coincide with the tradeoffs between periods m
and ¢t (Harvey 1986a). For example, in a present value discounting model the tem-
poral midvalue is the arithmetic mean, i.e., that period m such that m =1 + A and

=m + h for the same increase h. In a relative value discounting model the tem-
poral midvalue is the geometric mean, i.e., that period m such that m =& -1 and
t = k - m for the same proportional increase k.

Consider an amount z in one of the three periods 1 <m <{ where m is the
temporal midvalue of 1 and £. Relative multiperiod risk attitudes can be defined as
in parts (b) of Theorem 4 by comparing the "average' consequence (z,,) with the

"risky" lottery < (z4).(z;) > wherez =z, = z,, = z;.

Theorem 4. For a planning model of type (A)-(G) having a least preferred stan-
dard amount, the properties within each of the following parts (I)-(III) are

equivalent.

1. Relative multiperiod risk neulralily:

(a) There exists a period ¢ such that for any amounts z; <z; not equal to z*

the consequence (it) is indifferent to the lottery <(z,),(z; ) >.



-19 -

(b) For any period t > 1 (actual or imaginary) and any amount z not equal to
z*, the consequence (z,,) is indifferent to the lottery <(z,),(z,) > where m is the

temporal midvalue of 1 and {, and z =z, =z, = z;.

(c) Preferences are represented by a utility function (2) in which the function

J is logarithmic, that is,
U(z{,Zp,...) =log(v(zq) +azv(zy) +- )

where the tradeoffs function v is to be assessed. Here, v is normalized so that
v(z*) =0.

(d) Preferences are represented by a utility function (4) of the form

cu(xy) cu(zxp) - ‘)

U(zq,x5,...) =log(e + aje

where the first-period utility function  and the constant ¢ > 0 are to be assessed.

Here, u(z*) = —»= and u(z*) = +.

II. Relative muliliperiod risk aversion:
(a) There exists a period ¢ such that for any amounts z, <z; not equal to z*

the consequence (Z,) is preferred to the lottery < (z;).(z; ) >.

(b) For any period t > 1 (actual or imaginary) and any amount z not equal to
z*, the consequence (z,,) is preferred to the lottery <(z,),(z;) > where m is the

temporal midvalue of 1 and ¢, and z = z4 =z, = z;.

(c) Preferences are represented by a utility function (2) or (4) such that the

composite function f -exp is strictly concave.

I1I. Relative multiperiod risk proneness:

Properties analogous to II. (a)-(c) can also be specified.

5.2 Relative multiperiod risk constancy

This subsection discusses two equivalent conditions on multiperiod risk atti-
tudes that correspond to the single-period risk attitude of linear risk aversion

(Harvey 1981, 1986b) and constant proportional risk aversion (Pratt 1964).



-20 -

Definition 5. Preferences will be said to be relative multiperiod risk consiant
for a period ¢ provided that for any three pairs of amounts w, <w;, z;, <z;, and
v; <y{ that have equal relative changes in value, if (z;) is the certainty

equivalent of <(w;).(¥,;) >, then (z; ) is the certainty equivalent of < (w; ),(¥ ) >.

This preference condition is similar to the multiattribute risk condition of
proportional utility dependence defined in Harvey (1984). It may be verified by
means of the procedure that is described in Section 4.2 for the condition of abso-
lute multiperiod risk constancy; the only modification is that here the pairs
w, <w;, z; <z and ¥; <y; have equal relative changes in value rather than

equal absolute changes in value.

A second condition equivalent to that of relative multiperiod risk constancy
can be defined as follows. For each period, ¢t =1,2,..., the preference relation 2
on infinite-period lotteries induces a preference relation 2; on those lotteries
having consequences of the type (z;). For the discussion of utility independence in
Section 4.2, the issue was whether the preference relation 2, is the same as a
preference relation on lotteries having consequences (z,,z) where z Zz* is a
fixed amount in another period. Now, consider the issue of whether the prefer-
ence relation 2, is the same as the preference relation 2, for another period s.
It will be said that the periods are timing independent provided that for any two
periods s and ¢ (actual or imaginary) the preference relations 2, and 24 are the
same.

For a multiattribute model, the equivalence of properties similar to (a) and (d)
below is discussed in Harvey (1984); for a group decision model, the equivalence of

properties similar to (b) and (d) is discussed in Harvey (1985c).

Theorem 5. For a planning model of type (A)-(G) having a least preferred stan-

dard amount, the following properties are equivalent:

(a) There exists a period ¢ for which preferences are relative multiperiod

risk constant.

(b) The periods are timing independent.
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(c) Preferences are represented by a utility function (2) in which the function

J is logarithmic or power, that is,

(v(zq) +azy(zy) +-- )7, r >0
U(zqy,x,y,... ={log(v(zy) +av(zy) +--0), r =

—(v(zq) +ap(zy) +--°), 7 <0

where the tradeoffs function v and the constant » are to be assessed. Here, v is

normalized so that v(z*) =0.

(@) Preferences are represented by a utility function (4) that is log-

exponential or power-root that is,

(u(:!:lyr +cx.21.L(:4:25/r +-- 5, r >0
U(Z 1,2 3,...) = {log(e D) 4 g =2 4 .. o), =0

—((—u@ DY +a(~u(,)T+--), r <0

where the first-period utility function u and the constants ¢ >0 and » are to be
assessed. Here, u is normalized so that u (z*) =0 in the first case, and u(z*) =0

in the third case.

Note: It follows from Theorem 2 and 4 that a utility function in parts (¢), (d) is

multiperiod risk averse if » < 1 and is relative multiperiod risk averse if r <0.

6. Multiperiod Tradeoffs

This section describes four preference conditions on multiperiod tradeoffs.
Each condition is equivalent to a special form for the tradeoffs function v and
hence to special forms for the utility functions (2) and (3) that contain v. The spe-
cial forms for (2) are immediate in terms of v whereas those for (3) require the
calculation of v 1. These results follow by combining results in Harvey (1985a),
(19B6a), and hence are only summarized here. The terminology is chosen to be

consistent with that in Sections 4, 5 and that in Harvey (1986b).
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Consider a pair of base amounts z, and z, in two periods s, { where z is
fixed and the effects of changes in z, are to be examined. For a change wg in

period s, the corresponding change w, in period ¢ such that
(Ts. g +wy) ~ (T5 +wg, 74)

is called the tradeoffs amount for the change wg, and is denoted by
w; = f(wg;s.t.z;).

If w; does not depend on the base amount z,, that is, w; =w; for any
w; = f(wg;s,t,z; ), then there is said to be absolule tradecffs independence. If
w; —w;{ depends only on the difference z; —z; and on the tradeoffs amount w;,

then there is said to be absolwte tradeoffs constancy.

Preferences are in accord with the condition of absolute tradeoffs indepen-

dence if and only if there is a tradeoffs function of the form
v(z) =z —x*
where z* is finite. Then, the utility function (3) has the special form

0(31,32,...) = 'U-( (::1 —::"') + E?:zat (xt - x*) ) . (6)

Preferences are in accord with the condition of absolute tradeoffs constancy

if and only if there is a tradeoffs function of the form

exp(gz;) —exp(ez*), ¢ >0
v(z,;) = z, —z*, g =0

~exp(qz;) + exp(gz*), ¢ <0

where z* can be ~e« if ¢ > 0 and can be 4+« if g < 0. Then, the utility function (3)
is (6) if ¢ = Dorif ¢ # 0 is of the special form

U(zq.zp...) = u(%log[ exp(gz,) + I a,(exp(gz,;) —exp(gz*)) 1) . (V)

It is also possible to consider relative changes in the amounts z;, or more
generally relative changes in amounts y;, =z; + ¢ >0 where ¢ is a constant to be

specified or evaluated. The amounts y; can be interpreted either as sums, i.e.,
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0

z, + z° where z° = ¢ is an "asset position,” or as differences, i.e., z, — z° where

z%=~cisa "point of ruin.”
Suppose that for a base amount y, =z, + ¢ in period t and a change wg in

period s there is a proportion p; such that
(g, 4 +D3Y;) ~ (g +wy, Z4)

Then, p,; is called the iradeoffs proportion for the change wg, and is denoted by
Py =g (wgis.t,z,).

If p;, does not depend on the base amount z;, that is, p; =»; for any
P = g(ws; s,t,z; ), then there is said to be relative tradeoffs independence. If
»; —p; depends only on the ratio ¥;/ ¥; and on the tradeoffs proportion »;, then
there is said to be relative itradeoffs constancy.

Preferences are in accord with the condition of relative tradeoffs indepen-

dence if and only if there is a tradeoffs function of the form
v(z;) =log((zy +c)/(z* +¢c))

where —c < z* < +e. Then, the utility function (3) has the special form

a;

-c) . (8

z; +c

U(zy,x3,...) =u((zq + )= v io

Preferences are in accord with the condition of relative tradeoffs constancy

if and only if there is a tradeoffs function of the form

(z; +¢)? —(z* +¢c)?, g >0
v(z,) =4 log((z, +c)/(z* +c)), q =0
—(z; +c) +(z* +c)!, g <0

where z* can be —c if ¢ > 0 and can be += if ¢ < 0. Then, the utility function (3)

is (B) if ¢ = 0 or if ¢ # O is of the special form

U(zq.2..) = u([ (2, + ) +Z7,0,((z, +c) —(z* +c)?) /7 -c ) . (9)
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Each of the above conditions on multiperiod tradeoffs is equivalent to a condi-
tion on attitude toward intertemporal equity. For example, there is absolute
tradeoffs independence if and only if there is an attitude of interiemporal inequi-

ty neutrality, that is, any two indifferent consequences (z{ ,z;) and (z..z; ) are

indifferent to the ""equable’ consequence (-;—(zs +z]), ';1_;'(”: +z{)).

7. First-Period Risk

This section briefly describes four preference conditions on risk attitudes
for consequences (z,) having an amount z, in the first period and standard
amounts z* in the other periods. These conditions are restatements (with new ter-
minology) of the conditions on single-attribute risk attitudes that are referenced
in Section 4.2 and 5.2. Each condition is equivalent to a special form for the
first-period utility function », and hence to special forms for the utility functions
(3) and (4).

For two amounts z, and z{ in the first period, let Z, denote the risk mid-
point of £, and x] defined by (51) ~ <(z4),(x])>. If for any amounts z; and z§
the risk midpoint £, of z,,z; is the average of z, and z}, then there is said to be
Sfirst-period risk neutrality. If for any (absolute) change &, the risk midpoint of
z,+handz) +his 51 + kh, then there is said to be absolute first-period risk

constancy.

There is first-period risk neutrality if and only if w(x4) =z, is a first-period
utility function. There is first-period risk constancy if and only if there is a

first-period utility function of the form

exp(rz,), >0
u(z,) ={ z,, r=0

—exp(rz4), r <0

for some amount of the parameter r.

Conditions on first-period risk attitudes can also be defined by considering
proportional changes in the amounts ¥y =z, + ¢ >0 where ¢ is a constant to be

specified or evaluated. If for any amounts z, and z; the risk midpoint of z, and
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z{ is that amount £, such that £, + ¢ =k(z, +¢) and z; + ¢ = k(Z, + c) for the
same proportion k, then there is said to be relative first-period risk neutrality.
If for any relative change k the risk midpointof z, + k(zy +c)andzi+ k(zj+cC)

is 51 + I(:(:E:"1 + ¢), then there is said to be relative first-period risk constancy.

There is relative first-period risk neutrality if and only if u(z,)=
log(xz4 + ¢) is a first-period utility function. There is relative first-period risk

constancy if and only if there is a first-period utility function of the form

(zy+c)", r >0
u(zr,) =¢log(zy+c), r =0

—(zqy +c)", r <0

for some amount of the parameter r.

8. Examples of Planning Models

This section specifies a number of planning models that include the following
preference issues: (i) the imf)ort.ance of the future, (ii) intertemporal equity, (iii)
first-period risk, and (iv) multiperiod risk. Preference conditions from Sections
4-7 are assumed concerning the issues (ii)-(iv). For each of the resulting models,
either the preference condition of present value discounting or that of relative
discounting can be used. Thus, it is not necessary to discuss here the issue (i) of

the importance of the future, even though this issue is included in the models.

One planning model is that in which there is absolute tradeoffs independence,
first-period risk neutrality, and multiperiod risk neutrality. Such preferences

are represented by the utility function
U(zy,Zp,...) =29 + AT, + agzz + - (10)

that is often used in cost-benefit studies and risk analysis studies.

This model may be regarded either as excluding all three of the preference
issues (ii)-(iv) or as formulating these issues in the simplest possible manner.

From either viewpoint, the model is as simple as possible.
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The next simplest models would be those that assume a preference condition
other than the above for only one of the issues (ii)-(iv). However, such models are

inconsistent according to the following result.

Theorem 6. For a planning model of type (A)-(G), any two of the preference condi-
tions: absolute tradeoffs independence, first-period risk neutrality, and mul-

tiperiod risk neutrality, imply the third.

Thus, any model that assumes another condition for one of the issues (ii)-(iv)
must assume another condition for at least one other of these issues. First, consid-
er those models which include two of the issues (ii)-(iv) in the sense that only one

of the conditions in Theorem B is assumed.

Theorem 7. For a planning model of type (A)-(G):

(a) If there is multiperiod risk neutrality, then the attitude toward intertem-

poral equity coincides with the attitude toward first-period risk, that is, v = u.

(b) If there is absolute tradeoffs independence, then the attitude toward mul-

tiperiod risk coincides with the attitude toward first-period risk, thatis, f = u.

(c) If there is first-period risk neutrality, then the attitudes of intertemporal

inequity aversion and multiperiod risk aversion are inconsistent.

As an example of part (a), consider a planning model having an intermediate
standard amount. The preference conditions of: (1) multiperiod risk neutrality and
(2) either relative tradeoffs independence or relative first-period risk neutrality,
imply that preferences are represented by the utility function

z4+C To42
+ a ,lo
z* +c 2! gz"' +c

U(x4.Z,...) =log (11)

As an example of part (b), consider a planning model having a least preferred
standard amount. The preference conditions of: (1) absolute tradeoffs indepen-
dence and (2) either relative multiperiod risk neutrality or relative first-period
risk neutrality with respect to y; = x; — z* imply that preferences are represent-

ed by the utility function

U(xzq,z5,...) =log((zy —x*) + ay(xy —x*) +---) . 12)
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Next consider those planning models which include all three of the preference
issues (ii)-(iv) in the sense that none of the three preference conditions in
Theorem 6 are assumed.

As an example of such a planning model having an intermediate standard
amount, consider the following conditions:

(1) There is absolute multiperiod risk constancy (or utility independence), and

there is multiperiod risk aversion.
(2) There is relative tradeoffs independence with respect toy;, =z, +c.

(3) There is relative first-period risk constancy with respect to y;, =z; +c¢,

and there is relative first-period risk aversion.

Theorem B. Any two of the above conditions (1)-(3) imply the third. Preferences
satisfy the conditions (1)-(3) if and only if preferences are represented for some
r <0 by a utility function of the form

z,tc Z,+c
+ aslo
x* +c 2io8

1. (13)

U(zq.x2,...) = —exp(r[log purpr

Note: Here, the attitude toward risk in a period ¢ is represented by the utility
function u,(z;) = —(x; + c)m‘,r < 0. Thus, the degree of risk aversion is less for

periods in the more distant future.

As an example of a planning model having a least preferred standard amount
such that all three of the issues (ii)-(iv) are included, consider the following condi-

tions:
(1) Thereis relat:ive multiperiod risk neutrality.
(2) There is relative tradeoffs constancy with respect to y; =z, ~ z*.

(3) There is relative first-period risk neutrality.

Theorem 9. Any two of the above conditions (1)-(3) imply the third. Preferences
satisfy the conditions (1)-(3) if and only if preferences are represented for some

g > 0 by a utility function of the form

U(zq,Z3,...) =log((zq —z*MW +az(zy —z*)? +--) . (14)



-28 -

Note: Here, the periods are timing independent (Section 5.2), and
u(z;) = log(z, — z*) is a utility function for any period t conditional on z, = z*
for all s # £. The degree of risk aversion in a period ¢ is less for fixed amounts in
the other periods that are more preferred. There is an attitude of intertemporal

inequity aversion if and only if 0 < ¢ < 1.

Appendix A: General Planning Models

This appendix lists the preference conditions for the expected-utility plan-
ning model in Theorem 1 and provides a proof of that result. The definition of the
set C* and the conditions (A)-(E) are as in Harvey (1986a). Conditions (F), (G) are

added in the present paper.

The preference relation 2 defined on the set L of infinite-period lotteries is
assumed to be a partial order, i.e., reflexive and transitive, and to be strictly in-

creasing in that larger amounts z, in each period, ¢ =1,2,..., are preferred.

The following definition specifies that subset of infinite-period consequences

on which tradeoffs between the periods are considered.

Definition Al. The set C* consists of those infinite-period consequences

¢ = (z4,Zp,...) in C such that:

(a) For any xzi >z, there exists an N such that

cn = (21 .T2, 1Ty 1% 41, 42.---) 2 € forall n 2N

(b) For any z; < z4, there exists an N such that

Cp =(Z]{ T sTyy T ™y 41: X% 42:---) 2 € forall n 2N

The tradeoffs conditions (A)-(E) below are used to establish the value function

(1) for infinite-period consequences in the set C*.
(A) The preference relation 2 is a complete ordering on the set C*.
(B) The preference relation 2 is continuous on C* in each variable.
(C) Each pair of adjacent variables z,,z,,q, £t =1,2,..., is preferentially in-

dependent on C* of the other variables.
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(D) Each consequence ¢ = (z4,Z,,...) in C that satisfies the following condi-
tions is in the set C*.

(@) For any z§ > z,, there exists an X such that
Co 2Cp = (X 4seeesZn 2%y 41,2%n 42.-..) forall m,n 2N

(b) For any z; < z,, there exists an ¥ such that

€m 2Cn = (X1 sZ g T 41, 2%n 40...) forall mon 2N

(E) Any two periods s,t have equal tradeoffs comparisons, i.e., for any two
pairs of amounts z! < z? and 28 <z%in 1/, if society is willing to tradeoff more to

4 in period s, then so-

increase z, from z! to z? than to increase z, from z3toz
ciety is willing to tradeoff more to increase z; from z! to z? than to increase z;

from z3to z%in period .

Lemma A1l. A planning model satisfies the conditions (A)-(F) on tradeoffs if and
only if the preference relation 2 restricted to the set C* of consequences is
represented by a value function (1) as described in Lemma 1 where for an inter-
mediate amount z* the range of the tradeoffs function v is (=, ), for a least pre-
ferred amount z* the range of v is [0,), and for a most preferred amount z* the
range of v is (—e,0].

Proof. For a model having an intermediate standard amount, it is shown in Harvey
(1986a) that conditions (A)-(E) are equivalent to the existence of a value function
as described in Lemma 1. For a model having an extreme standard amount, a simi-
lar argument can be used to establish this equivalence. Thus, for each type of
planning model, it remains to show that condition (F) is equivalent to the property

that the range of v is the appropriate interval (—e, ), [0, ), or (—e,0].

For a model having an intermediate standard amount, there exists amounts
z > z* and x < z* in the open interval /. Condition (F) implies that for any conse-
quence ¢ = (T4,T5,%3,X%,,...) there exists an z] in J such that (z;) ~ ¢, that is,
v(z]) =v(zy) + ayv(zy). Choosing a fixed z, < z* or z, > z*, it follows that the
range of v is unbounded above and below. Thus, since v is continuous the range of
v is (—o,®). Conversely, if the range of v is (—e,»), then for any consequence

¢ = (x4,Z5...) with a convergent value function V(c) there exists a consequence
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(z4) with v(z{) = V(c), and thus condition (F) is satisfied.

For a model having an extreme standard amount, there exists amounts z > z*
or x < z* respectively in the half-open interval /. By an argument similar to that

above, condition (F) is satisfied if and only if the range of v is [0,%) or (=e,0].

Proof of Theorem 1. First, consider a model having an intermediate standard
amount. Assume conditions (A)-(G). Then, there is defined on the set C* a value
function V(z,,z,,...) as in Lemma 1 with v(J) = (—=,) and a utility function
U(x4,Zp,...). It follows that U(z4,25,...) = f(V(x1.%2...)) for some strictly increas-
ing function f defined on (—,). The second part of condition (G), i.e., that every
lottery has a certainty equivalent, implies that the range of f is an interval. Since

f is increasing, it follows that f is continuous. Hence, U is of the form (2).

Suppose that u(z;) denotes the conditional first-period utility function de-
fined by u(z;) =U(x,,2%3%%3...). For any consequence ¢ =(z4,Z3...) in
c*, v 1(V(c)) is a well-defined amount in 7 and ¢ ~ (v "1(V(c)), z*5,x%3,...). There-
fore, U(c) = U(v _1(V(c)),z"‘2,z"'3,...) = w-v_4(V(c)), and thus U is also of the
form (3). For any consequence ¢ = (z4,2%,,Z%3,...),u(zy) =U(c) = f(v(z,).
Therefore, v(z) =f Loy (z) for all z in /, and thus U is of the form (4).

Conversely, if there exists a value function V and a utility function U as
described in Theorem 1, then conditions (A)-(E) follow from the value function and
condition (G) follows from the utility function. Therefore, it remains to infer con-
dition (F). The form (3) of UV implies that the range of V is contained in the domain
of v™1. However, the domain of v1 is by definition the range of v. Thus, for any
consequence (Z{,Z,...) in C* there exist an amount zj; in I such that

V(x1,2*2,2%3,...) = v(z] ), and condition (F) is established.

Second, consider a model having an extreme standard amount. Most of the ar-
guments are similar to those for a model having an intermediate standard amount,
and thus it suffices to be brief except for points of difference. Assume conditions
(A)-(G). Then, there is defined on the set C* a value function V with v () = [0,)
or v(/) = (—=,0], and there is defined on the set C* — {(z*,,z*,,...)] a utility func-
tion U. It follows that U = f+V for some continuous, strictly increasing function f

defined on (0,%) or (=—,0). Thus, U is of the form (2). The forms (3) and (4) now



-31 -

follow with the first-period utility function u(z,) = U(z,2*,,2*,,...) defined on
the interior of I. The converse arguments are similar to those for a model having

an intermediate standard amount.

Appendix B: Proofs of Results on Preference Conditions
This appendix contains the proofs of Lemma 2, 3 and Theorems 2-5 in Sections
4, 5, and Theorems 6-9 in Section 8. Some of these proofs use the following impli-
cations for a function g that is defined and continuous on an interval:
1 1 - i 1 . s .
g (—2-:1:1 + -2—.1:2) = 39 (zq) + r1d (z,) for all z4,z, if and only if g is linear,
1 1 1 1 . s . .
g(—z-:c:1 + —2-.1:2) > 29 (z,) + 1 (zp) for all z, # z, if and only if g is strictly con-
cave (see, e.g., Hardy et al. 1834), and g(z,) = %g (z,) + %—g (z3) implies
gz, +h)= %g (xp+h)+ -;—g (xz+ k) for all z,+h,...,.z53+ h if and only if g is

linear or exponential (see, e.g., Pfanzagl 1958).

Proof of Lemma 2. By Lemma Al, the range of the tradeoffs function z is
(—,), [0,»), or (—,0]. Thus, for two amounts z; < z; ina period {, the amount

z,; defined by
ey -1 1 ’
v(z;) = -?'u(zt) + ?v(zt )

is the tradeoffs midvalue of z;,z{ since for another period s there exist amounts
z < z’ such that, for example, agv(z’) —agv(z) = atv(Et)—- a,v(z;). Moreover,
the tradeoffs midvalue of z;,z; Iis unique since v is strictly increasing. The

remaining parts of Lemma 2 may be established by similar arguments.

Proof of Theorem 2. Conditions (A)-(G) imply by Theorem 1 that preferences can
be represented by utility functions of the forms (2) and (4). First, it will be shown
that each of the preference conditions (a), (b) in parts I, II, is equivalent to the
corresponding property (c) of the multiperiod risk function f in (2).

Consider condition (a). For a pair of amounts z; < z; in period ¢, let

v0= a.t'u(:z:t),v1 =a,v(z; )and v = a;v(z;). Then, v = %vo +%—'u1. Thus, condi-
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tion (I.a) is equivalent to f(%vo +%v1) = -%—f (v°) + %f (vi) for all v° < v1in the
interval v (/) which is equivalent to f being linear on v (/). Similarly, (Il.a) is
equivalent to f being strictly concave on v (J).

Consider condition (b). For pairs of amounts z,,z; and z;,z; as described,
let v0 = agv(zg) =a,v(z,) and vl= agv(zg ) = a,v(x; ). Then, condition (I.b) is
equivalent to f(v° + vl) =%f(2v°) + —;—f(z'vi) for all v% < v in v(/) which is
equivalent to f being linear on v (/). Similarly, (II.b) is equivalent to f being
strictly concave on v (7).

Next, it will be shown that property (I.c) is equivalent to property (I.d). If
there exists an additive utility function U(z,,z,,...) as in (l.c), then
u(z,) =U(z4,2%3,2*3,...) equals v(z,), and thus there exists an additive utility

function as in (I.d). The converse argument is similar.

Proof of Theorem 3. First, it will be shown that each of the conditions (a), (b) is
equivalent to property (¢) of the multiperiod risk function /.

Consider condition (a). Let wv,, =a,v(w;),..., vy = a,;v(y;). Then,
Vy =Uy th,v; =v, +h,and v, =v, +h for some constant . There is ab-
solute multiperiod risk constancy if and only if f(v.) = -;—f (vy,) + %f (vy) implies
Sf(vg +h) = -;—f (Vy + R)+ %f (vy + A ). This implication is satisfied if and only if
J is as described in (c).

Consider condition (b). For tradeoffs amounts z,z’ in a period s, let
h =agv(z) and ' = agv(z’). Period ¢t is utility independent of the period s if
and only if f(vp +h)2 -%—f(vw +h) + %f(vy + h) implies f(vy +h‘) 2
%f (v +R") + %(vy + h’) for any h’. This implication is satisfied if and only if /
is as described in (c).

Next it will be shown that (c) is equivalent to (d) with the cases r >0, r =0,
and r <0 in (c) corresponding to the three cases in (d). The case r =0 is already

treated in Theorem 2.
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Proof of Theorem 4. First, it will be shown that each of the preference conditions
(a), (b) in parts I, II is equivalent to the corresponding property (c¢) of the mul-
tiperiod risk function f in (2).

Consider condition (a). For a pair of amounts z; < z; not equal to z* let
v0= a,v(z,), vl= a,v(z;), and ¥ =a,v(Z,). Then, v = (v%°v 112 Thus, condi-
tion (I.a) is equivalent to 7 ((v%1)17%) =—;—f(v°) + %f(vl) for all v% <! in
v(l) = (0,%) which is equivalent to f being logarithmic on v (/). Similarly, condi-
tion (II.a) is equivalent to f .exp being strictly concave on the interval (—eo, ).

Consider condition (b). For a period ¢ (actual or imaginary) with an arbitrary
timing weight, 0 < a; <1, and an amount z > z*, let vl= v(zq), vl = a;v(z;), and
v =a,v(z,) where z =z, =z, =z,. Any two numbers, v1>vt >0, can be
represented in this manner. Moreover, ¥ = (v1v!)/2  Thus, condition (I.b) is
equivalent to f((vlvt)l/z) = —%—f(vl) + %f(vt) for all v1 > vt in (0,e) which is
equivalent to f being logarithmic. Similarly, condition (II.b) is equivalent to

f - exp being strictly concave on the interval (—oo, ).

Next, it will be shown that condition (I.c) is equivalent to condition (I.d). If
there exists a utility function U(zq,z;,...) as in (I.c), then the function
1 (z) = logv(z) is a first-period utility function with 2Z (z*) = —=and 2 (z *) = +o.
Suppose that u(z) is an assessed first-period utility function. Then,

U (z) = cu(x) + b some constants ¢ > 0 and b, and thus by substitution,

U(zy,zp,...) = log(e™FV 4 g, 4 ...y 4+ p

Conversely, if there exists a utility function U(zq4,,...) as in (I.d), then
v (z) = exp(cu (z)) is a tradeoffs function with ¥(z*) =0 and 9 (z*) = +e. Sup-
pose that v is an assessed tradeoffs function with v(z*) =0. Then, ¥ (z) = av(z)

for some constant a > 0, and thus by substitution

U(zq,z5,...) =log(v(zy) +av(zy) +- ) + loga

Proof of Theorem 3. First, it will be shown that each of the conditions (a), (b) is

equivalent to property (c) of the multiperiod risk function 7.
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Consider condition (a). Let Uy = atv(wt),....vz; = a,v(y;). Then v, =
PV, Vg = PV, and vé = pv (vy) for the same constant p > 0. There is relative
multiperiod risk constancy if and only if f(v,) =%f(vw) + —;—f(vy) implies
S vg) = %f (Pvy) + %f (pvy). This implication is satisfied if and only if f is as
described in (c).

Consider condition (b). For two actual or imaginary periods s and ¢, let
» =a, and p’ =a;. Compare a consequence (z) and a lottery <(w), (¥)> in
periods ¢t and s. The periods are timing independent if and only if
J (ovy) g%f(pvw) + %f(pvy) implies f (p'v,) 2 %f(p'vw) + %f(p’vy) for all

positive p,p’,v,,, v,V Defining g by f(v) = g(log v), it follows that the multi-

v
plications PVgs,..., D ’vy can be replaced by the additions
logp +logv,,...,logp’ + log Vy- This modified implication is satisfied if and only
if, with a  positive linear transformation, g is of the form
g(z)=e™,r >0;,2z,r =0; or —e™,r <0. Thus, the implication involving f is sa-
tisfied if and only if f is as described in (c).

Next, it will be shown that (c¢) is equivalent to (d) with the cases » >0, r =0,
and r <0 in (¢c) corresponding to the three cases in (d). The case r =0 is already
treated in Theorem 4.

Assume that there exists a utility function U(z,z,,...) as in (c) with = > 0.
Then the function 4 (z) = (v(x))T is a first-period utility function with non-

negative values and % (z*) = 0. Moreover,
Ulzq,zp,...) =(u (zl)llr +au (32)1/"' 4+ )T

Suppose that u is an assessed first-period utility function with u (z*) = 0. Then,
2 (z) = au(z) for some constant a >0, and thus by substitution into the above
formula for U(z4,z,,...) the first case of (d) follows. The argument that (c) with

r <0 implies the third case of (d) is similar.

Conversely, assume that there is a utility function U(z,,z,,...) as in the first
case of (d). Then, v(z) = (u(z))T is defined for all z in /7 =[z*,z*), and

v(z*) =0. Moreover,

U(zl'ZZ"”) = (6(:1) + azﬁ(zz) o+ .)T
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Therefore, ¥ is a tradeoffs function. Suppose that v is an assessed tradeoffs func-
tion with v(z*) =0. Then, v (z) = av(z) for some constant @ > 0. By substitution
into the above formula for U(zl,zz,...), the case (c¢) with » > 0 follows. The argu-

ment that the third case of (d) implies the third case of (c) is similar.

Proof of Theorem 6. The functions f,v, and u in Theorem 1 are related by

U = fev. Thus, if any two of these functions are linear, then so is the third.

Proof of Theorem 7. If the multiperiod risk function f is linear, then except for
a positive linear transformation ¥ = v. If the tradeoffs function v is linear, then
except for a positive linear transformation u = f. if the single-period risk func-
tion w is linear, then the two strictly increasing functions f and v cannot both be

strictly concave.

Proof of Theorem B. The preference conditions (1)-(3) are equivalent to
JW = —™ with r < 0,v(x) =log(x +c¢), and u(zx)=—(x +c)? with g <0,
respectively (where f, v, and u are each determined up to a positive linear
transformation). It may be verified that since © = f v any two of these forms im-
plies the third and that all three of these forms are equivalent to the form (13) of

U(x 1,.‘82,...).

Proof of Theorem 9. The preference conditions (1)-(3) are equivalent to
F) =logV,v(z) = (x —z*)? with ¢ >0, and u(z) = log(x — z*), respectively.
Here, the forms v(z) =log(z —z*) and v(z) = —(z — z*)? with ¢ <0 are exclud-
ed since it must be possible to normalize v so that v(z*) =0. It may be verified
that since u =f - v any two of these forms implies the third and that all three of

these forms are equivalent to the form (14) of U(z 4,z ,,...).
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