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Computerization of the  environmental sciences is one of the  most typical trends of 
the last t w o  decades. A number of different models describing the  snme objects or 
phenomena are circulating In scientific media and interest in publications in which 
these models are compared has increased impressively. 

Usually the comparison is based on intuitive Ideas, and the object of this paper is 
to give some recommendations on how to use standard shtistical techniques f o r  
model comparison.The key theme consists of an introduction to several  statistical- 
ly reasonable discrepancy measures fo r  competing models and their subsequent 
maximization by varying the  location of an  experimental network. 

In general. this paper  covers the  author's results in this sector of mathematical 
statistics. 



I am m o d  grateful to Professor R.E. Mum for his constructive criticism and 
recommendations, whlch were extremely helpful in the preparation of this paper. 



COMPARING THE PERFORMANCE OF 
TWO COWIRING YODELS 

V. K Fedorov 

1. INTRODUCTION 
Beginning with numerical weather prediction experiments in t he  1920s, models 

of environmental processes  have become more and more complex, keeping pace  
with advances in computer technology. Some of t he  c u r r e n t  models can  be  run only 
on very la rge  computers such as the  CRAY on which, f o r  example, t h e  Navier- 
Stokes equations are solved using very  sho r t  forward time s t eps  and many points in 
space.  

Investigators have long been interested in testing these  big models with field 
data .  In par t icular ,  when a new m o d e l  i s  proposed (due to a n  advance in o u r  physi- 
cal understanding of t h e  processes  involved. or t o  advances in computer capabili- 
t ies)  i t  is  important t o  determine whether t he  model is "better" before  adopting i t  
operationally for national weather forecasts ,  acid rain predictions,  etc. 

One problem is t he  definition of t he  word "better", which involves value judge- 
ments. For example, in an  urban a i r  pollution m o d e l  t he  predictions could be  wide- 
ly different from observed values simply because t h e  forecast wind direction w a s  
30 degrees in e r r o r .  By rotating t h e  axis,  a much improved match of observation 
and prediction could be  obtained. Many similar examples could be  given in which 
objective c r i t e r i a  must be  established and promoters of competing models may 
sometimes disagree with one another  because of t he  objective c r i t e r i a  they use. 

Recent review ar t ic les  on model performance in t h e  a i r  pollution field have 
been written, for instance, by Hayes and Moore (1986), Willmott (1982), Zwerver 
and Van Ham (1985), and a very  interested paper  by Fox (1981). Here  w e  shall t r y  
t o  connect t h e  ideas given in those pape r s  with more formal resu l t s  f r o m  mathemat- 
ical  statistics.  

Probably a scientist  who has  worked with complex numerical models of physi- 
ca l  processes  would be  very  scept ical  about t h e  simplicity of t h e  models con- 
sidered in this  paper .  Nevertheless, simple diagnostic cases illuminate the  main 
ideas and final resul ts ,  and give some orientation which usually cannot be  achieved 
in more complicated situations. Most certainly, the  process  of model comparison 
cannot be imbedded in a routine scheme (even one tha t  i s  quite perfect) .  Usually 
t h e r e  is need for some integration of s tandard mathematical techniques with the  in- 
tuition of a r e s e a r c h e r  ( fo r  details, see Munn, 1981). 

2. MAIN ASSUMPTIONS 
Let a system "object under investigation - process  of observation" be 

described by the  following m o d e l  - - 
Yir = 7t (xi)  + cir (i = l , n ,  r = l , r i )  . (1) 



A function q t  ( x )  is a response function and xi is a vec tor  of conditions under 
which t h e  i-th set of observations are made. Subscript  "t " stands f o r  "true" values 
which w e  t r y  to observe o r  measure in d i r e c t  experiments and t o  estimate in in- 
d i rec t  experiments. E r r o r s  ci,, f o r  instance, can re f lec t  t he  imperfection of an  
observation process; stochastically of a n  objec t  under observation; approximate 
c h a r a c t e r  of used representation f o r  q t  (2) ;  and s o  on. 

One of t h e  most crucial assumptions in t he  following is t h a t  ci, a r e  random 
(stochastic) va lues .  This is a significant component of model (1) and one can  say 
tha t  a stochastic model is wed f o r  t he  description of ci,. I t  is  necessary t o  em-  
phasize tha t  this  assumption is essential to t h e  whole concept of t he  paper .  Details 
( to  be  supplied l a t e r )  can technically change t h e  final resul ts ,  but they are adju- 
s table  t o  those details in the  f r a m e  of t h e  main idea of t he  paper .  

Another significant assumption consists of t h e  f ac t  tha t  components of xi (or 
a t  least par t  of them) can be chosen (or controlled) by an  experimenter.  I t  will be 
assumed tha t  xi E X  C R k ,  where X i s  compact. 

The set of values 

specifies a design. The fract ions pi can  be  considered as measures prescr ibed  t o  
points xi and variations of these  measures must be  proportional t o  N-I in prac-  
tice. 

The major effor ts  of this pape r  will b e  d i rec ted  t o  t h e  case when i t  is  a pr ior i  
known tha t  t h e  function q t  ( x )  (o r  t r u e  response)  has  t o  coincide with one of t he  
two given functions, e i ther  q1(2,191 o r  q2(z,Q2), where 19, are parameters  t o  be  
estimated. 19, E n, c Rmj. In general.  t h e r e  are no very  special demands t o  these  
functions. For instance, they can be  numerical solutions of some system of dif- 
ferent ial  equation. However, f o r  a number of presented results,  t h e i r  l inearity 
(q(x  , 9 )  = g T f  (2) )  will be important. 

What is really essential in the  las t  assumption i s  t ha t  one of the comparing 
fLcnctions coincides w i t h  the t r u e  response.  In pract ice,  this  means t h a t  an  ex- 
perimenter believes in t he  closeness of (a t  least)  one model t o  reality.  

Cases where one needs t o  compare more than two models lead t o  cer ta in  
mathematical difficulties but t he  corresponding techniques are more o r  less a 
straightforward generalization of t h e  resu l t s  presented h e r e  (compare with At-  
wood and Fedorov, 1975). 

3. O ~ C R l T E R l A  
The objective of an  experiment is t o  choose the  t r u e  model. To start t h e  dis- 

cussion of t he  experimental design problem one must apply t o  some c r i t e r i a  of op- 
timality (Atkinson, Fedorov, 1975; Fedorov, 1980). The main idea behind these  c r i -  
t e r i a  is based on introduction of some measure of discrepancy between r iva l  
models depending upon the  difference: q l ( z  - q2(z  ,Q2) . 

To be specific, suppose tha t  t h e  f i r s t  model is t rue ,  i.e., t h e r e  ex is t s  such 
tha t  q t  ( x )  = q1(~,191t) . If random errors cir are independent and normally dis- 
t r ibuted with variances = 1 then i t  is  reasonable t o  apply t o  t he  following meas- 
u r e  of discrepancy 



The value NT; ( tN.Sl t )  coincides with the  noncentrality parameter  of X2- 

distribution (or  F-distribution, when the  variance of cir i s  unknown) if 
q 2 ( ~ 1 6 2 )  = *ffZ(z)  . where /,(I) is a vector  of t h e  given basic functions. and n2 
coincides with R~' . In o t h e r  cases ( ~ ~ ( 2 ~ 7 9 ~ )  is nonlinear o r  f o r  a r b i t r a r y  n) this  
fac t  has  asymptotical (N-0) charac te r .  More detai ls  see in Atkinson, Fedorov, 
1975; Fedorov, 1981. 

I t  will b e  useful to consider also a generalized version of (2): 
N 

For instance, robust  M-estimators can lead t o  tha t  kind of discrepancy measures 
(see, Huber, 1981). 

The design 

i s  called Tl-optimal design. To emphasize tha t  t he  c r i te r ion  of optimality i s  con- 
s t ructed under assumption tha t  ql(z1791t) = q t  ( z )  t he  design #; will some times be 
called 'locally T-optimal design". 

Together with locally optimal designs w e  will consider maximin and Bayesian 
designs. 

The design #; i s  maximum if 

n 
#b = Arg sup  inf inf pi ql(zi ,  - qz(zi ,  79,) = 

(N *lEnl *aEn' i=l  I (5) 

= A r g  sup inf T j ( tN ,S j ) ,  j = 1 , 2 .  
(N 41 €01 

where n j  i s  a p r i o r  probabili ty of j - th  model and k ( d 1 9 ~ )  is a corresponding p r io r  
distribution of Jj ( j  4 . 2 )  . then is a Bayesian optimal design. 

4. CONTINUOUS OPTMAL DESIGNS 
In what follows only t h e  continuous versions of optimization problems (4)-(6) 

will be considered. In o t h e r  words, the  discreteness  of pi i s  neglected and 

where t ( & )  can  be any probabilistic measure with a supporting set belonging t o  X 
. I t  is  clear tha t  f o r  t h e  continuous case  the  subscript  "N" does not bea r  any addi- 
tional information and can  b e  omitted. 

Formally optimization problems (4) and (5) are similar. Both of them can be  
transformed t o  t h e  following optimization problem: 

t' = Arg sup  T( t )  = Arg sup inf / F l q ( z , b ) j # ( d z ) .  
4 4 *€a k 

T T  For instance. in (5) one has  t o  put dT = (19~ .  79,) . q ( z ,  79) = ql(z  - q2(z ,19~) 



and Q = Q, X% . In t he  case of (4) when Q = Q2 and q ( z  , d )  = qi(z  ,dl t  ) - q2(z  ,d2)  
it is  crucial tha t  t he  solutions of (8) will depend upon : t a  = t* (d l t )  . 
Let us  assume tha t  

(a) t he  sets and Q are compact and function q ( z  , d )  be continuous on X x Q . 
(b) t he  function F ( z )  i s  monotonously increasing when 2 2 0  and monotonously de- 

creasing when z <O and continuous on Z =Iz : z  = q ( z ,  9 ) , z  f X , d € Q  j . 
Theorem I. 

(i) There exists  a t  Least one solution of (8). The set of optimal designs i s  
convex. 

(ii) A necessary and s a c i e n t  condition for a design t* to be optimal i s  
the existence of a measure pa (d  9 )  such  that  

where 

and the  measure pa has  the  supporting s e t  

o* = Id ' :d8  =Are inf ~ F f q ( z 1 9 ) ] ~ * ( d z ) ~ ,  p 8 ( d 9 )  = 1 .  
den Q ' 

(iii) The function r ( z  , t * ) achieves i t s  upper  bound on the supporting set 
vt* 

If in addition t o  (a) and (b): 

(c) the  function Ft q ( z  , d )  1 i s  a convex function of 9 f o r  all  z EX and Q i s  a 
convex compact, then 

Theorem 2. There alwacys ez is ts  a n  optimal design containing no  more 
t h a n  m + 1  supporting points, where m i s  the dimension of 9. 

If, in addition t o  previous assumptions: (e) t he  function F ( z )  is symmetrical, 
then: 

Theorem 3. The supporting set of a n  optimal design for (8) belongs to Tche- 
b y s h e n  eztremal basis: 

(9 '  ,x* ) = Arg inf sup 1 q ( z  , 9 )  i . 
UEQZEX 

Theorems 1-3 a r e  helpful in the  understanding of general s t ruc tu re  of optimal 
designs and in some cases in this  analytical construction (see, Fedorov, 1981; Den- 
isov, Fedorov, Khabarov, 1981). 

In cases  when the  definition of Q includes at least  k l inearly independent con- 
s t r a in t s  which are active f o r  9' , i.e., $($*) = 0 , then the  number of supporting 
points in Theorem 2 can b e  reduced until m +1-k . Moreover, if t he  location of 
these  points is known then the i r  measures can easily be  calculated: 



where t he  exis tence of t h e  corresponding derivatives and t h e  regular i ty  of t h e  ma- 
t r i c e s  are assumed. 

m m +1 
Example 1. Let rll(z 1 9 ~ )  = Qla za and q2(z ,d2) = Q 2 a ~ a - 1  . Assume 

- 

a = l  - a =I 
t ha t  ~ ( z ) = z ~  ,X = [-1.11 and t h e r e  a r e  no o the r  constraints  except  tha t  

m +I 

g2(, = 6 > 0 . In terms of (8) i t  means t ha t  ~ ( z  , d )  = x 9, za-l and 

The supporting set of t h e  Tchebysheff problem 
m +1 

inf sup 1 x 9,za-l 1 
d l z l s l  a=1 

is  known (see, for instance, Karlin and Studden, 1966): 

X* = [z; = COS m + l - i  r ,  ==1,rn+1j. 
m 

The corresponding measures can be  calculated with t h e  help of (9): . . .  p ;  = 1/2m , p i  = = 1 / m  . 

5. DUALITY OF SOME MODEL TESTING AND PABAII[ETER ESTIMATION 
PROBLEMS 

2 In this  section only t h e  l inear  case when ~ ( z . 9 )  = g T f ( z )  and F ( z )  = z will 
be  considered and all  r e su l t s  will formulated in terms of (8). 

Let us start with t h e  most evident and simple case when one i s  interested in 
some l inear  combination c T 9  of unknown parameters.  For  interpolation or extra- 
polation, c = f ( z o )  , where zo i s  t he  point of interest .  Then if one wants to esti- 
mate c T 9  , t h e  following c r i te r ion  (see, for instance, Fedorov, 1972; Silvey, 1980) 
can be  used: 

where t h e  superscr ip t  means pseudo-inversion, and M([) = If ( z  )/ '(2 )[(dz ) . If 
X 

t h e  model q(z ,19) is  tested under  t h e  constraint (c T9)2 2 1 then: 

T([)= inf q 2 ( z ) ( ) =  inf s ~ M ( [ ) ~ .  
(c Td) bl 

(11) 
(c Td) bl 

I t  i s  easy to check tha t  in (11). instead of 1, any positive constant can be  taken 
without influencing t h e  optimal design if q(z ,9 )  depends l inearly on 9 . A similar 
resu l t  holds for t h e  c r i t e r i a  considered below and i t  will be  used without comment. 

I t  i s  natural  to suggest t ha t  

[ ~ : c ~ M - ( ~ ) c  < -1 = 
T f o r  any type of pseudo-inverse matrix, or in o the r  words, w e  assume tha t  c 9 i s  

estimable in t h e  experiments defined by [ . The necessary and sufficient condition 
f o r  t h e  estimability of c T9 is  

Designs satisfying (12) will be  called regular .  



I t  is obvious t h a t  a l l  optimal designs # *  f o r  (11) coincide with t h e  optimal 
designs  for t h e  simpler problem 

inf g T M ( # ) 9  . 
c T t 9 = 1  

Taking into account  t h e  condition (12)  and  using t h e  s tandard  Lagrangian tech-  
nique, w e  ge t  

with 9' =M-'(#)c . From t h e  l as t  equation, i t  immediately follows t h a t  r e g u l a r  op- 
timal designs, are t h e  same f o r  both c r i t e r i a  (10)  and ( l l ) ,  more de ta i l s  see in 
Fedorov, Khabarov, 1986. If t h e r e  i s  some p r i o r  information on t h e  pa r ame te r s  dl 
desc r i bed  by a p r i o r  dis t r ibut ion function, p,,(d9) , then  i t  i s  r easonable  to use  
t h e  mean of t h e  noncentra l i ty  pa r ame te r  as a c r i t e r i on  of optimality 

If t h e  distribution &(d 9 )  h a s  a dispersion matrix Do , then  

In p r ac t i c e ,  knowledge of Do is problematic and o n e  can  r e l ax  th i s  demand and  as- 
sume only t h a t  t he  determinant  of t h e  dispersion matrix h a s  a value d g r e a t e r  than 
ze ro .  In th i s  case ,  t h e  c r i t e r i on  

c a n  b e  t h e  form of in te res t .  If t h e  matr ix  M ( # )  i s  nonsingular, then  

Evidently t h e  maximization of (15)  i s  equivalent to t h e  maximization of I M ( t ) /  . 
This c r i t e r ion  i s  one  of t h e  most widely used c r i t e r i a  in t he  estimation problem. 
Some p rope r t i e s  of D-optimal designs connected with model tes t ing were  discussed 
by Kiefer  (1958) and  S tone  (1958). The above  r e su l t  gives addit ional explanation 
of t h e  relation between t h e  D-cr i ter ion and  t h e  model testing problem. 

Let  us now consider  a ve ry  na tu r a l  c r i t e r i on  f o r  t h e  model tes t ing problem, 

@(t) = in f Jyz.* ) t (&)  = inf s T ~ ( € ) 9 ,  (16)  
: 9 d T q  ( ~ ) i a l  a€  . U S / ~  Tq ( X  ) jbl 

f o r  any  function q defined on  U . 
It  i s  not  difficult to check  t h e  chain of equalities: 

inf 9 " ~  ( t ) 9  = inf inf 9M ((119 
suejdTq ( x  ) j % l  
a C 

x EU ( d T q ( + ) j % i  

where ,  of course ,  a design # h a s  to b e  r e g u l a r  f o r  any c = q ( z ) , z  EU . 
In most cases ,  t h e  requirement  of regu la r i ty  causes  t h e  nonsingularity of 

M (#). This happens,  f o r  ins tance,  when U = X . 



The cr i ter ion 

belongs to the  family of g-cr i ter ia  (Ermakov, 1983). When U = X and q ( z  ) = f ( z  ), 
one can be t  an even s t ronger  result  because the  c r i t e r i a  

are equivalent in t h e  case of continuous designs, a resul t  which follows from Kiefer 
& Wolfowitz's theorem. This leads immediately t o  the  equivalence of (16) and D- 
cr i te r ia .  

The equivalence of some c r i t e r i a  can be  proved with t h e  help of t he  well- 
known result  on eigenvalues of matrices (com are with Jones, Mitchell, 1978). Let F M be  a symmetric matrix and le t  C = BB be  a positive-definite matrix. If 
X l r .  . . r A ,  are t h e  roots  of / M -AC I = 0 then 

inf 1 9 ~ ~ 9  = A, . 
3 gTc19 

From this  relation, t he  equivalence of t h e  following two c r i t e r i a  immediately oc- 
cu r s  

*(t )  = xi1(() . T ( 0  = inf j r t 2 ( z , ~ ) ( ( d ~ )  . 
dlcd*l 

When C = I,, then *(() i s  t he  popular E-cri ter ion of design theory. 

The resul ts  can be  summarized in t h e  following theorem. 

Theorem 4. The following c r i t e r i a  a r e  equiva lent  o n  the  s e t  of r e g u l a r  
designs: 

(i) cTM-(()c and inf y((,9) ; 
(c ld)%d 

(ii) i M-'(() i and inf j y((.d)gO ( d  9 )  ; 
ID01 

(iii) su q ' (z)M -(()q ( z  ) and , €5 inf ~ ( 4 , d )  ; 
::s/ s lc. )dl 

(iv) X1~BTM-'(()B ( and inf A((,+) , 
d r ~ ~ r d a d  

where 6>0 and y((, I?) = j (dTf  (z)j2((&) , w i t h  the  i n t e g r a l  over the 
r ange  X . 
The requirement of regularity i s  essential f o r  (i) and (iii) of t he  theorem. In 

o the r  cases for  optimal designs the  existence of t he  inverse matrix M-'(() is evi- 
dent. 

The theorem is true both fo r  d iscre te  and continuous designs. But t h e  
equivalence of (ii) and (iii) is based on Kiefer & Wolfowitz's theorem which is true 
only for continuous designs. 



6. WUYEIUCAL PBOCEDUBES 
Thwrem 2 gives possibility to wnstruct  T-optimal designs with the  help of the  

algorithms developed fo r  the  parameter estimation problem. These algorithms 
were discussed repeatedly in the statistical l i terature (see. fo r  instance, Fedorov, 
1972; Ermakov, 1983). Therefore only Ute algorithms specially oriented to the 
model testing problem rill be considered in this section. For the  sake of simplicity 
they wi l l  be formulated fo r  deslgn problem (8) and w e  start with the  algorithm, 
which is a generalized version of that  proposed by Atkinson, Fedorov (1975). 

This algorithm is  based on the  results of Thwrem 1 and belongs Lo the  family 
of steepest descent algorithms. 

To avoid difficulties related to singularities in optimization problems 

w e  assume that  for T-optimal design (17) has unique solution d(€') . 
In practice, this  assumption is not very restr ict ive because instead of (8) one 

can apply to the  regularized version of i t  

where 4, i s  any design providing uniqueness of $(to) . Due to concavity of T(t) 
(compare with Fedorov, Uspensky, 1975): 

(i) Let the  design 4, was constructed at the  previous iteration 

where (p(z,t, ) = F f q ( z  ,d, ) j - T(€,) , X, is the  supporting set of 4, and 

(ii) 4, +I = (1  7, I ts  + 7i€(zS ) , where 7, = as if 
sup (~(2 ,  €, 2 - inf O(Z, 4, ) I and 7, = -m"x 1 a, ,P, +I/ (1 q, +I) 0th- 
rcY =a 
envise. p, i s  the  me-e of point 2, prescribed by 4, . The sequence 
la, I providing convergency of (i), (ii) can be chosen similarly to parameter 
estimation case (see, fo r  instance, Ermakov, 1983; Denisov, Fedorov, Kha- 
barov, 1981): 

a ,--+OeCas = - , C a f < - .  

If for  given ~ ( z  ,d)  and p(d) formula (9) is admissible f o r  computing then in- 
stead of (11) one can use this formula chosing f r o m  the  s t h4es ign  (m -k) support- 
ing points with largest  values of q(z, €, ) . Together with z, they wil l  form a sup- 
porting se t  for €, . This modification of the  iterative procedure converges to an 
optimal design containing non more than m +l-k supporting points and is very 
close to the  Remez algorithm fo r  the  Tchebysheff best approximation problem (for 
details, see Demjanov, Malozemov, 1966; Denisov, Fedorov, Khabarov, 1981). 



7. SEQUENTIAL DESIGN 
Application to (4) and (5) makes i t  c l e a r  t ha t  i terat ive p rocedure  (i), (ii) can  

be  used in prac t ice  for t h e  construction of maximin designs or  locally optimal 
designs f o r  given . The l a t t e r  design can be  useful f o r  t h e  clarifying of gen- 
e r a l  s t ruc tu re  of T-optimal design. To be  more specific, one can use some sequen- 
t ial  design procedures  which were repeatedly discussed by different  au tho r s  (see,  
f o r  instance, Atkinson, Fedorov, 1975; Atkinson, 1978). 

The simplest sequential p rocedure  is  t h e  following one: 

(i) After N measurements one has  to calculate 

Jjn = A r p  inf 2: Flyi - q j ( z i , * j ) l .  
djEnj i =1 

(ii) The (N +l)-th measurement has  t o  b e  done a t  t h e  point: 

This sequential p rocedure  has  i t s  roots in i terat ive p rocedure  (i), (ii) from 
t h e  previous section. The similarity will be  more evident if one put 
q (z ,$)  = ql (z  - qz(z..rP2) , 7~ = ( N ~ + N ) - ~  , where N~ i s  a number of measure- 
ments in a n  initial experiment. Naturally t h e  deletion of "bad" points permissible in 
t h e  i terat ive procedure  has  no sense f o r  t h e  sequential design. 

Some numerical examples illuminating t h e  efficiency of sequential  p rocedure  
(i), (ii) were discussed by Box, Hill, 1967; Fedorov, 1972; Atkinson. 1978. The weak 
convergency: 

where qj. ( z , d )  is a "wrong" model. follows from the  convergency of i t e ra t ive  pro- 
cedure  (i), (ii) if one manages t o  prove  tha t  f o r  t h e  t r u e  model t h e  parameter  esti- 
mators are consistent f o r  t h e  sequence ItN 1 . The consistency can be  assured  by 
application t o  regularization (18). 

8. CONCLUSIONS 
The resul ts  presented in th i s  p a p e r  (based on formal, mathematical tech- 

niques) confirm t h e  validity of t h e  following simple, intuitive idea: 
"Observing stations should be  located a t  s i t es  where t h e  discrepancy between 
competing models is  g r ea t e s t  ". 

Indeed, in case of two competing models q l (z  ,'rP2) and q2 (z  ,d2) .  Theorems 1 and 3 
lead to the  recommendation tha t  observing stations should b e  located a t  points 
where t h e  function 

approaches  i t s  upper  bound f o r  t h e  (in t h e  model testing sense)  worst values of 
parameters  .rP1 and 'rP2. 

The same idea can be  t r ea t ed  in numerical p rocedure  (i), (ii) of Section 6 and 
t h e  sequential methodology of experimental design. 



In the  f i r s t  case,  at every  s-th s tep  one  has  t o  re loca te  a possible point of ob- 
servat ion from an area where t he  discrepancy ql(x ,9, ) - q2(x ,9, ) is  small, to an 
a n  area where i t  has  i t s  l a rges t  value. 

In the  sequential design, every  new observation has  to be  located at a point 
where t he  c u r r e n t  measure of discrepancy is  largest  (see (i), (ii), Section 7). I t  is 
evident that ,  to some extent ,  similar sequential p rocedures  are used regular ly  in 
operational pract ice .  Here,  statist ical  theory provides a reasonable  (from a sta- 
t is t ical  point of view) c r i t e r i a  of optimality, necessary formulae f o r  calculations, 
and  (this seems a most useful resul t )  global optimality of t h e  procedure:  sequential 
designs generated by (i), (ii) converge to a design which is  optimal in t h e  sense of 
(3). (4). 

Section 5 confirms t h e  common feeling amongst p rac t i t ioners  t ha t  t h e  prob- 
lems of model testing and parameters  estimation a r e  essentially overlapping. If 
one  can  efficiently estimate t h e  most charac te r i s t ic  parameters  f o r  competing 
models, then model discrimination can be  performed appropriately.  
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