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1. Introduction

One of the more enduring topics of methodological interest

at IIASA has been the problem of ascertaining and describing

stability characteristics for large-scale systems. These points

have been of particular applied interest in the ecology and

energy areas where the terms "resilience" and "hypotheticality"

have been used to intuitively characterize the type of stability

of greatest practical interest [1,2].

Our primary purpose in this note is to present some new

results in stability theory which have great relevance to the

aforementioned studies. These results deal with the problem of

"connective" stability, in which the basic question is how large

a perturbation in structure the system can withstand and still

remain asymptotically stable. In many ways, these results are

similar in spirit to structural stability questions in which

the invariance of the topological features of the system tra­

jectory is the central issue. However, the two theories are

not the same as connective stability deals with the stability

of a point under structural perturbation, while structural

stability is concerned with trajectories. In addition, connective

stability is a quantitative theory as precise numerical esti­

mates can be given for the magnitude of the allowed perturbation,

while structural stability is primarily qualitative. Therefore,

we feel justified in presenting these results in order to pro­

vide systems analysts with another tool to probe the stability

characteristics of applied systems.

A secondary objective of this note is to point out the

connections between the notion of connective stability as de-,

fined in [3] and the idea of a system's connectivity pattern

as discussed in [4,5]. All of these results will be illustrated

with examples from energy and ecology.
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2. Connective Stability

In this section, we briefly review the major conclusions

of the important paper [3]. We consider a dynamical process

described by the equation

x = A(t,x)x x (0) = X o (1)

where x is an n-vector, while A is continuous on (0,00) x Rn .

To consider the connective aspects of (1), write the ele­

ments a .. of the matrix A in (1) as
1J

a .. (t,x) = -0 .. ljJ. (t,x) + e .. l/J .. (t,x)
1J 1J 1 1J 1J

, (2 )

where 0.. is the Kronecker symbol and the IV., l/J; ., are continous
1J n 1 1J

on (0,00) x R. In (2), the elements e .. are the components of
1J

the n x n connection matrix E and are such that

e .. =
1J

e

1, if the variable x. influences x.
J 1

0, otherwise

function l/J i
a .. > 0 such

1J -

The notion of connective stability is then given by

Definition 1. The equilibrium state x = 0 of (1) is con­

nectively asymptotically stable in the large if and only if it

is asymptotically stable in the large for all interconnection

matrices E.

To establish conditions for connective asymptotic stability,

we clearly need to impose some constraints on the

and l/J ... Assume that there exist numbers a. > 0,
1J 1

that a. > a .. and1 11

l/J1·(t,x)/x1·1 > a·cP·(lx./)- 1 1 1 l/J .. (t,x)x. < a. ·cP.(!x.l)
1J J - 1J J J

(3 )

nfor i, j = 1,2, ... ,n, and for all t > 0, X £ R. The functions

cPi(e) are continuous functions such that cPi(O) = 0, and

cPi(r
i

) < cP i (r2 ) for all r 1 , r 2 such that 0 ~ r 1 < r 2 < 00
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Define the constant matrix A = [a .. ] where
1J

a .. = -0 .. ex. + e .. ex ..
1J 1J 1 1J 1J

i,j = 1,2, ••• ,n (4)

The following result is now available

Theorem 1 [3]. The equilibrium state x = 0 of (1) is con­

nectively asymptotically stable in the large if the matrix

A satisfies the (Metzler) conditions

k
(-1) det > 0 , k = 1,2, ..• ,n

(5)

Remarks: (1) A consequence of A satisfying the conditions (5)

is that there exists a vector d = (d
1

, ••• ,d
n

) I, all of whose

elements are positive, and a positive number TI such that

1- 1 -1 1- 1a .. - d. E d. a .. > TI
J J J ifj 1 1J -

j = 1,2, .•. ,n (6 )

This result is of some importance in estimating the size of the

domain of connective stability if a global result cannot be

obtained.

(2) The proof of Theorem utilizes the Lyapunov function

n
\)(x) = E

i=1
d·lx·11 1

(7)

where the d. are as in (6).
1

If we choose the comparison functions ~. (Ix. i) = ix. I, then111
a result on uniform, exponential stability can be obtained since,

in this case, the conditions on ~., ~ .. take the form
1 1J

< ex.
1

j1jJ •• (t,x)x·1 < ex. ·lx.1
1J J 1J J

i,j = 1,2, ••• ,n

(8)
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The basic result is

Theorem 2. The equilibrium state x = 0 is connectively,

absolutely, and exponentially stable if and only if the

matrix A corresponding to the conditions (8), satisfies (5).

Remarks. (1) In contrast to Theorem 1, we now have both

necessary and sufficient conditions in Theorem 2.

(2) Exponential stability means that

I Ix (t) I I ~ IT I Ix 0 I Ie xp (- IT t )

r.:- -1
for IT as in (6) and IT = yn dMdm ' where dM = m~x d., d = min die

11m i
Thus, Theorem 2 gives us an estimate of the rate at which

the system trajectory approaches equilibrium for any type of

perturbation (measured by the magnitude of the d. 's).
1

In the common case when the bounds (3) (or (8)) do not hold

for all x £ Rn but only for a region~«CRn, we are faced with

a problem of estimating the domain of attraction of the origin.

More precisely, we have

Definition 2. A set .«CRn is a region of connective

asymptotic stability for the origin if and only if for all inter­

connection matrices E,x,=,O is stable in the sense of Lyapunov,

and lim x(t) = 0 for all Xo £~«.

t-+oo

To study this situation in more detail, assume that the

(possibly) nonlinear functions ~., ~ .. satisfy the conditions (3)
n 1 1J

for all t > 0, x £JVcR , where

JV = {x £ R
n

: Ix. I < ).l., i = 1, 2 , ••• , n}
1 1

for some numbers ).li > O. Then consideration of the Lyapunov

function (7) leads to the result

Theorem 3. The region~«defined by

is a region of connective asymptotic stability corresponding to

x = 0 for the systems (1).
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Theorem 3 shows that, roughly speaking, maximizing the

"size" of~Kis equivalent to finding the elements d. in (6) stich
1

that the smallest d. is as large as possible.
1

It should be noted that the region~~of Theorem 3 is the

largest region of connective stability available with the Lya­

punov function (7) and the constraints imposed on w· and w..•
1 1)

However, larger stability regions might be obtained using other

Lyapunov functions as discussed in [8].

3. Applications

We employ the methodology sketched above to analyze some

recent IIASA work in ecology and energy. Specifically, we shall

focus attention on the dispersal linked ecological models dis­

cussed in [6] and on the societal equations postulated in [7].

In both cases, it will be seen that connective stability can

play a significant role in understanding the amount of structural

uncertainty which the models can tolerate and still maintain

their stability properties. It might be argued, although we

will not do so, that the degree to which the postulated nlodels

satisfy the conditions of the foregoing theorems could be used

as a quantitative measure of the so-called "resilience" of the

system.

Ecology:

model analyzed

x 1 = a 1x 1 + b 1x 1x 2 - D1 (x1 ) + D3 (x
3

)

x 2 = a 2x 2 + b 2x 2x 1 - D2 (x2 ) + D4 (x4 )

x 3 = a 3x 3 + b
3

x 3x 4 - D3 (x3 ) + D
1

(x
1

)

.
x 4 = a 4x 4 + b 4x 4x

3
- D4 (x4 ) + D2 (x2 ) (9)

where the functions D. (x.) represent dispersal rates for species i,
1 1

while the a's and b's are constants. In [6], of the seven
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functional forms given for the D. (x.), six have the structure
~ ~

D. (x.) = x.f. (x.)
~ ~ 1. 1. 1. (10)

which we shall assume for the remainder of our analysis. Our

objective will be to state conditions on the constants a., b.,1. 1.
and functions f. which insure the connective stability of the

~

origin* for the system (9).

Under the condition (10), we see that (9) is equivalent to

the nonlinear matrix system (1) with

A(t,x) =

a1+b1x2-f1(x1) 0 f 3 (x3 ) 0

o a2+b2x1-f2(x2) 0 f 4 (x4 )

f 1 (x 1 ) 0 a3+b3x4-f3(x3) 0

o f 2 (x 2) 0 a4+b4x3-f4(x4)

( 11 )

Thus, the interconnection matrix E for this problem is

1 0 1 0

E 0 1 0 1=
1 0 1 0

.. 0 1 0 1

The appropriate functions ~. and ~ .. are1. 1.)

~1 = -(a + b 1x 2 ) f
1

(x1)) ~2 = -(a + b 2x 1 - f 2 (x2)) ,
1

, 2

~3 = -(a + b
3

x 4 ) - f 3 (x3)) ~3 = -(a + b 4x 3 - f 4 (x4 ))
3 4

~13 = f
3

(x3 ) ~24 = f 4 (x4 )

~31 = f 1 (x1 ) ~42 = f 2 (x 2 )

. *1f the or1.g1.n is not the physically interesting equilibrium
p01.nt, the usual transformation of coordinates will make it so
without affecting our arguments in any essential way.
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all other l/J .. = 0, i,j = 1, ... ,4.

The co~~itions (8) and the fact that

!l/J .. (t,x)lIx·1 > 1l/J··(t,x)x·1
1J J - 1J J

implies the second condition in (8) if Il/J·· (t,x) I < a .. , for
1J 1J

some a .. > 0, gives by Theorem 2 that x = 0 is connectively,
1J -

absolutely, and exponentially stable for the ecological process

(9) if and only if we can find a.., a. .. , i,j = 1, ••• ,4, such that
1 1J

a
1

+-b
1

X
2 - f 1 (x1) < -a. < 0

1

a 2
+ b

2
X

1
- f 2 (x2) < -a. < 0

2

a
3

+ b 3x4
- f

3
(x

3
) < -a. < 0

- 3

a 4 + b 4X
3

- f 4 (x4 ) < -a. < 0 ( 12)4

If 1 (x1) I < a 31 If 2 (x2) I < a
42

If 3 (x3 ) I < a. 13 If 4 (x4 )\ < a
24

The conditions of Theorem 2 will be satisfied if

i)

ii)

iii)

Thus, conditions (i) - (iv) define regions in (x
1

,x
2

,x
3

,x4 )

space for which the origin is asymptotically stable for all

perturbing f. (x.) and all (a.,b.) satisfying the conditions (12).1 1 1 1
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The preceding results are fairly general, not distinguishing

between the behavior of the functions f. and the values of the
1

parameters ai' b i . If the problem under investigation is to

study the stability behavior as the parameters change, for fixed

functions f., then more precise information can be obtained.
1

For example, choosing the functions D. (x.) in the form
1 1

D. (x.) = k.x. i = 1 , ••• , 4
1 1 1 1

we see that the functions f. (x. ) = k .. Thus,
1 1 1

(131 = I k 1 I (142 = I k 2 1 (113 = Ik 3 / (124 = I k 4 1

and the admissible set of a., b. values (for a fixed region in
1 1

Rn ) is given by the first set of inequalities in (12), e.g.

or

with x
2

constrained to some region given in advance.

On the other hand, the analysis may be for fixed values of

the parameters a., b. with the objective to determine the regions
1 1

of phase space for which x = 0 is the attractor. Again for the

case D. (x.) = k.x., we see that the foregoing inequalities yield
1 1 1 1

this information and, in fact, show that any perturbing functions

f. satisfying If. I < k. will give the same domain of attraction.
1 1 - 1

Most of the other dispersal rate functions D. (x.) from [6] can
1 1

be analyzed in a similar fashion.

Energy: Turning now to the mathematical model for society

developed in [7], we have the equations



-9-

g = llg (1 - g/gA)

.
P = P [a (1 - P/PA) - a a g]p c v

. N(g,P,E}E = (13 )D(g,P,E}

where

N(g,P,E} = gP (1 - a ) - (K - KO}Ev

M
- g/gA)-- [ll (1 + (1 - a) (a (1 - P/PA) - a a g]S p c v

D(g,P,E} =
yE

i o [(g/gO}2 1 ]13M -

with

1
= ~p1-OlB

M LAEyj

The numbers ll, gA' a , PA' a , a , K, KO' a, S, y, i , A, and
p c v . 0

go are parameters, while the dependent variables g, p, e re-

present the per capita gross national product, the population,

and the total energy demand, respectively. The system (13)

cannot be put directly into the form (1) since an additional

forcing term enters the picture, i.e. (13) has the form

x = A(t,x}x + b(t,x} (14)

where b is a continuous vector function of its arguments. The

vector function b(t,x} has components of the form

b. (t,x) = L e. (t,x)
111

i = 1, ... ,n

where the ~. are components of an interconnection vector
1

I
I

I
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and each ~. = 0 or 1, depending upon whether or not the forcing
1

function b(t,x) influences x., i.e.
1

b. (t,x) t 0 ~'L = 1
1 1

For systems of the form (14), it is more natural to speak

of boundedness with respect to a region,q than about the

stability of a point. Specifically, we have

Definition 3. The solution x(t) of the system (14) is

oonneotive ly ~ _exponen tia l ly ~ and ultimate ly bounded in the

large with respect to the region

!/ = {X £ R
n

: I Ix I I 2. ~}

if and only if there exist three positive numbers y < ~, IT,

and TI, independent of the initial state x O' such that

II x (t) II :5_ y + IT II x o II exp [-TIt]

for all t > 0 and for all interconnection matrices E and inter­

connection vectors ~.

Thus, a system satisfying Definition 3 would ultimately

have its trajectory belonging to set q and the approach to q

would be exponential for all interconnection matrices and

vectors. Surprisinly, the forcing vector b(t,x) plays very

little role in establishing ultimate boundedness for (14) as

the following result shows.

Theorem 4 [3]. The solutions x (t)of (14) are connectively,

exponentially, and ultimately bounded in the large if the

matrix A = (a .. ), corresponding to the conditions (8),

satisfies con~~tions (5).

Remarks. (1) Note that Theorem 4 gives only a sufficient

condition for ultimate boundedness.

(2) As before, if conditions (8) are not satisfied for all

Xo £ Rn , then we can estimate the domain of attraction of q

from conditions (5).
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(3) If the numbers dm, dM~ IT and TI, are as defined in

Remark 2 following Theorem 2, we can estimate the region £eby

choosing

where E > 0 is an arbitrarily small number, and

where if

n
~ = l:

i=1
d.h.

1 1

. then

Ie. (t,x) I < S.
1 1

h. = £.S.
111

The time t 1 necessary to reach the region ~can be estimated as

Returning to the societal model (13), we see that the

equations may be expressed in the form (14) upon identifying

II ( 1 - g/gA) 0 0

lA(t,x) = 0 [ap (1 - P/PA) - a a g] 0c v

P(1- a
v

) -(k -koJ
.E.(g,P,E) 0 D(g,P,E)

(0
M )0
S

[1l(1 - g/gA) + (1 - a)(a (1 - P/PA)

b (t, x) =
- acaV~/D(g.P'E)
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The interconnection matrix E is

~
0 0

E = 1 0

~ 0 1

while the interconnection vector ~ assumes the form

~ = (0 0 1)'

Applying Theorem 4, in much the same way as Theorem 2 was

applied for the predator/prey model, yields information on the

range of parameter values and/or the range of initial conditions

for which ultimate boundedness of (13) can be assured.

4. Structural Connectivity and Polyhedral Dynamics

The connectivity matrix E and vector ~ introduced above

allow us to make contact with the quite different ideas of

algebraic connectivity presented in [5] under the name "poly­

hedral dynamics." As is clear from their definitions, the

matrix E represents the influence of the jth system variable

on the i th time derivative, while the vector ~ gives infor­

mation about the influence of external perturbations on the

rate of change of the i th variable. Roughly speaking, we

might say that E is indicative of internal coupling within

the system, while ~ shows the coupling of the system to ex­

ternal disturbances.

Without wishing to belabor the point, we only note that

the matrix E may be identified with an incidence matrix of a

binary relation as in [4] and a simplicial complex geometri­

cally characterizing the system connectivity pattern may be

constructed. Thereafter, all the points illustrated in

[4,5] may be applied to analyze the aLgebraia-topological

character of the process in contrast to the earlier discussions

of this note, which are primarily analytic in character.
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