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FOREWORD

The paper deals with the solution of a stochastic optimization problem under
incomplete information. It is assumed that the distribution of probabilistic param-
eters is unknown and the only available information comes with observations. In ad-
dition the set to which the probabilistic parameters belong is also known. Numeri-
cal techniques are proposed which allow to compute upper and lower bounds for
the solution of the stochastic optimization problem under these assumptions. These
bounds are updated successively after the arrival of new observations. The
research reported in this paper was performed in the Adaptation and Optimization
Project of the Systems and Decision Sciences Program.
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COMPUTING BOUNDS FOR THE SOLUTION OF THE
STOCHASTIC OPTIMIZATION PROBLEM WITH
INCOMPLETE INFORMATION ON DISTRIBUTION
OF RANDOM PARAMETERS

A. Gatvoronski

1. INTRODUCTION

During recent years considerable effort was made to develop numerical tech-
niques for a solution of stochastic programming problems. These problems can be

formulated quite generally as follows:

minimize
Fz)=E, f(zx, 0)= [ f(z, w)dH (o) . 1)

subject to constraints
z X

where z € R™ is a vector of decision variables, @ € 0 € R™ is a vector of random
variables which belong to some probability space, # — some probability measure
and F , denotes expectation with respect to w. Algorithms for solving this problem
as well as various applications to operations research and systems analysis can be
found in Ermoliev [7], [8], Kall [13], Prekopa [21], Wets [23] [24] where one can
find further references. It was assumed usually that probability distribution # is
known. This distribution is obtained from the set of observations fml, e, ms,...{

of random vector w through application of appropriate statistical techniques.

However, information contained in observations is often insufficient to identi-
fy unique distribution #. Then it is often possible to define some set G to which dis-
tribution belong and apply minimax approach (worst case analysis) to the problem
(1). This approach was studied by Dupadova [4] [5], Ermoliev [6], Golodnikov [12],
Ermoliev, Gaivoronski and Nedeva [9], Birge and Wets [1], Gaivoronski [10] for the
case when the set G of admissible distributions is defined by constraints of moment

type and by Gaivoronski [11] for the case when the measure H is contained between
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some upper and lower measures. In this case however some unspecified statistical
methods should be used to obtain these bounding measures or moment constraints.
The resulting set ¢ as well as the solution of the problem (1) and its accuracy will

heavily depend on these techniques.

This paper presents the attempt to solve the problem (1) starting directly
from the finite set of observations [wl, cee, g ]. In this case it is possible only to

identify some upper and lower bounds on the optimal value of the objective func-

tion and point z” which yields value within these bounds in some probabilistic

sense. These bounds should possess the following properties:
- be valid for all s, nonasymptotical;

- be successive i.e. permit easy updates when new observations arrive, this will

allow to compute them in real time;

- be independent from any particular parametric family of distributions such as

normal, lognormal etc.

This approach, if successfully implemented, would allow to avoid such ques-
tions as "where do you get your distribution”? which are often confronted by sys-
tems analyst who applies model (1) to real systems. It could also present a "middle
road” between a purely stochastic approach, when unknown parameters w are con-
sidered to possess known probability distributions # and deterministic approach
when it is assumed that all what is known about « is that it belongs to some set N

(for more details see Kurzhanski [17]).

This paper presents only first steps towards this direction. In the section 2
the precise formulation of the problem is developed using certain techniques of
extracting information about distribution from observations. This leads to minimax
problems with an inner problem which allows an explicit solution defined in the
section 3. Finally in the section 4 numerical techniques for computing successive
upper bounds is described. Results of some numerical experiments are presented

in the course of exposition.

It should be noted that some techniques for computing bounds for solution of
the problem (1) in different contexts was described in Birge and Wets [1], Cipra
[2], Kall [14], Kankova [15].



2. PROBLEM FORMULATION

Informal statement. Solve the problem

min | f(z, @)dA(w) )
z€

when all that is known about random parameters w is the set of observations
fwg, ..., wgd.

We shall make two basic assumptions:
1. Distribution # of random paramelters w exists, but unknown

2. Observations w,, ..., wg are mutually independent and form the sample from

this distribution #.

In order to solve the problem (2) it is necessary to clarify what is considered
as solution and learn how to extract information about distribution # from obser-

vations w,.

L.et us assume that w belongs to some set Q@ ¢ #™ with Borel field B; probabili-
ty measure H is defined on this field, thus we have a probability space (2, B, H).
For each fixed s let us consider the sample probability space ((—l, 1—3, -l?’) which is a
Cartesian product of s spaces (Q, B, #). The space ((—l, 1—3, f’) is the smallest space
which contain all (Q, BS, PS). In what follows the "convergence with probability
1" will mean the "convergence with probability 1 in the space (QY, BY, P¥)". With
the set of observations {w,, ..., wg{ the set of distribution G¢ will be associated

in the following way.

Let us fix the confidence level a:0 < @ < 1. We shall consider events with
probability P° less than a "improbable’ events and discard them. Let us consider
arbitrary set 4 ¢ B. Among s observations {w,, ..., wg} there are i, observa-
tions which belong to set 4, 0 s iy < s. The random variable i, is distributed bi-
nominally and its values can be used to estimate #(4) (Mainland [19]). To do this

let us consider the following functions

- s! 1 s —1
$(s. k, z) —igkmz (1-2)
3)

k

- 8t i _ -1
‘I’(s,k,z)—igoi!(s _i)!z 1-2)%

observe that



¢(s, k,z)=V¥(s,s —k,1—-2)
(4)
PS(iy = k) =¢(s, k, H(4))

PS(iy, s k) =¥s, k, H(4))

The function ¢ (s, &, z) is a monotonically increasing function of z on the interval
[0, 1], ¢(s, k,0) =0, ¢(s, k,1) =1, k¥ #0. Therefore the solution of equation
¢(s,k,z)=cexistforanyOsc =1. Let us take

a(s, k):¢(s, k,a(s, k))=a,k #0 )
b(s, k):¥(s, k,b(s, k))=a,k #£s
a(s,0)=0, b(s,s)=1

The values a(s, k) and b(s, k) ar the lower and upper bounds for the probability

H(4) in the following sense.

LEMMA 1. For any fized set A C Bthe bound a(s, k) defined in (5) possess the

SJollowing properties
1. Pla(s, iy) > H(4)] < a for any measure H.

2. If for some function «c¢(i),1 =0:s, c(i +1)>c(i) we have
Plc(iy) > H(A)} < a for any H thenc(i) s a(s, i)

This lemma shows that a (s, i4) is in a certain sense the best lower bound for the

probability #(4). The similar result holds for the upper bound & (s, i4):

LEMMA 1. For any fized set A C B b(s, k) defined in (D) possess the following

properties:
1. PS{b(s, i) <HA)|s a
2. If for some function «c¢(i), 1 =0:s, c(i +1)>c(i) we have

Pilc(iy) < HA)| = a for any H thenc(i) 2 b(s, i).

PROOF of the Lemma 1
1. Statements (3)—(5) imply

Pila(s, i) > H(A)] = P9{@(s, iy H(4)) < ¢(s, iy, a(s. ig))}

= PS{¢(s, iy, H(4)) < af



gt

PSli, =7)PS{¢(s. j, HWA)) < aliy =7
0

J

=¢(s, j(H, a), H(4))

where j(H.A)=m}n {7:¢(s,j,HA))<a}. Therefore Pla(s,iy)>H()] = a

for any H.

2. Consider now arbitrary function ¢(i), 7 =0, ..., s. We obtain:
S
PS(c(iy) >H@)) = 3 PS(iy =i)P[c(i) >H(A)|,A=,]
1 =0

S
= Y SEoorA@rta -H@y
i=f(H,A) *° :

where j(H, A) =m}n{j ie(F) > HA)I.

Assumption 2 of the lemma now implies

SI;F¢(S.j(H.A). H4)) s a (6)

Suppose now that ¢(0) > 0. Taking H(4) such that 0 s H(4) < c(0) we obtain
J(H, A)=0 and ¢(s, j(H, A), HA)) =1 which contradicts (6). Therefore
c(0) =0. In case if c(i)>a(s,i1) we can take a(s, i) <H(4) <c(i). Then
JH,A)=1 and ¢(s, F(H, A), H(A)) > a which again contradicts (6). Thus,
c(i) = a(s, i) for any i and the proof is completed.

The values a(s, k) and b(s, k) defined by (5) have the following useful pro-
perty.

LEMMA 2. There exists a such that for all a < a the bounds a(s, i) and
b(s, i) satisfy the following property:

a(s, i1 +1)~a(s,i)>a(s,i) ~a(s,i —1)
(9]
b(s,1 +1) —b(s,1)<b(s,1) —b(s,1 —1)

The proof of this lemma is very technical and is therefore omitted. The value of a
computed with four digits accuracy is a = 0.4681. This property is very important

for further considerations and it will be assumed that a < a.
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Now it is possible to specify precisely the process of obtaining bounds for the
solution of the problem (1):

Precise statement. The solution process evolves in discrete time
s =0, 1,.... Before time interval s the set [wl, Cee, W _1§ of observations is
available which define the set G; _,; of admissible distributions. At the time inter-
val s the solution process consists of the following steps:
1. New observation wg arrives. The whole available set of observalions

fwy ..., wg)defines the set of admissible distributions G¢ in the following way:
Gy =lH:a(s, i) s H(A) < b(s, iy)}

for any measurable A, where a(s, i4) and b(s, i) are defined in (5). Additional
information about the actual distribution & of random parameters @ can be includ-
ed in the definition of the set ;. Some ways of doing this will be discussed later.

2. The solution of problem (1) at step s is defined as the pair (j’é, I¥) of lower and

upper bounds

L .
fs = min min J 7 (z, w)dH () ®)
u .
T8 = piypey S e @ ‘9’

and the optimal point z; is defined as follows:

L 3 L 3
ax z., dA(w) =f¥%, z_ €X
,Tw,ff(so) (@) = r&, =z

3. The process is repeated next time interval s + 1 with arrival of new observa-

tion.

The bounds on solution obtained in this fashion are constructed involving the

"best” and the "worst" admissible in the sense of lemma 1 distribution # and the

point. z; yields the value of the objective within these bounds. In what follows we

shall concentrate on the numerical aspects of the problems (8)-(10).
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3. THE SOLUTION OF THE INNER PROBLEM

The minimax problems (8)—(9) look very difficult because the inner problems
involve optimization over the set of probability measures defined by quite compli-
cated constraints. It appears, however, that inner problems have explicit solu-
tion. Let us consider this problem in more detail and denote for simplicity

Sz, w) = g(w). We are interested in solving the following problem:

minimize (or maximize) with respect to #

S 9 (w)dH (w) (10)
subject to constraints

a(s,iy)<HA)sb(s,i4), A €B (11)

Q) =1

S+1) =

Let us assume that g(«°) = mirtllg(w) and g(w ma)(:]g(w) exist and ar-
wE [AX3

range the set of observations {wy, ..., wg} in order of increasing values of the

function g (w):

Here and elsewhere the original order of observations is indicated by subscript
and arrangement in increasing order of the values of g is indicated by super-
script. The first element of new arrangement will always be the point with the
minimal value of the objective function on the set (1 and the last element (with
number s + 1) will be the point with maximal value. This arrangement depends on
the number s of the time interval, but this dependence will not be explicitly indi-

cated for the simplicity of notations.

The solution of the problem (10)—(11) is given by the following theorem:

THEOREM 1 Suppose that ezxist points ® and o**l such that

g(wo) = min g (w), g («* +1) = max g (w). Then
wEf] wefl

1. The solution of the problem (10)-(11) exist and among extremal measures al-

ways exist discrete one which is concentrated in s + 1 points:

- s +1
gs = max [g(0)di(0) = [g(@)dF; (@) = ¥ pig(eh) (12)
s 1=1
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S
gy = min fg(w)dﬂ(w) =fg(w)dﬂs(w) =Y ¢lg(o!)
HEQ 1=0

ﬁs = !(QO' ps()). o, (@5 +1’ p: +1)i
He = (&% gd), ..., (@ ¥, g% * 1)}
pl=a(s,i)—a(s,i —1),i =1:s

q; =a(s,s -1 +1)—-a(s,s —i),1 =1:5s

p2=¢St1=0,p5* =¢2 =0b(s,0)

2.

gs —gs <4y Z Za

where Ag = gugg g(w) — Ar}nérg)g(c.;)
3.

7s — [ 9(w) dH(w)

9s — [ 9(w)dH(w)

with probabilily 1 as s —» oo,
PROOF

1. Let us consider the upper bound Es and define the sets

0, = lw:wen g(w >g(w)], i =0:s

and functions

gttty —g(ot) 1f weNy,y
g1(@ ={g(w) —gt') if oen\n,,

0 If »en\n
it=1:s —1 ,

g(@) —g (o) if @ €0
s = o if e\ 0

e =g if @€

(13)

(14)
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Each set Q; contains s — i points w;. Let us consider the problem

max [ g(w)dH (@) (15)
HedG,

where

Gy ={H:H(@) =1,a(s,s —i)SH(Q) Sb(s,s —1i), 1 =O:s]

We have

Y
So@adi(w) =g@% + Y [g,(w)dl(w)
1=0(0

therefore

S
0
,;"gg’f g (0)dH (@) < g (%) + 1230,?35’ { g4 (@) dH ()

S
g%+ ) (gtth) —gh)b(s, s —1i)

1 =0
s +1
= Y gl)b(s,s —i +1) —b(s,s —1i)) =g,
1=1

where we took (N, —1) =0. Hence if-s is the solution of problem (15) with g_s be-

ing it’s optimal value. We have

[H:H(Q) =1, a(s, ig) <HA)sb(s,iy), 4 C B} =G5 C G

and therefore

,;ngé’fg(w)dﬂ(w) < 7

It is left to prove that [?s € Gg. To do this let us consider arbitrary measurable

subset 4 of 1 which contains k& from s +1 points fmi,...,ms”], say

fwi’, R wi"].

- k
Ho(4) = ) (b(s, s =iy +1) —b(s, s —iy))
j=t
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According to the lemma 2
b(s, s - iy +1) -b(s, s —ij)sb(s. k—-7)Y—-b(s, k-5 —1)

Therefore

- k
H(A)=s Y (b(s. &k =7F)—b(s, k-7 —1)) (16)
j=1

=b(s, k —-1)

On the other hand
b(s,s —iy+1) —b(s, s —1iy)
2b(s,s —J +1)~b(s,s — )
=a(s,j)—a(s,j -1)

Therefore

_ k
H @)z Y (a(s, j) —a(s,j —1)) =a(s, k) @7
j=1

Inequalities (16) and (17) prove that I?s (4) € G;. The proof of the first statement

of the theorem is completed.

2. We have
s+1
gs —gs = & (@ —gHo )
i=0

S
=Y (pt — gl g(al) + b(s, 0)(g (% *1) — g (7)) (18)
i=1

Consider now the difference psi - qsi
pl-gl=(a(s,i) —a(s,i =1)) —(a(s,s —i +1) —a(s, s —1i))

The first term is monotonically increasing, the second is monotonically decreasing

and for odd s we have

s +1
2

p:—qsi<0 for 1 =1 <
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s +1
2

ps’—qs":O for 1 =

+
ps"—qs">0 for sTl<i <s

Therefore for odd s we can continue (18) as follows:

s +1

s 2

S pi-ghgh)= Y @f-9hHg?)
i=1

+ Y @-g¢hgat)

s +1
t==3
s +1
0, & i1 oo 1 1
g Y @i-eg) +g®™) Y (s -9qd)
i=1 1=s+1
2

According to the definition of ps* and q; we have

s +1
2 —
2 (Psi—qst)=¢1$. ;1 + als, 21 —a(s, s)
i=1
z (p;—qsi =a.(s,s)—as,s; —as,sgl]
s +1

Taking into account that &(s, 0) =1 — a(s, s) last equalities together with

(18) will give

s +1
2

gs —gs < |90 ~ 9”@ ~als, (20)

To proceed further we have to obtain the lower bound for a(s, (s +1)/2) and
a(s, (s —1)/2). To do this remember that a(s, (s +1)/2) is the solution of

equation

Pr s +1

1'.‘4_2 =a

with respect to probability z in the binomial distribution, by Pr we denoted the bi-

nomial distribution with s trials. This can be rewritten as follows:

i
A—ZZ‘L'F—L—Z
s

Pr z T 2s

=a
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On the other hand we have the following Okamoto inequality [20]

Pr
s

z e
—A——z 2c}<e""“sc

for any c 2 0. Due to1/2 +1/2s —a(s, (s +1)/2) >0 for all s we obtain from

previous inequality

forz =a(s, (s +1)/2).

Therefore the solution of the equation

—Zs(%+2L—z)2
e s = a

will give the lower bound for a(s, (s +1)/2) This gives

a(s, (s +1)/2)=21/2+1/2s — '\/—;Ta In the same way we obtain

-1 1 1 \/ﬁn_ra
als, - -0 - e
2 2 2s 2s

substituting this in (20) we obtain

7y — gy = 00" 1) g (0%) N/ 2Z

In case of the even s we obtain
'3 '3 . S
pg —qg <0 for 15153
ps‘—q:>0 for§+1si5s
This gives

- a(s, s)

s/2
Y (o - ¢l) =2als,

i1=1
s 11 s
Y (pf-gd)=a(s.s)-zals, -
=s/2+1

and finally
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(21)

After applying Okamoto unequality we again obtain from (21) the desired unequali-
ty.

3. Observe that the empirical distribution Hf = {(wy,1/5s), ..., (wg, 1/ s)} al-
ways belongs to (. Therefore the last statement of the theorem follows from state-

ment 2, boundedness of g (w) on (1 and the law of large numbers.
The proof is completed.

Results of numerical experiments for computing bounds g'is and_gs are shown
in Figures 1-6. These bounds were computed for confidence level a = 0.1. They all
exhibit similar behavior: rapid convergence for a small number of observations
which slowed down as the number of observation grows in accordance with resuit of
the theorem. Almost in all examples the actual value of fg(w) dH (w) always stayed
within bounds, although the value of a was chosen 0.1. This happened because the
bounds were computed for the worst distributions which are those concentrated in
a finite number of points. When such distributions were taken the behavior of
bounds worsened (Figures 2—4) and in some cases the bounds did not contain actual
value (Figure 4). At the same time for smoother distributions convergence is fas-

ter (Figure 5, where distribution is close to normal).

Within the framework of nonparametric statistics [16] the bounds proposed in

this section can be considered as a special type of L-estimates.

4. INCORPORATING ADDITIONAL INFORMATION

The method developed in the last section deals with the case when the only
available information on the distribution A of random parameters «w comes from ob-
servations w,. In many cases, however, additional information is available which is
drawn from observations on similar systems. One of the ways of using this informa-

tion is considered in this section.

Suppose that additional information comes in the form of constrainls on the
values of moments like expectation, variance etc. This can be expressed in the fol-

lowing way:
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fvi(w)dﬂ(w)so i=1:my

The problem of getting upper and lower bounds in this case can be expressed

similarly to (10)—(11). Let us take the problem of getting the upper bound:

maximize with respct to &
[ 9(w)dH (w) (22)

subject to constraints

a(s,i4)sHA)=sb(s, i) VA E€B (23)
H(@) =1
Svi(@)dH(0) <0 i =1:m, (24)

The Lagrange multipliers are used to take account of constraint (24) and reduce

the problem (22)—(24) to the problem (10)-(11).

Let us consider the function

m
L(w, u)=g(@) — 3 u;g(w)
1=1

and assume that for each u = 0 exist wo(u) and ¥ +1('u,) such that

L® u)=minl(w, u), L@ *!, u) =maxL(w, u) . (25)
wEfl wefl

For each fixed w arrange w; in increasing order:
@(u), @l(u), ..., 0% (u), * *1(u)

where L (ot (uw), u) SL(wi +1(u). u ). Here again we use superscript to indicate

ordered observations, this time, however, ordering will depend on w.

Construct #5(u) = {(«%w), pso), e (@SN (u), p§ 1) (26)
and take
s +1
¥$(u) = 3 pll(el(u), u) (27)
1=0

where psi are defined in (14).
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THEOREM 2
Suppose that

1. For u 20 exist ®(u), o° *1(u) such that (25) is satisfied.

2. Ezists 6 >0 such that
fvi(w)dH(w)<—6 i=1:m,

Let us take u" :u" = o, \Ps(u*) = min ¥*(u) @Gf this u” exists). Then the
uz0

measure }'?s(u*) defined in (26) is the solution of the problem (22)-(24) with
probability P in the space (¥, BY, H%) at least equal to y where

m,
tz 2z [f v(w)dH (w) ~ (f'u,(a:)d]‘l(c.;))2
1i=1

7y=1-
Ly

¥S(u) is defined in (27) and the corresponding upper bound is ¥*(u .).

PROOF Observe that for empirical distribution Hse consisting of s points con-
straints (23) are satisfied. Let us estimate the probability with which
fvi(w)df]se(w) =1/53 -1v;(@g) <= & with £ >0.

According to generalization of Tchebyshev inequality

Ly
P‘{ max |% 2 vi(wj) —fvi(w)df](w)l >6]

i:l:ml j=1

1 my 1 s 1 s 2
<? 3 E pa . 3 vi(wj) —EPl-; ) 'ui(wj)
1=1 j=1 f=1
1 S 2
== Ep| ¥ (vy(w;) = [ v(w)dH (w))
S 4] §=1
1 ™ 2 .
=—7 L (Jvf@ i@ = ([ v @)?
i=1
Therefore
f""i (w)dHE(w) <=~ & (28)

for some ¢ >0 with probability at least y. Convexity of the set, defined by (23)
similarly to [9] implies now equivalence of the problem (22)—(24) and the problem

min m?lx fL(w, u )dA (w) (29)

ua0
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subject to (23), which holds for all @ € N such that (28) is satisfied. The inner
problem in (29) has explicit solution defined by theorem 1. This solution is

described by relations (26)—(27).
The proof is completed.

A similar result holds for lower bound if we take L(w, u) = g(w) +
m
Y2y 9w and ¥ (w) = N F el (ot (u), u).
The theorem 2 reduces the problem of getting upper bound to minimization of
function ¥$(u ), defined in (27). This is a convex function with readily available
values of subgradient. Therefore suitable nondifferentiable optimization tech-

niques can be applied to get its minima [18, 22]. Different situations can occur dur-
ing such computations.

1. It was found that ¥*(u) is not bounded from below. This means that problem
(22)—(24) is infeasible. To get an upper bound in this case it is necessary to drop
constraint (24) and solve the problems (10)—(11) instead. According to theorem 2

the probability of this case tendstoOas s =+ o,

2. The point u” was found such that within prescribed accuracy \I's(u*) will be
the optimal value of the problem (22)—(24), i.e. the desired upper bound with pro-

bability that tends to 1 when s — e, For finite s, however, it is possible that

¥ (u*) exceeds the optimal value of (22)—(24). In both cases it will be the upper

bound, but in the second case not the best one.

5. NUMERICAL TECHNIQUES FOR FINDING THE UPPER BOUNDS
FOR THE SOLUTION OF OPTIMIZATION PROBLEMS

Let us return to the problems (8)-(9) now. Define

F(s, z) = fax J 7z, w)dH (o) (30)
F(s, z) = min fj’(z, w)dH (w) (31)
HeG,

It is now possible to compute the values of these functions using results of the sec-
tion 3. The problem of finding upper and lower bounds for the solution of (1) can

be formulated as follows:

I = min (s, z); ff =minF(s, z)
reX T
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Successive bounds for simple problem are given in Figure 7 to give a feeling how
they evolve. For more complicated problems it is necessary to develop special nu-
merical techniques. The problem of finding lower bound ff is not convex because
the function F(s, z) is not convex with respect to z. Therefore it needs special
treatment in each particular case and general efficient techniques are out of
reach so far. In this section we shall concentrate on the problem of finding the
upper bound f: which is much easier because the function ]?'(s, z) is convex. This
allows application of convex programming algorithms to find f:. These algorithms
however, need a substantial number of iterations to get close to a solution and with
arrival of each new observation the process should be started anew. The main
point of this section is that techniques can be developed that perform very limited,
perhaps only one, iteration of convex programming algorithm with each new obser-
vation and still get reasonable upper bound. Generally speaking the process of ob-

taining bounds look like this
1. Start from some fixed number of observation » and point 7.

2. Suppose that prior to step number s the observations w,, ..., wg _, arrived,

1

the point % ~* was obtained and the current upper bound is taken equal to

F—(s -1, z% _1). The following calculations are performed at the step number

s.

Z2a. The observation w; arrives. The function f‘(s, z) and its subgradient is
computed at the point = ~1and possibly at some additional points.

2b. These values are used to perform one step of minimization of the function
F'-(s. z) which gives the new point z5. The procedure goes to the next

step.

We shall consider a particular method based on generalized linear program-
ming {3]. This technique provides natural bounds for the solution of the problem

minzF_(s, z) which enables to control accuracy. With each new observation new

supporting hyperplane is introduced.

1. Take an initial collection of points
Y={y,..., vl k=2n,y, €eXcR™ .
For each y € Y° compute w(y):

Sy, w(y)) =max f(y, @)
wen
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Take f(O. v) = f(y, w(y)) and compute
Fz0,y) =7y, o(¥))
Solve the problem

min max [f—"(O, y)+ <z —vy, f_",: 0, v)]
I Y €

This is a linear programming problem which solution is zl. This will be the initial

solution of the original problem. Take the set of observations o = ¢.

2. At the beginning of step number s we have the set of observations (O _1, the set
of approximating points Y5 ~1 current approximation to the minimum of the upper

bound z° and for each y € ¥* ~! we have already computed f (¥, ») @ € Q5 1,

Sy, o)) S (¥, @), fr (v, ©(¥)), and estimates
Flug 1), ¥) Fplig 1), ¥), pg _1(¥)ss —1

then we do the following:

(a) Obtain new observation w, and take 0F = 05 ~1 | fw.{. The set 0 consists
s £

now of s points Wy, - Qg

(b) For ¥y = z° compute w(¥y):
Sy, o(¥)) =max f (y, )
weEfl

and compute f(y, w), f (¥, @) forall w € 0.

Arrange the set 0% | {w(y)] in the order of increasing values of f (v, w):
ol(y), ..., S, Sy, T 2 L (Y. 01 ()
and o *Y(y) = w(y)

Assign u¢ (¥) = s and take
F(s,y)= Y pir(y. o)
i=1

s +1

Fe(s,y)= 3 pif.(y. ot @)
i=1

For y € Y* ~1 take ug (¥) = p —1(v). Update the set Y* ~1:

Y =y Tty ()
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(¢) Find

min max [F(u (¥), ¥) + <z — vy, Fy (s (¥), ¥)>]
IEXyE

This is linear programming problem and suppose that Z is its solution. Consider

the set

Z% =y :y €Y%, F(ug(y), ¥) + <& —y, Fp(us(¥), ¥)>

min max [F(us (y), y)+ <z —vy, f':(#s(y), y)>]
IEXyE

and ug(y) < s

If Z5 = ¢ then take z°*1 = £ and go to the step number s + 1, otherwise proceed
to (d).

(d) For each y € Z% compute f (v, w;)and f (v, @), ue(y) <i ss. Take

- £ +1

FGs,y)= Y pirw. o'®))
i=1

- s+1

Fo(s,y)= Y plr.(y, o' (¥)
i=1

Assign u (y) = s and go to (c). The following theorem deals with the convergence

of this method.

THEOREM 3. Suppose that the following conditions are satisfied
1. SetsX c R™ and N ¢ R™ are compact sets.

2. The function f(z,w) is convex on z and continuous on ,
|f(1:1, w) —f(z,, w)| < L|zl —zzl for =z, =zTL€X, we Then
F(s,z5) - mir}XF_(s, z) — 0 ass — o with probability 1.

I E

PROOF Let us denote

FS(s, z) = max [F(us(y) y) +<z —y, F(u, (), v)>]
yeYy

Then
FS(s, z%) = minFS(s, z)
reX

Let us prove that f(s,zs)—f's(s,zs)—vo with probability 1. Note that
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F‘—(s, zS) = FS (s, %) is always satisfied. Suppose that for some A > 0 exist subse-

quence s, such that
f‘(sk, xs") —fsk(sk. :r:s") >A

Due to compactness of the set X we may assume without loss of generality that

kY ]
zk -z,

f(sk, zs") —f’s"(sk, z%k) =
f‘(sk, :r:s") —f‘(s,c, :r:*) +f‘(sk, x*) —F(z*
—}."-sk(sk, z k) + f_‘sb“(sk ‘1 k1
—fs"‘;l(sk vy, TEH +f‘s“1(sk ', )
-f's"“(sk o1 le:) +f(“$k(xs‘=)' xsk)
= Flug (z) + Flug, (z™*), 27) = Fug (=), z7) +F(z")  (32)
where s, < y.sk(xs“) < $4 +1- According to condition 2 we have
|F‘(s, z,) —F(s, x2)|sL|z1 —::2| ,
|Fs (s, z) —FS(s,zp) <L |:r:1 —xz|
for all s and x4, £, € X. Therefore
|F‘_(sk, xs") —F_(sk, :r:*) <Llz% - 2"
|Fe (s, o q, 54 = Fo ¥ (s, o, 2%8) < L1254 = 25|
g @™, 2% — Flug @™, 25l s Llz® - 2| (33)
The theorem 1 gives
|F‘-(sk, x‘) —F'(x*)| — 0
F (g, (), z7) = F(z™)| — 0 (34)

with probability 1.
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Definition of the algorithm implies

FE(se vy, 28 = F(u¥(z "), z°%) (35)

Compactness of the sets X and O with continuity of f(z, w) implies boundedness of

ﬁ:(s, z ) uniformly on s. Therefore we may assume without loss of generality that
|F-Sk<sk, ZSk) -}:Sk+l(sk +1 zsk“)| — 0 (36)
combining (32)-(36) we obtain
- Sk =Sk Sk
F(sp, 2%) —F (s, 2°%) =0

with probability 1.

This contradicts initial the assumption and therefore
F(s, z5) =F%(s, z5) — 0
with probabiity 1.
Thus
F(s,z%) —minF(s, ) ~ 0
reX
because

F(s, z5) 2 minF(s, z) 2 FS(s, %)
reX

The proof is completed.

The theorem suggests that proposed techniques could be viable for computing
upper bounds. The important question now is whether the speed of convergence to
upper bound is faster than convergence of the bounds themselves. To find condi-

tions which guarantee this is the objective of further study.
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