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UTILITY FUNCTIONS FOR lNFlWTE-PERIOD PLANNING* 

C h a r l e s  M .  H a r v e y  

1. Introduction 

There are a variety of methods f o r  treating the  uncertainty of fu ture  out- 

comes in a multiperiod planning model. Cost-benefit studies often: (1) add a "risk 

premium" t o  the discount rate (e.g., Sugden and Williams 1978, p. 60), (2) r epo r t  a 

probability distribution of net present  values (e.g., Mishan 1976, p. 372), (3) use 

the  net present  value function as a utility function, o r  (4) sub t rac t  a multiple of 

the  variance of the  net r e tu rn  from the  expected net r e tu rn  (Markowiti 1959). 

These methods do not address  preference issues regarding an  institution's o r  

society's att i tude toward r isk.  

Decision analysis models tha t  do address  these issues have been developed by 

a number of authors.  Fishburn (1965a), (1970) has  introduced conditions on 

preferences tha t  imply a utility function having an additive form. Pollak (1967) 

has introduced preference  conditions tha t  imply a utility function having an addi- 

tive form o r  a log-additive form. Meyer (1970), (1972) has  shown tha t  weakened 

assumptions of mutual utility independence imply tha t  t he  utility function has  an ad- 

ditive form, a positive multiplicative form, o r  a negative multiplicative form (see 

Keeney 1968, 1974 f o r  similar resul ts  in a multiattribute setting). Richard (1975) 

has  introduced a condition of s t r ic t  multivariate risk aversion that  together  with 

mutual utility independence implies a negative multiplicative form. Preference  

conditions concerning utility dependence, e.g., the  dependence of the decision 

maker 's  r isk attitude f o r  one period on the  outcomes in o ther  periods, have been 

introduced by Bell (1977). Fishburn (1965b), and Meyer (1977). Related work in- 

cludes that  of Bar rager  (1980), Bell (1974), Bodily (1981), and Fishburn and Rubin- 

stein (1982). 

This paper  is  a systematic study of preference issues regarding att i tudes to- 

ward r isk in multiperiod planning. A number of decision analysis models a r e  

presented tha t  when appropr ia te  can be  used to  formulate social preferences in a 

risk management study o r  t o  formulate corpora te  preferences in a long range 

planning study by a pr ivate  form. 

*This research i s  supported in part b y  the National Science Foundation under Grant no. SES 84- 
10665. 



The models in th is  p a p e r  are concerned with infinite-period outcomes, i.e.,  

with an  unb~unded~plann ing  horizon. Corresponding r e s u l t s  f o r  a bounded planning 

horizon can be  deduced by assuming t h a t  t h e  amounts in t h e  per iods  beyond t h e  

horizon are a specified, s tandard amount. 

A genera l  type  of planning model is presented in Section 2.  I t s  primary 

charac te r i s t i c s  are t h a t  t radeoffs  between di f ferent  per iods  satisfy conditions of 

p re fe ren t i a l  independence and t h a t  r i sk  a t t i tudes  satisfy conditions of expected 

utility. Then, in Section 3, f o u r  p r e f e r e n c e  issues are identified t h a t  can  b e  in- 

cluded in such a planning model (and six p r e f e r e n c e  issues are identified t h a t  can- 

not be  included). 

Sections 4-8 are concerned with specia l  conditions on social  o r  c o r p o r a t e  

p re fe rences ,  and with t h e  implications of these  p r e f e r e n c e  conditions f o r  t h e  form 

of a utility function in a general  type  of planning model. Sections 4 and 5 discuss 

a t t i tudes  toward multiperiod r i sk ;  Section 6 discusses concern  f o r  in ter temporal  

equity; and Section 7 discusses a t t i tudes  toward p resen t  r i sk .  Then, in Section 8, a 

number of planning models are presented which use a combination of p r e f e r e n c e  

conditions regard ing  t h e s e  issues. 

The planning models discussed in th i s  p a p e r  are intended t o  be  p resc r ip t ive  

r a t h e r  than descr ipt ive  o r  normative; t h a t  is, they are intended t o  c lar i fy  t h e  im- 

plications from value judgments concerning relat ively simple choices  t o  p r e f e r -  

ences  between t h e  re la t ively  complex ac tua l  al ternatives.  The utility functions 

discussed are intended t o  b e  a n  inobtrusive technical  means by which t h e  analyst  

can evaluate  t h e s e  implications. 

A utility function c a n  b e  determined by t h e  following s teps:  (1) identify which 

p r e f e r e n c e  issues are important,  (2) ver i fy  p r e f e r e n c e  conditions re la ted  t o  these  

issues,  and (3) f o r  each  p r e f e r e n c e  issue t h a t  is deemed important, make a specific 

p r e f e r e n c e  assessment. Such a procedure  has  s e v e r a l  advantages: i t  is possible 

t o  choose where t o  simplify t h e  planning model, t h e  number of value judgments 

needed is  minimized, and a sensitivity analysis of t h e  e f fec t s  of t h e  value judgments 

i s  possible. 



2. Expected-Utility Planning Models 

This section presents  an  expected-utility model for  infinite-period planning 

that  is based on the additive-value model presented in Harvey (1986a). The r eade r  

is r e f e r r ed  t o  t ha t  paper  fo r  a more detailed discussion of the definitions and 

results concerning value tradeoffs that a r e  needed f o r  the present discussion of 

risk attitudes. Moreover, the r eade r  is r e f e r r ed  to Appendix A of this paper  fo r  

much of the technical material (definitions and proofs) used in this section. 

Suppose tha t  a unit of time is chosen, e.g., a year ,  and tha t  the future i s  divid- 

ed into a sequence of periods ( t  -1, t ] ,  t = 1 3 ,  ..., of unit duration. The outcomes 

during a period, t = 1 2 ,  ... , a r e  t o  be described by a single, readily interpretable 

variable zt that  may involve the  pricing out of nonmonetary at t r ibutes  o r  the sum- 

ming of the  costs, r isks,  and benefits tha t  accrue  t o  the individuals in a specific 

group. The consequences over  the future are described by sequences ( z ~ , z ~ ,  ...) of 

the single-period amounts zt , t = 1,2,  ... . These consequences will be called 

i w n i t e - p e r i o d  consequences. Uncertain events having a finite number of 

infinite-period consequences as possible outcomes will be called i w n i t e - p e r i o d  

lotteries.  

Definition 1. A model having the  following s t ruc ture  will be called a planning  

model: (a) z* denotes a specified amount of the variables zt to be used f o r  nor- 

malization purposes, (b) I denotes a common interval on which the  variables zt are 

defined, (c) C denotes the s e t  of all  infinite-period consequences having amounts 

zt in I, (d) L denotes the  set of all  infinite-period lotteries having consequences in 

C, and (e) 2 denotes a preference relation defined on the  s e t  L of lotteries. 

The amount zt =z* will be called a s tandard  amount.  For technical rea- 

sons, i t  will be assumed that  the  interval I has one of the forms (z- ,z+) ,  [zS,z+) ,  

and (z-,z*] where each of the amounts z* , z - , z+  can be e i ther  finite or infinite. 

Here, the standard amount z* will be  called intermediate,  least prqferred, and 

most prqfetred respectively. If z* is  a least  p refer red  o r  m o s t  p refer red  amount 

in I, then L i s  to be  restr ic ted t o  those lotteries not having the extreme conse- 

quence (z* ,z* ,...) as a possible consequence. 



In t e r m s  of t he  above notation, an  ordinal-value model is  defined in Harvey 

(1986a) by the  preference  conditions (A)-(I?,) res ta ted in Appendix A. The primary 

resul t  is  as follows. 

Lemma 1. The conditions (A)-(E) on tradeoffs are satisfied if and only if prefer-  

ences among the infinite-period consequences in the set C* (defined in Appendix A) 

are represented by an infinite-series value function 

such that:  V(zl,z2, ...) converges if and only if (z1,z2,...) i s  in the  set C* ; the  tim- 

i n g  weights  at , t = 1.2, ..., are positive; and the tradeofls &nct ion v i s  continu- 

ous, s t r ic t ly  increasing, and normalized s o  tha t  v (z* ) = 0. 

In this paper ,  the  prefe rence  conditions (A)-(E) are augmented by two condi- 

tions as follows: 

(F) For any consequence (z1,z2, ...) in C*, t h e r e  exists an  indifferent conse- 

quence ( ~ i  1 ~ * 2 , ~ * 3 ,  ...) in C* fo r  some amount ~i in I. 

(G) The preference relation 2 satisfies the  conditions fo r  expected utility f o r  

the set L* of lot ter ies  in L having consequences in C*. (See, e.g.. Herstein and 

Milnor 1953). Moreover, any lot tery in L* has an  indifferent consequence in C*. 

(This condition on the  existence of cer ta inty equivalents is  included to ensure tha t  

the utility function is  continuous.) 

Theorem 1. A planning model satisfies the  preference conditions (A)-(G) if and 

only if the preference relation 2 rest r ic ted t o  the  set L* of infinite-period lot- 

t e r ies  is  represented by a utility function having the  forms: 

Here, t he  value function V(x1,x2,..,) = v (zl)  + a 2 v  (z2) + - - . is as described in 

Lemma 1 ;  the mul t iper iod  r i s k  f i n c t i o n  f is a continuous, s t r ic t ly  increasing 



function defined on the  range  of V; and t h e  first-period u t i t i t y  funct ion u i s  a 

s tandard  conditional utility function f o r  t h e  f i r s t  period,  i.e., a utility function on 

consequences of t h e  form ( x i ,  z$ , z; ,... ). 

The purpose  of Theorem 1 i s  t o  provide the  genera l  forms (2)-(4) of utility 

functions f o r  modeling t h e  p r e f e r e n c e  issues (i)-(iv) discussed in t h e  next  section.  

The timing weights at model t h e  issue (i) of t h e  importance of t h e  future ;  t h e  

t radeoffs  function v models t h e  issue (ii) of in ter temporal  t radeoffs ;  t h e  f irst-  

per iod utility function u models t h e  issue (iii) of r i sk  in t h e  p resen t ;  and t h e  mul- 

t iperiod r isk  function f models t h e  issue (iv) of multiperiod r i sk .  

9. Preference Issues 

This section f i r s t  identifies a number of issues concerning individual and so- 

cia l  p re fe rences  t h a t  can  be  modeled by a utility function of t h e  genera l  forms 

(2)-(4) descr ibed in Theorem 1. I t  then identifies o t h e r  issues t h a t  are excluded by 

t h e  assumptions of Theorem 1. References  are provided t o  more detailed discus- 

sions of each  issue. 

(i) The importance of fu ture  periods.  This issue i s  concerned with t h e  

dependence of t radeoffs  between two fu tu re  periods s and t on t h e  futur i ty  of t h e  

per iods  s and t . 

In m o s t  cost-benefit and r isk  analysis studies,  p re fe rences  regarding th is  is- 

s u e  are modeled by p resen t  value discounting, t h a t  is, by assuming t h a t  t h e  timing 

weights at form a geometric sequence,  l , a , a 2 ,  ..., f o r  some constant 0 < a < 1. 

Timing weights of th is  form are implied by severa l  p r e f e r e n c e  conditions, e.g., the  

s ta t ionar i ty  condition in Koopmans (1960), (1972) and t h e  pairwise invariance con- 

dition in Keeney and Raiffa (1976, p. 480) which states t h a t  t radeoffs  between two 

per iods  s and t depend only on  t h e  (absolute) difference t -s between t h e  periods.  

More general  timing weights are considered,  f o r  example, in Williams and Nassar 

(1966) and Weibull (1986). 

Another p r e f e r e n c e  condition, called re la t ive  timing p re fe rences ,  i s  intro- 

duced in Harvey (1986a). This condition states t h a t  t radeoffs  between t w o  periods 

s and t depend only on t h e  re la t ive  difference t / s between t h e  periods. I t  implies 



t ha t  the timing weights at form an arithmetic sequence, 1 , (1/  2)',(1/ 3)', ..., fo r  

some constant r > 0. The t e r m  relat ive va lue  d i s coun t ing  is  used f o r  a model of 

this type. 

Relative value discounting models accord more importance t o  the  distant fu- 

tu re ,  and hence t o  fu ture  generations, than do present  value discounting models. 

This distinction between the  t w o  types of models occurs  because any arithmetic se- 

quence ( l t )  r 0 decays more slowly than any geometric sequence 

a t - l ,  o < a  < I .  

(ii) Concern for  in te r tempora l  equi ty .  This issue has two equivalent forms. 

The f i r s t  form is  a concern f o r  equity in the  amounts zt in different periods; typi- 

cally, t he re  is  a n  aversion toward la rge  differences in the amounts zt . The second 

f o r m  is  a dependence of the  tradeoffs between two periods s and t on the  base 

amount, e.g., asset position or social wealth, in one of the periods; f o r  example, 

t h e r e  typically i s  a willingness t o  incur g r e a t e r  costs in a period s fo r  a benefit in 

a period t if the base costs in period s are low than if the  base costs in period s 

are already high. 

This issue i s  not included in most cost-benefit studies. Preferences  are 

modeled by assuming tha t  the tradeoffs function v is  l inear,  i.e., v ( z t )  = zt. This 

form of v is implied by a n  att i tude of neutrality toward intertemporal inequity o r ,  

equivalently, by the condition tha t  tradeoffs between t w o  periods are independent 

of the  base amount in one of the periods. Preference  conditions t ha t  do  model 

aversion toward intertemporal inequity and tha t  imply a parametric form f o r  the 

tradeoffs function v are introduced in Harvey (1986a). 

(iii) Att i tude toward  r i s k  in the  presen t .  Suppose tha t  ( z t )  denotes an 

infinite-period consequence having the  amount zt in period t and standard amounts 

z* in eve ry  o the r  period. Then, this issue can be described as a concern f o r  r isk 

in lot ter ies  having consequences of t he  form (xi), i.e., lo t ter ies  such tha t  all  of 

the uncertainty is  in the  f i r s t  period, t = 1. 

This issue and tha t  of (iv) below are two components of the  overall issue of 

risk in infinite-period planning. Most cost-benefit studies e i ther  do  not include the  

r isk issues (iii), (iv) o r  model the  overall issue of r isk by one of the  methods 

described in the introduction. 



An atti tude of neutrality toward risk in the present  implies tha t  the  first-  

period utility function u in l inear,  i.e., u (x = x A number of authors  have in- 

troduced preference conditions tha t  model an  att i tude of aversion toward r isk in 

the present  and tha t  imply a parametric form f o r  the function u . References are 

provided in Sections 4 and 5.  

(iv) At t i tude  t o w a r d  mul t tper iod  r i s k .  Suppose tha t  (x,,xt) denotes an 

infinite-period consequence having the  amounts I, and xt in t w o  periods s , t  and 

having s tandard amounts x* in every  o the r  period. One form of the multiperiod 

r isk issue is  a concern f o r  joint probabilities as wel l  as marginal probabilities in 

assessing preferences between infinite-period lotteries.  For example, suppose 

tha t  < (x,,xt), ( x i  ,xi  ) > denotes a lot tery having the equally likely consequences 

(I, ,x t  ), ( x i  ,xi ) and < (x, ,x i  ), (x;,xt) > denotes a lottery having the  equally like- 

ly consequences (I, ,xi  ), ( x i  ,xt  ). Even though these lot ter ies  have equal marginal 

distributions f o r  the  period s and f o r  the period t  , if x, < x,' and xt < xi , then 

the second lot tery may be p re fe r r ed  t o  the f i r s t  because of an  aversion to "catas- 

trophe" if the  consequence (x,.xt) occurs.  References f o r  this  issue are provided 

in Sections 4 and 5. 

An att i tude of neutrality toward multiperiod r isk (for example, indifference 

between any two lot ter ies  described above) implies tha t  the multiperiod r isk func- 

tion f i s  l inear,  i.e., f (V) = V. For  such a model, the infinite-series value function 

V(xl ,la,.. .) in Theorem 1 is  also a utility function. 

In contrast  t o  t he  issues (i)-(iv) discussed above, the following issues (v)-(x) 

are excluded by the  preference conditions in Theorem 1 and hence cannot be 

represented by the models to be  discussed in this paper .  

(v) Dependence of the tradeoffs between two periods on the amounts in the in- 

tervening periods. This issue is excluded by condition (C) in Appendix A. Such 

preferent ia l  complementarity is  discussed, for example, in Gorman (1968), and 

models are proposed in Bordley (1985) and Meyer (1977). 

(vi) Dependence of t he  tradeoffs within a period on the base amounts in tha t  

period. For a multiattribute decision problem, t h e r e  may be, f o r  example, a 

dependence of the pricing-out amounts f o r  the  non-monetary at t r ibutes  on the base 

amount of the monetary at t r ibute .  For  a group decision problem, t he re  may be a 



concern fo r  equity in the consequences t o  the affected individuals. These issues 

are excluded by the  requirement that  the outcomes in a period t can be described 

by a single, readily interpretable  variable, i.e., tha t  multiple at t r ibutes  can be re- 

duced to a single at t r ibute  by "willingness-to-pay" methods, and group conse- 

quences can be aggregated by a "sum-of-benefits" method. Multiattribute tradeoffs 

dependence is discussed, f o r  example, in Harvey (1985a) and Kirkwood and Sarin 

(1980); interpersonal equity in consequences is discussed, fo r  example, in Atkinson 

(1970), Barrager  (1980), Fleming (1952), and Harvey (1985b). 

(vii) Dependence of tradeoffs comparisons on the period. This issue i s  ex- 

cluded by condition (E) in Appendix A, which requires tha t  fo r  any two periods s ,t 

and any two pairs  of amounts z1 < z2 and z3 < z 4 ,  if t he re  is a willingness t o  trade- 

off more t o  increase z, from z1 t o  z2 than to increase z, from z3 to  z 4 ,  then the re  

is a willingness t o  tradeoff more t o  increase zt from z1 to  z2 than t o  increase zt 

from z3 t o  z4. A general planning model that  does not assume condition (E) is 

presented in Harvey (1986a); however, there  are no known preference conditions 

on dependence of tradeoffs comparisons that  could be used t o  s t ruc ture  such a 

model. 

(viii) Attitude toward intertemporal inequity in risks.  This issue must be dis- 

tinguished from the issue (ii) of concern f o r  intertemporal equity in amounts. The 

present issue can be described as follows. Consider two pairs  of amounts z, < z J  

and zt < z; such tha t  (z, ) - (zt ) and (2,' )- (2; ). Then, the consequences (z, ,z; ) 

and (zJ ,zt  ) a r e  indifferent and have the same inequity in amounts. By the substi- 

tution principle, i t  would follow tha t  the  lottery < (2, ,z; ), ( z i  , z t  ) > is  indifferent 

t o  e i ther  of the consequences (z, , ~ j  ), (2,' ,zt ). However, the  lottery might be 

prefer red  to, f o r  example, t he  consequence (z, ,z; ) since the lottery presents 

equal r isk in both periods whereas the consequence (z, , z j  ) is  unfair t o  the period 

s (and thus t o  the  affected individuals in period s ) .  

Such preferences are excluded by the expected utility conditions (G). Inequi- 

ty  in r isk fo r  group decision problems is discussed, fo r  example, in Broome (1982), 

Harvey (1985c), Keeney (1980), Keeney and Winkler (1985), Kirkwood (1979), and 

Sarin (1985). 



(ix) Regret,  Allais paradoxes, and framing effects.  These issues a r e  excluded 

by condition (G). Discussions of these issues may be found, f o r  example, in Allais 

and Hogen (1979), Bell (1983), (1985), Kahneman and Tversky (1979), and 

Schoemaker (1982). Models tha t  do not assume condition (G) are presented in Chew 

(1983), Chew and MacCrimmon (19'79). Fishburn (1982), (1983), and Machina (1982). 

(x) Time resolution of uncertainty. This group of issues is  discussed by 

Mayer (in Keeney and Raiffa 1976, Chapter 9) where several  issues are identified, 

including: (1) changes in personal or social preferences over  time, and (2) t he  

time at which uncertainty is  resolved. 

The preferences of a future  society a r e  included in a utility function of 

Theorem 1 only in tha t  the preferences of cu r r en t  society depend in p a r t  on a con- 

c e r n  f o r  such future  preferences;  t he  planning models in this pape r  do not include 

a probability distribution of future  preferences.  A separa te  issue is  whether the  

social preferences represented in a specified utility function change with time. 

For a present  value discounting model, t he  tradeoffs between the  years  2050 and 

2051 are the same whether t he  model represen ts  t he  preferences of cu r r en t  so- 

ciety or the preferences  of society in the yea r  2050. For a relat ive value 

discounting model, however, t h e r e  is  more indifference between the  years  2050 and 

2051 if the model represen ts  cu r r en t  preferences than if the  model represen ts  

preferences in the  yea r  2050. 

The time at which uncertainty is resolved can  be included in a planning model 

by the  usual backward induction of decision-tree analysis. However, the issue of 

anxiety caused by prolonged uncertainty is  not included in t he  planning models in 

this paper .  This issue of "anxiety along the way" is  discussed in the work of Meyer 

cited above. 

4. A b s o l u t e  Hul t iper iod  Risk 

This section and the next discuss preference conditions regarding the  issue of 

multiperiod risk. General conditions are introduced in Sections 4.1 and 5.1 to de- 

fine the  att i tudes of neutrality, aversion, and proneness toward multiperiod r isk,  

and special  conditions are introduced in Section 4.2 and 5.2. 



Each general  or special  p re fe rence  condition i s  shown t o  be equivalent t o  a 

condition on the  f o r m  of the  multiperiod risk function f in Theorem 1. In this 

sense,  t he  function f can be regarded as tha t  p a r t  of a utility function U(x1,x2, ...) 

which encodes the  multiperiod risk att i tude f o r  p re fe rences  among infinite-period 

lotteries.  Table 1 below lists all of t he  special  conditions on multiattribute risk 

and t he  corresponding special  forms of the  utility function U. The proper t ies  

within each  of p a r t s  (I)-(IV) are equivalent. 

Table 1: Conditions on Multiperiod Risk and Forms of U(z1,z2, ...) 

(1) 

(Absolute) Risk Neutrality (a) 

(Absolute) Risk Neutrality (b) 

U l inear  in v 

U additive in u 

(11) 

Relative Risk Neutrality (a) 

Relative Risk Neutrality (b) 

U logarithmic in v 

U log-exp in u 

(111 (IV) 

Absolute Risk Constancy Relative Risk Constancy 

Utility Independence Timing Independence 

U l inear  or exponential in v U logarithmic or power in v 

U additive or multiplicative in u U log-exp or power-root in u 

Both single-period r isk att i tudes and multiperiod r isk att i tudes can  be  defined 

by specifying a period t and considering preferences  between those lot ter ies  hav- 

ing consequences (zt ) in which the  amounts in the  periods o the r  than period t are 

s tandard amounts I*. For such lot ter ies ,  t he r e  i s  no uncertainty except  f o r  the  

outcome in period t . 

For a single-period r i sk  att i tude,  t h e  consequences (x t )  are measured direct-  

ly in terms of t he  amounts zt in period t .  In par t icular ,  t he  tradeoffs between zt 

and t he  amounts in o the r  periods are not considered. For a multiperiod r i sk  atti- 

tude, however, t he  consequences ( z t )  are measured in terms of t he  amounts v ( z t )  

by considering t h e  t radeoffs  between t he  amounts zt in period t and t he  amounts in 



other  periods; then, changes in the period t will be r e f e r r ed  t o  a s  changes in 

value .  

4.1 Absolute multiperiod risk neutrality and aversion 

The multiperiod risk attitudes of neutrality, aversion, and proneness may be 

defined by a number of equivalent conditions concerning changes in value. Two 

such conditions are specified in this subsection. The following concepts will be 

needed f o r  the f i r s t  of these conditions. 

Definition 2. Pai rs  of amounts xt ,xi and yt ,yj in a period t will be said to  have 

equal (absolute) changes in value provided that  

f o r  a common pa i r  of amounts z , z f  in another  period. In particular,  a n  amount zt 
will be called the  (absolute) t r a d e o n .  mmidvalue of two amounts xt < x; provided 

that the  pairs  of amounts xt ,zt  and zt ,xi have equal changes in value. 

A s  a type of example, suppose tha t  preferences f o r  intertemporal equity are 

not included in the model (as is typically the case f o r  cost-benefit models). Then, 

two pairs  of amounts xt ,xi and y t ,  y ;  have equal changes in value provided tha t  

xi = x t  + h ,  yi = yt  + h f o r  the same change h ,  and the  tradeoffs midvalue of two 

amounts xt < x; is  the  ordinary average of xt and x; . 

Lemma 2. For a planning model of type (A)-@), any two amounts xt < xi in any 

period t have a unique tradeoffs midvalue zt. Any two pairs  of amounts x ,x ' and 

y , y f  in the interval I have equal changes in value when they are in a period t if 

and only if they have equal changes in value when they a r e  in any o the r  period. 

Thus, an amount E is  the tradeoffs midvalue of a pa i r  of amounts x < x '  when 

z , 5 , x f  a r e  in a period t if and only if z i s  the  tradeoffs midvalue of x < x '  when 

x ,G,x ' are in any o the r  period. 



Suppose tha t  a single period 1 has been chosen, and the  tradeoffs midvalue zt 
of a pa i r  of amounts xt < xi has been assessed. Multiperiod r isk att i tudes can be 

defined as in pa r t s  (a) of Theorem 2 below by comparing the  "average" conse- 

quence (<) with the  "risky" lottery < ( z t ) , ( x ;  )>. For example, muLtiperiod r i s k  

a v e r s i o n  can be  defined as the  condition tha t  ( S t )  is  p r e f e r r ed  to < ( x t ) , ( x i  )>. In 

applications, i t  may often be  convenient t o  choose the  period 1 as the  f i r s t  period, 

1 = I .  

These definitions are similar to the  definitions in Dyer and Sarin (1982) com- 

paring s t rength of p re fe rence  midvalues and r isk midvalues (i.e., cer ta inty 

equivalents). The difference t o  be emphasized is  tha t  the  above definitions do not 

require  a precise  assessment of the  cer ta inty equivalent of <(zt ), (2; ) >; instead, 

(Zt ) and <(zt ) , (x i  )> are compared directly. 

Multiperiod r isk att i tudes can also be  defined by considering consequences of 

the  form (z, ,zt ) f o r  two periods s and 1. Suppose t ha t  t he  periods s and 1 have 

been chosen, and two pa i r s  of amounts z , , x ;  and zt ,z;  have been assessed such 

tha t  

z ,  < z;, zt < z; and (2,)  (zt 1, (2; I N  (2;)  . (5) 

These indifference relations imply t ha t  t he  two infinite-period consequences 

(z, ,z;) and (2; , z t )  are indifferent. 

A s  one type of example, if s and t are chosen to be  adjacent periods in the 

distant fu ture  and the  fu ture  is  valued in accord with the  conditions of relative 

timing preferences  (so t ha t  a, / at a I),  then xt and zi can be  assessed as approx- 

imately zt = z, and zi = z; . 

Multiperiod r isk att i tudes can be  defined as in p a r t s  (b) of Theorem 2  by com- 

paring the  "average" consequences (z,,zi ), (z; , z t )  with the  "risky" lottery 

< (z, ,zt ) , ( x i  ) >. For example, muLtiperiod r i s k  a v e r s i o n  can be defined as 

the  condition tha t  the  consequences (z,  ,xi ), (zi , z t )  are prefer red  t o  the  lot tery 

< ( x ,  ,zt ) , ( z d  >. 



These definitions are similar t o  t h e  definitions in Richard (1975) of multivari- 

ate r isk  neutra l ,  s t r i c t ly  multivariate r i sk  a v e r s e ,  and s t r i c t ly  multivariate r isk  

seeking. The di f ference i s  t h a t  in Richard's  definitions t h e  consequences (z, , ~ j  ), 

( x i  ,z t  ) are not assessed t o  be  indifferent,  and t h e  lo t t e ry  < (z, , z j  ), (z,' ,z t  ) > i s  

compared with < (z, , z t ) ,  (z,' , x i  ) >. In t h e  terminology of Farquhar  (1984), t h e  

comparisons in Richard 's  definitions are evaluated by a paired-gamble method 

while t h e  comparisons in t h e  above definitions are evaluated by a standard-gamble 

method. 

Theorem 2. For  a planning model of type (A)-(G), the  p r o p e r t i e s  within each  of the  

following p a r t s  (I)-(111) are equivalent. 

I. MuLtiperiod r i s k  neu t ra l i t y :  

(a)  There  exis ts  a per iod t such t h a t  f o r  any amounts zt < z; t h e  consequence 

(z t  ) i s  indifferent t o  t h e  lo t t e ry  < (z t  ), ( z  j ) >. 

(b) There  ex i s t  two per iods  s and t such t h a t  f o r  any  amounts as in (5) t h e  

consequences (z, , z j  ) - (2: , z t  ) are indifferent t o  t h e  lo t t e ry  < (z, , s t  ), (2,' , z j  ) >. 

(c) P r e f e r e n c e s  are r e p r e s e n t e d  by a utility function (2) in which t h e  mul- 

t iperiod r i sk  function j' i s  l inear ,  t h a t  is ,  

where t h e  t radeoffs  function v i s  to be assessed.  Here ,  v i s  normalized so t h a t  

v (z*) = 0 .  

(d) P r e f e r e n c e s  are r e p r e s e n t e d  by a utility function (4) of t h e  form 

where t h e  first-period utility function u i s  t o  be assessed.  Here ,  u i s  normalized 

so t h a t  u (z* ) = 0. 

11. MuLtiperiod r i s k  aversion:  



(a) There  exis ts  a per iod t such tha t  f o r  any amounts zt < z; the  consequence 

(Zt ) i s  p r e f e r r ed  t o  the  lo t tery  < (z t  ),(Zi) >. 

(b) There exis t  two per iods  s and t such t h a t  f o r  any amounts as in (5) the  

consequences (z, , z i  )- (zd,zt ) are p r e f e r r e d  to  t he  lo t tery  < (z, ,zt ),(zd , z i  ) >. 

(c) Pre fe rences  are represen ted  by a utility function (2) o r  (4) in which mul- 

t iperiod r i sk  function j' i s  s t r i c t ly  concave. 

ITI. Multiperiod r i s k  proneness: 

Proper t i es  analogous to 11. (a)-(c) can  also be specified. 

The salient f e a t u r e  of the  t w o  sets (a), (b) of conditions on multiperiod r i sk  at- 

t i tudes discussed in th is  subsection i s  t ha t  they requ i re  t radeoffs  assessments. 

P a r t  of t he  assessment task i s  the reby  shifted from r i sk  assessments t o  tradeoffs 

assessments. 

4.2 A b s o l u t e  mul t iper iod  risk c o n s t a n c y  

This section discusses t w o  equivalent conditions on multiperiod r i sk  att i tudes 

tha t  correspond to the  condition on single-period risk a t t i tudes  of constant r isk  

aversion (Arrow 1971, Pfanzagl1959, and P r a t t  1964). 

Def in i t ion  3. Pre f e r ences  will be  said to be absolute multiperiod r i s k  constant 

f o r  a per iod t provided t ha t  f o r  any t h r e e  pa i r s  of amounts wt < w; , zt < zj , and 

yt < yi tha t  have equal absolute changes in value, if ( z t )  i s  t he  cer ta inty  

equivalent of <(wt ), (yt )>, then ( z j  ) i s  t he  cer ta inty  equivalent of <(wi ), (yi  )>. 

One procedure  f o r  verifying this condition i s  t o  se lec t  amounts wt < yt and 

assess the  cer ta inty  equivalent (zt ) of <(wt ) ,(yt  )>. Then, consider an amount 

z; > zt , assess two amounts w i  ,yi such tha t  t he  pa i r s  wt < wi  , zt < z; , and 

yt < y; have equal absolute changes in value, and ask whether (Zj ) i s  t he  certain- 

ty  equivalent of <(w/ ), ( y i  ) >. 

A second condition equivalent to t ha t  of absolute multiperiod r i sk  constancy is  

t he  condition of utility independence introduced by Pollak (1967) f o r  multiperiod 

models and by Keeney (1968), (1974) f o r  multiattribute models. Consider those lot- 



t e r ies  having consequences of the  form (x t , z )  where z is  an  amount in a fixed 

period s o the r  than period t .  Period t is  said to be u t i l i t y  independent  of the  

period s provided tha t  (xt , z  ) 2 < (wt , z ) ,  (yt , z  ) > implies tha t  (xt , z  ') ;? 

< (wt ,z ' ) , (yt  ,z') > f o r  any amount z '  in period s, tha t  is, the  att i tude toward risk 

f o r  period t is  independent of the  fixed amount z in the  period s. 

For a finite-period model or a multiattribute model, the equivalence of pro- 

per t ies  similar to (b) and (c) below is  discussed by Meyer and P r a t t  (in Keeney and 

Raiffa 1976, p. 330) and in Pollak (1967), and the equivalence of propert ies  similar 

to (b) and (d) below is  discussed in Keeney (1968), (1974) and Meyer (1970). 

Theorem 3. For a planning model of type (A)-(G), the  following propert ies  are 

equivalent: 

(a) There exis ts  a period t f o r  which preferences are absolute multiperiod 

r isk constant. 

(b) There exis t  periods s and t t ha t  are utility independent. 

(c) Preferences  are represented by a utility function (2) in which the function 

f is  l inear or exponential, t ha t  is ,  

where the  tradeoffs function v and the  constant r are to be assessed. Here,  v i s  

normalized so tha t  v (x* ) = 0. 

(d) Preferences  are represented by a utility function (4) that  is additive or 

multiplicative, tha t  is  

where the  first-period utility function u and the  constant a > 0 are t o  be as- 

sessed. Here,  u is  normalized so that: u (x*) = 1 in the f i r s t  case,  u ( x * )  = 0 in 



the  second case, and u(z*) = -1 in the third case. Moreover, 

a ( u ( z )  - 1 )  + I  > O  f o r a l l z  i n 1  i n t h e  f i r s t  case,  and a ( u ( z )  + 1 )  -1 < O  f o r a l l  

z in I in the third case. 

Note: A s  is  w e l l  known, a utility function in pa r t s  (c), (d) is multiperiod risk 

averse in the third cases and i s  multiperiod risk prone in the f i r s t  cases. 

5. Relative Mdtiperiod Risk 

This section discusses preference conditions on relative (or  proportional) 

changes in one o r  more periods. These preference conditions are analogous t o  the 

preference conditions discussed in the preceding section on absolute changes. 

Preference conditions on relative changes appear  t o  be more realistic than 

preference conditions on absolute changes for  many problems, in particular,  fo r  

those problems in which the degree of risk aversion f o r  one period decreases  as 

the amounts in the o ther  periods become more favorable. 

Consider a planning model of type (A)-(G) having a least p refer red  standard 

amount z*. Relative changes will be measured with respec t  t o  z* as the amount 

having "zero value." For example, an  amount z: will be said t o  have "one-half the 

2 value" of an amount z-t2 provided tha t  z: is the tradeoffs midvalue of z * ~  and zt . 

Typically, z* will be  less than any amount of zt tha t  has an appreciable 

chance of occurring. A s  a n  illustration, suppose tha t  zt describes the amount of 

consumption of a non-renewable resource (e.g., helium) during period t .  Then, z* 

might be chosen as the outcome of no consumption o r  of a specified minimal level of 

consumption of the resource being studied. 

5.1 Relative mdtiperiod risk neutrality and aversion 

This subsection discusses risk attitudes involving relative changes in value 

tha t  are analogous to the risk attitudes of neutrality, aversion, and proneness dis- 

cussed in Section 4.1. 



Relative changes in value can be defined by means of the concept of a "stan- 

dard  sequence." Krantz et al. (1971) contains an extensive discussion of this idea 

in a more general setting. An increasing sequence of amounts 

in a period t will be called a s tandard  sequence provided that  the pairs 

zf -I, zf ,  k = 1 ,  ... ,n , have equal absolute changes in value (Definition 2) .  

For a planning model of type (A)-@'), a sequence of amounts is a standard se- 

quence if and only if v (z f )  - v (zf -I) is  constant f o r  k = 1, ..., n . Thus, a sequence 

of amounts is a standard sequence in a period t if and only if i t  is a standard se- 

quence in any o ther  period. 

Definition 4. Pai rs  of amounts zt ,z; and yt , y;  not equal t o  z* will be said t o  

have equaL reLative changes in va lue  provided tha t  f o r  any two standard se- 

quences 

z p < z ; < . . . < z T  and y p < y ; < . . . < y p  

with the initial amounts zp = yp = z* ,  if zt = z r  and yt = y r  f o r  some m < n ,  

then zj < z? if and only if yj < yp.  In particular,  an amount Zt will be called the 

reLative tradeofls midvaLue of two amounts zt < z; provided tha t  the pairs  of 

amounts zt ,Zt and Zt ,zi .have equal relative changes in value. 

Lemma 3. For a planning model of type (A)-@'), two pairs  of amounts zt.z; and 

yt ,yj have equal relative changes in value if and only if v (2; ) = p v  (zt ) and 

v (y; ) = pv(yt  ) f o r  the s a m e  constant p > 0. The relative tradeoffs midvalue of 

two amounts zt < zj is  the amount zt such that  v (St ) = p v  (zt ) and v (2; ) = p v  (zt ) 
f o r  the same p > 0. The statements of Lemma 2 are t rue  with the adjective "rela- 

tive" added t o  the terms "equal changes in value" and "tradeoffs midvalue." 

Suppose that  a period t has been chosen and the relative tradeoffs midvalue 

St of two amounts zt < zj has been assessed. Relative multiperiod risk attitude 

can be defined as in par t s  (a) of Theorem 4 below by comparing the "average" 

consequence (st )  with the lot tery < (zt ), (zj ) >. The situation is analogous to that  



f o r  absolute multiperiod r isk attitudes. In particular,  the discussion in Section 4.1 

on standard-gamble methods of verification is equally pertinent in the present con- 

text. 

The condition (a) below of relative multiperiod risk neutrality corresponds t o  

the single-period risk attitude of logarithmic utility (Harvey 1981, 1986b). 

Relative multiperiod r isk attitudes can also be defined by considering the 

same amount in several  different periods. For technical reasons, we will consider 

not only actual periods t  but also imaginary periods t  having a rb i t r a ry  timing 

weights, 0 < at < 1. With the  non-restrictive assumption tha t  the sequence of actu- 

al timing weights, at , t  = 1 3 ,  ..., decreases t o  ze ro  as t  increases,  these imaginary 

periods correspond t o  actual periods f o r  a different choice of the  unit of time. 

For a period t  > 1 (actual o r  imaginary), a period m where 1 < m < t will be 

called the temporal  m i d v a l u e  of the f i r s t  period and period t  provided tha t  the 

tradeoffs between periods 1 and m coincide with the tradeoffs between periods m 

and t  (Harvey 1986a). For example, in a present value discounting model the tem- 

poral midvalue is the arithmetic mean, i.e., that  period m such tha t  m = 1 + h and 

t  = m + h f o r  the  same increase h .  In a relative value discounting model the t em-  

poral midvalue is the geometric mean, i.e., that  period m such that m = k . 1 and 

t  = k . m fo r  the same proportional increase k .  

Consider an  amount z in one of the three  periods 1 < m < t  where m is  the 

temporal midvalue of 1 and t  . Relative multiperiod risk attitudes can be defined as 

in par t s  (b) of Theorem 4 by comparing the "average" consequence (2,) with the 

"risky"1ottery < ( z l ) , ( z t ) >  w h e r e z  = z l  =z, =zt .  

Theorem 4. For a planning model of type (A)-(G) having a least p refer red  stan- 

dard amount, the  propert ies  within each of the following pa r t s  (1)-011) a r e  

equivalent. 

I. ReLative mut t iper iod  r i s k  n e u t r a l i t y :  

(a) There exists a period t  such that  f o r  any amounts zt < zi not equal t o  z* 

the consequence (St) is indifferent to  the lottery < (zt),(z; ) >. 



(b) For any period t > 1 (actual o r  imaginary) and any amount z not equal t o  

z * ,  the consequence (2,) is  indifferent t o  the lot tery < (z l ) , (z t )  > where m is  the 

temporal midvalue of 1 and t , and z = zl = z, = zt. 

(c) Preferences are represented by a utility function (2) in which the  function 

f is  logarithmic, t ha t  is, 

where t he  tradeoffs function v is  t o  be assessed. Here,  v is normalized s o  that  

v (z*)  = 0. 

(d) Preferences are represented by a utility function (4) of the form 

where the  first-period utility function u and the  constant c > 0 are to  be assessed. 

Here,  u (z*) = -- and u (z+) = +-. 

11. ReLative muLtiperiod r i s k  avers ion:  

(a) There exists a period t such that  fo r  any amounts zt < z; not equal t o  z *  

the  consequence (St) is  p r e f e r r ed  t o  the  lottery < (z t ) , (z i  ) >. 

(b) For any period t > 1 (actual o r  imaginary) and any amount z not equal t o  

z *  , the  consequence (z, ) is  p r e f e r r ed  t o  the lottery < (zl) ,  (zt ) > where m is the 

temporal midvalue of 1 and t , and z = zl = z, = zt . 

(c) Preferences  are represented by a utility function (2) o r  (4) such that  the 

composite function f oexp is  s t r ic t ly  concave. 

111. ReLatiue muLtiperiod r i s k  proneness: 

Propert ies  analogous t o  11. (a)-(c) can also be specified. 

5.2 Rela t ive  mult iperiod r i s k  constancy 

This subsection discusses two equivalent conditions on multiperiod risk atti- 

tudes that  correspond t o  the  single-period risk attitude of linear r isk aversion 

(Harvey 1981, 1986b) and constant proportional risk aversion (Pra t t  1964). 



Definition 5. Preferences  will be said t o  be re la t ive  mult iperiod r i s k  constant  

f o r  a period t provided tha t  fo r  any t h r e e  pairs  of amounts wt < w; , xt < xi , and 

yt  < y i  tha t  have equal re la t ive changes in value, if (x t )  is  the cer ta inty 

equivalent of < (wt ), (yt ) >, then (x; ) is the  cer ta inty equivalent of < (w; ),(y; ) >. 

This preference condition is  similar t o  the multiattribute r isk condition of 

proportional utility dependence defined in Harvey (1984). I t  may be verified by 

means of the  procedure tha t  is  described in Section 4.2 f o r  the  condition of abso- 

lute multiperiod r isk constancy; the only modification i s  tha t  h e r e  the pa i r s  

wt < w j  , xt <xi  and yt < y i  have equal relative changes in value r a t h e r  than 

equal absolute changes in value. 

A second condition equivalent t o  tha t  of re la t ive multiperiod r isk constancy 

can  be  defined as follows. For each period, t = 1.2, ..., the  preference relation 2 

on infinite-period lot ter ies  induces a preference relation on those lot ter ies  

having consequences of the  type (xt ). For the discussion of utility independence in 

Section 4.2, the issue was whether the  preference relation 3 is  the  same as a 

preference relation on lot ter ies  having consequences (xt , z )  where z # z* is  a 

fixed amount in another  period. Now, consider the  issue of whether the prefer-  

ence relation & i s  the s a m e  as the preference relation as f o r  another  period s .  

I t  will be  said tha t  t he  periods a r e  t iming  independent  provided tha t  fo r  any two 

periods s and t (actual o r  imaginary) the preference relations at and 2, are the  

same. 

For a multiattribute model, the  equivalence of propert ies  similar to (a) and (d) 

below is  discussed in Harvey (1984); f o r  a group decision model, the equivalence of 

propert ies  similar t o  (b) and (d) i s  discussed in Harvey (1985~) .  

Theorem 5. For a planning model of type (A)-(G) having a least  p r e f e r r ed  stan- 

dard  amount, the  following propert ies  are equivalent: 

(a) There exists a period t fo r  which preferences are relative multiperiod 

risk constant. 

(b) The periods are timing independent. 



(c) Pre fe rences  are represen ted  by a utility function (2) in which t he  function 

j' i s  logarithmic o r  power, t ha t  is, 

where t he  t radeoffs  function v and t he  constant r are t o  be  assessed.  Here ,  v i s  

normalized so tha t  v (z* ) = 0. 

(d) Pre fe rences  are represen ted  by a utility function (4) t h a t  i s  log- 

exponential or power-root,that is, 

where t h e  first-period utility function u and the  constants c > 0 and r are t o  b e  

assessed.  Here,  u i s  normalized s o  t ha t  u (z* ) = 0 in the  f i r s t  case ,  and u (Z +) = 0 

in t h e  th i rd  case. 

Note: I t  follows from Theorem 2 and 4 t ha t  a utility function in p a r t s  (c), (d) is 

multiperiod r isk  a v e r s e  if r < 1 and i s  re la t ive  multiperiod r isk  ave r s e  if r < 0. 

6. Hultiperiod Tradeoffs 

This section descr ibes  f ou r  p re fe rence  conditions on multiperiod tradeoffs.  

Each condition i s  equivalent t o  a specia l  form f o r  t he  t radeoffs  function v and 

hence to specia l  forms f o r  the utility functions (2) and (3) tha t  contain v .  The spe- 

c ia l  forms f o r  (2) are immediate in terms of v whereas those f o r  (3) r equ i r e  t he  

calculation of v These resu l t s  follow by combining resul ts  in Harvey (1985a). 

(1986a), and hence are only summarized here .  The terminology is  chosen t o  b e  

consistent with t h a t  in Sections 4, 5 and t h a t  in Harvey (1986b). 



Consider a pa i r  of base amounts z ,  and zt in two periods s ,  t where z ,  is  

fixed and the effects  of changes in zt a r e  t o  be examined. For a change w ,  in 

period s ,  the corresponding change wt in period t such that  

is called the tradeons amount f o r  the change w, ,  and i s  denoted by 

"t = S ( w s ; s , t , z t ) .  

If wt  does not depend on the base amount z t ,  tha t  is, wt = W ;  f o r  any 

W ;  = f ( w , ; s , t  ,zi ), then the re  is said t o  be absolute tradeons independence. If 

wt  - W ;  depends only on the difference zt - z; and on the tradeoffs amount w t ,  

then the re  is said t o  be absolute tradeofls constancy. 

Preferences are in accord with the condition of absolute tradeoffs indepen- 

dence if and only if t he re  i s  a tradeoffs function of the form 

where z* is finite. Then, the utility function (3) has the special form 

Preferences are in accord with the condition of absolute tradeoffs constancy 

if and only if there  is a tradeoffs function of the form 

where z* can be -= if q > 0 and can be += if q < 0. Then, the utility function (3) 

is (6) if q = 0 o r  if q # 0 i s  of the special form 

I t  is  also possible t o  consider relative changes in the amounts z t ,  o r  more 

generally relative changes in amounts yt = zt + c > 0 where c is  a constant t o  be 

specified o r  evaluated. The amounts yt can be interpreted e i ther  as sums, i.e., 



zt + z0 where z0 = c i s  a n  "asset position," or as differences,  i.e., zt - z0 where 

z 0  = -C i s  a "point of ruin." 

Suppose t h a t  f o r  a base  amount yt = zt + c in per iod t and a change w, in 

period s t h e r e  i s  a propor t ion pt such t h a t  

(z,, Zt + p t y t )  " (2, + w,, z t )  . 

Then, pt i s  called t h e  tradeofls proportion f o r  t h e  change w,, and i s  denoted by 

Pt = g ( w , ; s , t , z t ) .  

If pt does not  depend on the  base  amount z t ,  t h a t  i s ,  pt = p i  f o r  any 

pi = g (w,; s ,t ,zi  ), then t h e r e  i s  said t o  be  relative tradeofls independence. If 

pt - pi depends only on t h e  r a t i o  yt / yi  and on t h e  t radeoffs  propor t ion pt , then 

t h e r e  i s  said to b e  relative tradeofls constancy. 

P r e f e r e n c e s  are in accord  with t h e  condition of re la t ive  t radeoffs  indepen- 

dence if and only if t h e r e  i s  a t radeoffs  function of t h e  form 

where -c < z*  < +a. Then, t h e  utility function ( 3 )  h a s  t h e  spec ia l  form 

P r e f e r e n c e s  are in accord  with t h e  condition of re la t ive  t radeoffs  constancy 

if and only if t h e r e  is  a t radeof f s  function of t h e  form 

where z* can be  -c if q > 0 and can b e  +a if q < 0. Then, t h e  utility function (3 )  

i s  (8 )  if q = 0 or if q # 0 i s  of t h e  specia l  form 

v ( z t )  = '  

(zt + c)q - ( z*  + c)q  , q > 0 

log((zt + c ) / ( z *  + c ) ) ,  q = O  

-(zt + c)q + ( z *  + c)q , q < 0 
I 



Each of t h e  above conditions on multiperiod t radeoffs  i s  equivalent t o  a condi- 

tion on a t t i tude toward in ter temporal  equity. For  example, t h e r e  i s  absolute 

t radeoffs  independence if and  only if t h e r e  is  a n  a t t i tude of intertemporal inequi-  

t y  n e u t r a l i t y ,  t h a t  i s ,  any two indifferent consequences (2: ,z t  ) and (z, ,z; ) are 

1 indifferent t o  t h e  "equable" consequence (?(I, + z; ). +(zt + zi )). 
2 

7. First-Period Risk 

This sect ion briefly desc r ibes  f o u r  p re fe rence  conditions on r i sk  a t t i tudes  

f o r  consequences (z l )  having a n  amount z l  in t h e  f i r s t  per iod and s tandard 

amounts z *  in t h e  o t h e r  periods.  These conditions are res ta tements  (with new ter- 

minology) of the  conditions on single-attribute r i sk  a t t i tudes  t h a t  are r e f e r e n c e d  

in Section 4.2 and 5.2. Each condition is  equivalent t o  a specia l  form f o r  t h e  

f irst-period utility function u , and  hence t o  specia l  forms f o r  t h e  utility functions 

(3) and (4). 

For  two amounts zl and Z i  in t h e  f i r s t  period,  l e t  sl denote t h e  r i s k  mid- 

point  of z l  and zi defined by (si) - < ( z l ) , ( z i )  >. If f o r  any amounts zl and z i  

t h e  r i sk  midpoint sl of z l ,z  i i s  t h e  a v e r a g e  of z and z i , then  t h e r e  i s  said t o  be  

first-period r i s k  n e u t r a l i t y .  If f o r  any (absolute) change h ,  t h e  r i sk  midpoint of 

z l  + h and Z i  + h i s  sl + h ,  then t h e r e  i s  said t o  be  absolute first-period r i s k  

constancy.  

There  i s  f irst-period r i sk  neutra l i ty  if and only if u (z l )  = z is  a first-period 

utility function. There  i s  f irst-period r i sk  constancy if and only if t h e r e  is  a 

first-period utility function of t h e  form 

f o r  some amount of t h e  p a r a m e t e r  r .  

Conditions on first-period r isk  a t t i tudes  can a l so  be  defined by considering 

propor t ional  changes  in t h e  amounts yl = zl + c > 0 where c i s  a constant t o  b e  

specified o r  evaluated.  If f o r  any amounts zl and z; t h e  r isk  midpoint of zl and 



z; is  that  amount such tha t  + c = k ( z l  + c )  and z; + c = k(G1 + c )  f o r  the 

same proportion k ,  then t h e r e  is  said t o  be relative first-period r i s k  n e u t r a l i t y .  

If f o r  any relative change k the  risk midpoint of z + k ( z  + c )  and z i + k ( z  i + c )  

is  sl + k ( z l  + c ) ,  then the re  is  said t o  be relat ivef i rs t -per iod r i s k  constancy.  

There is  relative first-period r isk neutrality if and only if u (z l )  = 

log(zl + c )  i s  a first-period utility function. There is relative first-period risk 

constancy if and only if t h e r e  is a first-period utility function of the  form 

f o r  some amount of t he  parameter  r 

8. Examples of Planning Models 

This section specifies a number of planning models tha t  include the  following 

preference issues: (i) the  importance of the  future ,  (ii) intertemporal equity, (iii) 

first-period r i sk ,  and (iv) multiperiod risk.  Preference  conditions from Sections 

4-7 are assumed concerning the  issues (ii)-(iv). For each of the  resulting models, 

e i t he r  the  preference condition of present  value discounting o r  tha t  of relative 

discounting can be used. Thus, i t  is not necessary t o  discuss he re  the issue (i) of 

the  importance of the  future,  even though this issue is  included in t he  models. 

One planning model is  tha t  in which the re  is absolute tradeoffs independence, 

first-period risk neutrality, and multiperiod risk neutrality. Such preferences 

are represented by the utility function 

tha t  is  often used in cost-benefit studies and risk analysis studies. 

This model may be regarded e i ther  as excluding all t h r ee  of the preference 

issues (ii)-(iv) o r  as formulating these issues in the  simplest possible manner. 

From e i ther  viewpoint, the  model i s  as simple as possible. 



The next simplest models would be  those tha t  assume a preference condition 

o the r  than the above f o r  only one of the issues (ii)-(iv). However, such models are 

inconsistent according to the  following result .  

Theorem 6. For a planning model of type (A)-(G), any two of t he  preference condi- 

tions: absolute tradeoffs independence, first-period r isk neutrality, and mul- 

tiperiod r isk neutrality, imply the third.  

Thus, any model t ha t  assumes another  condition f o r  one of t he  issues (ii)-(iv) 

must assume another  condition f o r  at least  one o the r  of these issues. First, consid- 

er  those models which include t w o  of the  issues (ii)-(iv) in the  sense tha t  only one 

of the conditions in Theorem 6 is  assumed. 

Theorem 7. For a planning model of type (A)-(G): 

(a) If there  is  multiperiod risk neutrality, then the  att i tude toward intertem- 

poral equity coincides with t he  attitude toward first-period r isk,  t ha t  is ,  v = u .  

(b) If t he re  is  absolute tradeoffs independence, then the att i tude toward mul- 

t iperiod r isk coincides with t he  att i tude toward first-period r i sk ,  tha t  is ,  f = u . 

(c) If there  is  first-period r isk neutrality, then the  att i tudes of intertemporal 

inequity aversion and multiperiod risk aversion are inconsistent. 

As an  example of p a r t  (a), consider a planning model having an  intermediate 

s tandard amount. The preference conditions of: (1) multiperiod r isk neutrality and 

(2) e i t he r  relative tradeoffs independence or relative first-period risk neutrality, 

imply tha t  preferences are represented by the  utility function 

z l + c  z2 +2 
U(x1,z2, ...) = log- + a 21og z + . . .  

x* +c (11) 

A s  an  example of p a r t  (b), consider a planning model having a least  p r e f e r r ed  

s tandard amount. The preference  conditions of: (1) absolute tradeoffs indepen- 

dence and (2) e i t he r  relative multiperiod r isk neutrality or relative first-period 

r isk neutrality with respec t  to y t  = xt - z *  imply tha t  preferences a r e  represent-  

ed by the  utility function 

U(z1,z2, ...) = log( (z l  - z* )  + a 2 ( z 2  - z * )  + - - . 1 .  



Next consider those planning models which include all  t h r ee  of the preference 

issues (ii)-(iv) in the sense that  none of the th ree  preference conditions in 

Theorem 6 a r e  assumed. 

A s  an  example of such a planning model having an  intermediate standard 

amount, consider the following conditions: 

(1) There is absolute multiperiod risk constancy (or  utility independence), and 

the re  i s  multiperiod risk aversion. 

(2) There is relative tradeoffs independence with respect  t o  yt = zt + c .  

(3) There is relative first-period risk constancy with respec t  t o  yt = zt + c ,  

and the re  is relative first-period risk aversion. 

Theorem 8. Any two of the  above conditions (1)-(3) imply the third.  Preferences 

satisfy the conditions (1)-(3) if and only if preferences a r e  represented f o r  some 

r < 0 by a utility function of the form 

Z1+C Z 2+C 
U(z l ,z  2,...) = - e x p ( r  [log- +a210g- +...I) . 

z *  +C z* +C 
(13) 

Note: Here, the  attitude toward risk in a period t is represented by the  utility 

function u t ( z t )  = -(zt + ~ ) ' ~ ' , r  < 0. Thus, the degree of risk aversion is less f o r  

periods in the more distant future.  

A s  an  example of a planning model having a least prefer red  standard amount 

such that  all three  of the issues (ii)-(iv) a r e  included, consider the following condi- 

tions: 

(1) There is relative multiperiod r isk neutrality. 

(2) There is relative tradeoffs constancy with respec t  t o  yt = zt - z* 

(3) There is relative first-period risk neutrality. 

Theorem 9. Any two of the above conditions (1)-(3) imply the third. Preferences 

satisfy the  conditions (1)-(3) if and only if preferences a r e  represented f o r  some 

q > 0 by a utility function of the  form 



Note: Here,  the  periods are timing independent (Section 5.2), and 

u (zt ) = log(zt - z * )  is  a utility function fo r  any period t conditional on z, = z *  

f o r  all s # t . The degree  of r isk aversion in a period t is less f o r  fixed amounts in 

the o the r  periods tha t  are more prefer red .  There is  an att i tude of intertemporal 

inequity aversion if and only if 0 < q < 1. 

Appendix  A: Genera l  Planning Models  

This appendix lists t he  preference conditions f o r  the  expected-utility plan- 

ning model in Theorem 1 and provides a proof of tha t  result. The definition of the 

set C* and the conditions (A)-(E) are as in Harvey (1986a). Conditions (F), (G) are 

added in the present  paper.  

The preference relation 2 defined on the set L of infinite-period lot ter ies  is  

assumed to  be a par t ia l  o r d e r ,  i.e., reflexive and transitive, and t o  be  s t r ic t ly  in- 

creasing in tha t  l a rge r  amounts zt in each period, t = 1.2, ..., are prefer red .  

The following definition specifies that  subset of infinite-period consequences 

on which tradeoffs between the  periods are considered. 

Def in i t ion  A l .  The set C* consists of those infinite-period consequences 

c = (z1,z2, ...) in C such that: 

(a) For any z i > z l, t h e r e  exists an N such that  

(b) For any < z l ,  t h e r e  exists an  N such tha t  

- 
cn = ( ~ i  , z 2  ,..., 2, , z * ~  + l , ~ * n  +2 s...) 2 c f o r  all  n 2 N . 

The tradeoffs conditions (A)-(E) below are used t o  establish the  value function 

(1) f o r  infinite-period consequences in the set C* . 

(A) The preference relation ,> is  a complete ordering on the  set C*. 

(B) The preference  relation 2 is  continuous on P in each variable. 

(C) Each pa i r  of adjacent variables zt ,z t  +1, t = 1.2, ..., is  preferentially in- 

dependent on C* of the  o the r  variables. 



(D) Each consequence c  = (z l ,z2,  ...) in C t h a t  sa t is f ies  t h e  following condi- 

tions is  in t h e  set C*. 

(a) For  any z ;  > z t h e r e  exis ts  a n  N such t h a t  

+ C ,  2 C ,  = ( Z  ,... ,z,  ,z*,  + l r ~ * n  +2,...) f o r  al l  m  , n 2 N . 

(b) For  any z i  < z l ,  t h e r e  exis ts  a n  N such t h a t  

- 
c ,  )?c, = ( z l  ,..., z n , z * n + l , z * n + 2  ,...) f o r  a l l  m , n  >=N . 

( E )  Any two per iods  s , t  have equal t radeoffs  comparisons, i.e., f o r  any two 

p a i r s  of amounts z1 < z2 and z3 < z4 in I ,  if socie ty  i s  willing t o  tradeoff more t o  

inc rease  z, from z1 t o  z2  than t o  inc rease  z, from z3  t o  z4 in period s ,  then so- 

c ie ty  i s  willing t o  tradeoff more t o  inc rease  zt from z1 t o  z2 than to inc rease  zt 

from z t o  z in per iod t . 

Lemma A l .  A  planning model satisfies t h e  conditions (A)-@) on t radeoffs  if and 

only if t h e  p r e f e r e n c e  re la t ion 2 r e s t r i c t e d  t o  t h e  set C* of consequences is 

represen ted  by a value function ( 1 )  as descr ibed in Lemma 1  where f o r  an  inter-  

mediate amount z *  t h e  r a n g e  of the  t radeoffs  function v i s  (--,-), f o r  a l eas t  p re -  

f e r r e d  amount z *  t h e  r a n g e  of v i s  [ O , - ) ,  and f o r  a most p r e f e r r e d  amount z *  t h e  

range  of v i s  (--,O]. 

Proof. For  a model having a n  intermediate s t andard  amount, it is  shown in Harvey 

(1986a) t h a t  conditions (A)-(E) are equivalent t o  t h e  exis tence of a value function 

as descr ibed in Lemma 1. For  a model having an  extreme s tandard amount, a simi- 

l a r  argument can b e  used to establish th i s  equivalence. Thus, f o r  each  type of 

planning model, i t  remains t o  show t h a t  condition (F) i s  equivalent t o  t h e  p r o p e r t y  

t h a t  t h e  range  of v i s  t h e  a p p r o p r i a t e  in terval  (-a,=), [ O , - ) ,  or ( - - , O ] .  

For  a model having a n  intermediate s t andard  amount, t h e r e  exis ts  amounts 

z > z *  and z < z *  in t h e  open in terval  I. Condition (F) implies t h a t  f o r  any conse- 

quence c  = (z l , z z , z *  3,z* 4 , . . . )  t h e r e  ex i s t s  a n  z i in I such t h a t  (z i ) -- c ,  t h a t  is, 

v  ( z i )  = v ( z l )  + a2v (z2) .  Choosing a fixed z z  < z *  o r  z z  > z * ,  i t  follows t h a t  t h e  

range  of v is  unbounded above and below. Thus, since v i s  continuous the  r a n g e  of 

v i s  (--,a). Conversely, if t h e  r a n g e  of v i s  (--,a), then f o r  any consequence 

c  = (z1,z2,  ...) with a convergent  value function V ( c )  t h e r e  exis ts  a consequence 



(z;  ) with v ( x i  ) = V ( c ) ,  and  thus  condition (F) i s  satisfied.  

For  a model having a n  ex t reme  s tandard amount, t h e r e  exis ts  amounts x  > x* 

or x  < z *  respect ively  in t h e  half-open in terval  I .  By a n  argument similar to t h a t  

above, condition (F) i s  satisfied if and only if t h e  range  of v i s  [ O , w )  or (-=,O]. 

Proof of Theorem 1. Firs t ,  consider  a model having a n  intermediate s t andard  

amount. Assume conditions (A)-(G). Then, t h e r e  i s  defined on t h e  set C* a value 

function V ( z 1 , z 2 ,  ...) as in Lemma 1  with v ( I )  = (-=,=) and a utility function 

U ( z  1 , ~  2, . . . ) .  I t  follows t h a t  U ( x  l r x  2, . . . )  = f (V(Z 1 , ~  2 , . . . ) )  f o r  some s t r i c t ly  increas- 

ing function f defined on ( -w,  w) .  The second p a r t  of condition (G) ,  i.e., t h a t  e v e r y  

lo t t e ry  has  a ce r ta in ty  equivalent, implies t h a t  t h e  range  o f f  i s  a n  interval .  Since 

f i s  increasing,  i t  follows t h a t  f i s  continuous. Hence, U i s  of t h e  form ( 2 ) .  

Suppose t h a t  u ( z l )  denotes t h e  conditional f irst-period utility function de- 

fined by u ( ~ ~ ) = U ( x ~ , z * ~ , z * ~  ,... ). For  any consequence c  = ( z l r z 2  ,...) in 

CC , v -'(v(c)) i s  a well-defined amount in I  and c  - ( v  -'(v(c)), z * ~ , z * ~ ,  ...). There- 

fo re ,  U ( c )  = U ( v  - 1 ( ~ ( ~ ) ) , ~ * 2 , ~ * 3 , . . . )  = u a v  - l ( V ( ~ ) ) ,  and thus  U i s  also of t h e  

form ( 3 ) .  For  any consequence c = ( z l , z *  2 ,z*  3 , . . . ) ,  u ( z l )  = U ( C )  = f (v (2')) .  

Therefore ,  v ( z )  = f u ( z )  f o r  all z in I ,  and thus  U i s  of t h e  form ( 4 ) .  

Conversely, if t h e r e  exis ts  a value function V and a utility function U as 

descr ibed in Theorem 1 ,  then  conditions (A)-(E) follow from t h e  value function and 

condition (G) follows from t h e  utility function. Therefore ,  i t  remains to in fe r  con- 

dition (F). The form ( 3 )  of U implies tha t  t h e  range  of V i s  contained in t h e  domain 

of v-'. However, t h e  domain of v-' i s  by definition t h e  range  of v .  Thus, f o r  any 

consequence (z1,z2,  ...) in CS t h e r e  exis t  a n  amount z ;  in I  such t h a t  

V ( z  l , z * 2 , z *  3...) = v ( Z  i ), and condition (F) i s  established. 

Second, consider  a model having a n  extreme s tandard amount. Most of the  ar- 

guments are similar to those  f o r  a model having a n  intermediate s t andard  amount, 

and thus  i t  suffices t o  be  br ief  excep t  f o r  points of difference.  Assume conditions 

(A)-(G). Then, t h e r e  is  defined on t h e  set C* a value function V with v ( I )  = LO,-)  

o r  v ( I )  = (-w,O],  and t h e r e  i s  defined on t h e  set C* - l ( z*  ' , z L 2 , . . . )  a utility func- 

tion U .  I t  follows tha t  U = f 9 V f o r  some continuous, s t r i c t ly  increasing function f 

defined on (O,=) o r  ( - w , O ) .  Thus, U i s  of t h e  form ( 2 ) .  The forms ( 3 )  and ( 4 )  now 



follow with the  first-period utility function u (z l) = U(z l,z* 2,z* 3,...) defined on 

the inter ior  of I. The converse arguments are similar t o  those fo r  a model having 

an intermediate standard amount. 

Appendix B: Proofs of Results on Preference Conditions 

This appendix contains the  proofs of Lemma 2, 3 and Theorems 2-5 in Sections 

4, 5, and Theorems 6-9 in Section 8. Some of these proofs use the following impli- 

cations fo r  a function g that  is  defined and continuous on an  interval: 

1 1 1 1 
g (-p + ~z ,) = -g (z l) + ~g (z 2) f o r  all z 1.2 if and only if g is  linear, 

2 

1 1 1 1 g (Tz + ?Z 2) > -g (z l) + ?g (z 2) fo r  all z # z if and only if g is  s t r ic t ly  con- 
2 

1 1 cave (see, e.g., Hardy et al. 1934), and g (zl) = ~g (z2) + ~g (23) implies 

1 1 g(zl + A) = T ~ ( Z ~  +A)+ 2g(z3 + A) f o r  all Z ~ + ~ , . . . . Z ~  + h if and only if g is 

l inear o r  exponential (see, e.g . , Pfanzagl1959). 

Proof of Lemma 2. By Lemma A l ,  the  range of the  tradeoffs function z i s  

(-w,~), [O,w), o r  (-w,O]. Thus, f o r  two amounts zt < z; in a period t ,  the amount 

st defined by 

is  the  tradeoffs midvalue of zt ,zi since fo r  another period s the re  exist  amounts 

z < z' such that ,  f o r  example, asv (2') - asv (z) = at v (st)- at v (zt). Moreover, 

the  tradeoffs midvalue of zt ,zi is unique since v is  s t r ic t ly  increasing. The 

remaining pa r t s  of Lemma 2 may be established by similar arguments. 

Proof of Theorem 2. Conditions (A)-(G) imply by Theorem 1 that  preferences can 

be represented by utility functions of t he  forms (2) and (4). First, i t  will be  shown 

that  each of the preference conditions (a), (b) in pa r t s  I, 11, is  equivalent t o  the 

corresponding proper ty  (c) of the  multiperiod r isk function f in (2). 

Consider condition (a). For a pa i r  of amounts zt < z i  in period t ,  let 

1 0  1 1  v O = at v (zt),vl = atv (zi ) and = at v (zt). Then, = -v + -v . Thus, condi- 
2 2 



1 0  1 1  tion (1.a) is equivalent t o  f (?v + ~v ) = Lf (vO) + $f (v ') f o r  all v 0  < v ' in the 
2 

interval v ( I )  which is equivalent to  f being linear on ~ ( 1 ) .  Similarly, (I1.a) is  

equivalent t o  f being s t r ic t ly  concave on v (I). 

Consider condition (b). For pa i r s  of amounts z, ,z,' and zt , z i  as described, 

let v O  = a,v (2,) = a t v  ( z t )  and v1 = a,v (2; ) = at v (z i  ). Then, condition (1.b) i s  

equivalent t o  f (vO + vl)  = $f (2v0) + 5f (2v1) fo r  all  v 0  < v1 in v ( I )  which is  

equivalent t o  f being linear on ~ ( 1 ) .  Similarly, (1I.b) is equivalent t o  f being 

s t r ic t ly  concave on v (I). 

Next, i t  will be shown tha t  p roper ty  (1.c) is  equivalent t o  proper ty  0.d). If 

t he re  exists a n  additive utility function U(zl,z2, ...) as in (I.c), then 

u (21) = U(zl,zS2,z* 3,. . . )  equals v (zl) ,  and thus t he re  exists an  additive utility 

function as in (1.d). The converse argument is  similar. 

Proof of Theorem 3. First ,  i t  will be shown that  each of the  conditions (a), (b) is  

equivalent t o  proper ty  (c) of the multiperiod risk function f . 

Consider condition (a). Let v, = at v (wt)  ,..., vk = a t v  ( ~ i  ). Then, 

v& = vw + h , v; = v, + h . and v$ = vy + h fo r  some constant h . There is  ab- 

1 1 solute multiperiod r isk constancy if and only if f (v, ) = ~f (v, ) + ~f (vy ) implies 

1 1 f (v, + h ) = 2.f (vW + h ) + yf (up + h ). This implication i s  satisfied if and only if 

f i s  as described in (c). 

Consider condition (b). For tradeoffs amounts z , z '  in a period s, let 

h = a, v (z ) and h ' = a, v ( z  '). Period t i s  utility independent of the period s if 

1 1 and only if f (v ,  + h )  2 Ff(vw + h )  + 9 ( v y  + h )  implies f (v ,  + h')  ?_ 

1 $'(v, + h')  + +(vy + h ' )  f o r  any h'. This implication i s  satisfied if and only if f 

is  as described in (c). 

Next i t  will be  shown tha t  (c) is  equivalent to (d) with t he  cases r > 0, r = 0, 

and r < 0 in (c) corresponding t o  the t h r ee  cases in (d). The case r = 0 is  already 

t rea ted  in Theorem 2. 



Proof of Theorem 4. First, i t  will be shown tha t  each of the preference conditions 

(a), (b) in pa r t s  I, 11 is equivalent t o  the corresponding property (c) of the mul- 

tiperiod risk function f' in (2). 

Consider condition (a). For a pair  of amounts zt < z j  not equal t o  z* let 

v 0  = a t v  (zt) ,  v1 = a t v  (z; ), and v^ = a t v  ( s t ) .  Then, v^ = Thus, condi- 

tion (1.a) is equivalent t o  f' ((vOvl)l/ ') = Lf' (vO) + Lf' (vl) f o r  all v 0  < v1 in 
2 2 

v ( I)  = (O,=) which is equivalent to  f' being logarithmic on v (I). Similarly, condi- 

tion (I1.a) is equivalent t o  f' oexp being s t r ic t ly  concave on the interval (-=,=). 

Consider condition (b). For a period t (actual o r  imaginary) with an a rb i t r a ry  

timing weight, 0 < at < 1, and an  amount z > z*, let  v1 = v (zl), v t  = at v ( z t ) ,  and 

v = a,v (z,) where z = zl = z, = z t .  Any two numbers, v1 > v t  > 0, can be 

represented in this manner. Moreover, f = ( v l t ~ ~ ) l / ~ .  Thus, condition (1.b) is 

equivalent t o  f' ((vlvt  )'I2) = Af' (vl) + 5f' ( v t )  f o r  all  v1 > v t  in (On=) which is 
2 

equivalent to  f' being logarithmic. Similarly, condition (1I.b) is equivalent t o  

f' 0 exp being s t r ic t ly  concave on the interval (-=,=). 

Next, i t  will be shown tha t  condition (1.c) is equivalent t o  condition (1.d). If 

there  exists a utility function U(zl,z2, ...) as in (I.c), then the function 

6 ( z )  = logv ( z )  is a first-period utility function with 6 (z*) = -= and 6 ( z  +) = +=. 
Suppose that  u ( z )  is a n  assessed first-period utility function. Then, 

f ( z )  = cu ( z )  + b some constants c > 0 and b ,  and thus by substitution, 

Conversely, if t he re  exists a utility function U ( Z ~ , ~ , . . . )  as in (I.d), then 

V^(z) = exp(cu (2))  is a tradeoffs function with 6 (z* )  = 0 and V (̂z +) = +=. Sup- 

pose tha t  v is an  assessed tradeoffs function with v (z*) = 0. Then, f ( z )  = a v  ( z )  

f o r  some constant a > 0, and thus by substitution 

U(zl,z2, ...) = log(v (zl) + a 2 v  (z2) + . . . ) + loga . 

Proof of Theorem 5. First ,  i t  will be shown that each of the conditions (a), (b) is 

equivalent t o  property (c) of the  multiperiod risk function f' . 



Consider condition (a). Let v, = a t v ( w t ) ,  ..., vf; = a t v ( y ; ) .  Then v; = 

pv, ,v; = pv,, and vf; = p v  (vy ) fo r  the s a m e  constant p > 0.  There is relative 

1 1 multiperiod risk constancy if and only if f (vz) = Tf (v, ) + Ff(vy ) implies 

1 f(pv,) = J(pv,) + $f(pvy). This implication is satisfied if and only if f is  as 

described in (c). 

Consider condition (b). For two actual o r  imaginary periods s and t ,  le t  

p = at and p' = a,. Compare a consequence ( z  ) and a lot tery < (w ), (y ) > in 

periods t and s. The periods are timing independent if and only if 

f (pv,) 2 $f (pv,) + $f b u y )  implies f (plv.)h $f (p'v,) + $f (plvy)  fo r  all 

positive p ,pl,v,  ,v, ,vy . Defining g by f (v )  = g (Log v ) ,  i t  follows that  t he  multi- 

plications pv, ,  . . . ,pl vy can be replaced by the  additions 

logp  + log v, ,..., l ogp  ' + log vy . This modified implication is  satisfied if and only 

if, with a positive l inear transformation, g is  of the  form 

g (2) = e " ,r  > 0 ;  z , r = 0 ;  o r  -e =, r < 0.  Thus, the  implication involving f is  sa- 

tisfied if and only if f is as described in (c). 

Next, i t  will be  shown tha t  (c) is  equivalent to (d) with the cases r > 0 ,  r = 0 ,  

and r < 0 in (c) corresponding t o  the t h r ee  cases in (d). The case r = 0 is  already 

t rea ted  in Theorem 4. 

Assume that  t he re  exis ts  a utility function U(z l ,~2,. . .)  as in (c) with r > 0. 

Then the  function ; (z)  = ( ~ ( z ) ) '  i s  a first-period utility function with non- 

negative values and 2 (z*) = 0. Moreover, 

Suppose that  u is  an  assessed first-period utility function with u (z*) = 0.  Then, 

;(z) = a u ( z )  f o r  some constant a > 0, and thus by substitution into t he  above 

formula fo r  U(zl,z2, ...) t he  f i r s t  case of (d) follows. The argument tha t  (c) with 

r < 0 implies the third case of (d) is similar. 

Conversely, assume tha t  t he re  is  a utility function U(z l ,z  2....) as in t he  f i r s t  

case of (d). Then, $ ( z )  = ( ~ ( 2 ) ) '  is defined fo r  all  z in I = [z*,z+) ,  and 

v (z* ) = 0 .  Moreover, 



Therefore ,  6 i s  a t radeoffs  function. Suppose tha t  v i s  a n  assessed t radeoffs  func- 

tion with v (z*)  = 0. Then, 6 ( z )  = av  ( z )  f o r  some constant a > 0. By substitution 

into t h e  above formula f o r  U(zl ,z2 ,  ...), the  case  (c)  with r > 0 follows. The argu-  

ment t h a t  t h e  th i rd  case of (d) implies t h e  th i rd  case of (c) i s  similar. 

Proof of Theorem 6. The functions f ' , v ,  and u in Theorem 1 are re la ted  by 

U = f' 0 v  . Thus, if any two of these  functions a r e  l inear ,  then s o  i s  t h e  th i rd .  

Proof of Theorem 7. If t h e  multiperiod r isk  function f' i s  l inear ,  then e x c e p t  f o r  

a positive l inear  transformation u = v .  If t h e  t radeoffs  function v i s  l inear ,  then 

e x c e p t  f o r  a positive l inea r  transformation u = f'. if t h e  single-period r i sk  func- 

tion u i s  l inear ,  then t h e  two s t r i c t ly  increasing functions f' and v cannot both be 

s t r i c t ly  concave. 

Proof of Theorem 8. The p r e f e r e n c e  conditions (1)-(3) are equivalent t o  

f ' (V) = -elv with r < 0, v  ( z )  = log(z + c) ,  and u ( z )  = -(z + c)q with q < 0, 

respectively (where f', v ,  and  u are each  determined up t o  a positive l inear  

transformation). I t  may be  verif ied t h a t  since u = f' 8 v  any two of these  forms im- 

plies t h e  th i rd  and t h a t  a l l  t h r e e  of these  forms are equivalent to t h e  form (13) of 

U(z1.z2,...). 

Proof of Theorem 9. The p r e f e r e n c e  conditions (1)-(3) are equivalent to 

f' (V) = logV, v  ( z )  = ( z  - z*)q with q > 0, and u ( z )  = log(z - z *  ), respectively.  

Here ,  t h e  forms v  ( z )  = log(z - z * )  and v ( z )  = -(z - z*)q with q < 0 are exclud- 

e d  s ince  i t  must be  possible t o  normalize v  s o  t h a t  v  (z*)  = 0. I t  may be  verif ied 

t h a t  s ince  u = f' 8 v  any two of these  forms implies t h e  th i rd  and t h a t  a l l  t h r e e  of 

these  forms are equivalent to t h e  form (14) of U(z  l,z2,...). 
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