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dition t h e  set to which t h e  probabil ist ic pa ramete rs  belong i s  a l so  known. Numeri- 
c a l  techniques are proposed which allow t o  compute upper  and lower bounds f o r  
t h e  solution of t h e  s tochast ic  optimization problem under these  assumptions. These 
bounds are updated successively a f t e r  t h e  a r r i v a l  of new observations.  The 
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COMPUTING BOUNDS FOR THE SOLUTION OF THE 
STOCHASTIC 0 ~ 1 7 A T I O N  PROBLEM WITH 

INCOMPLETE 1NM)RbIATION ON DISTRIBUTION 
OF RANDOM PARAhEERS 

A. Gaivoronski 

During r e c e n t  y e a r s  considerable e f f o r t  w a s  made t o  develop numerical tech- 

niques f o r  a solution of s tochast ic  programming problems. These problems can  b e  

formulated quite generally as follows: 

minimize 

subject  t o  const ra ints  

where x E Rn is a vec to r  of decision variables,  o E I) C Rm is  a vec to r  of random 

var iables  which belong t o  some probabil i ty space ,  H - some probabil i ty measure 

and E ,  denotes expectation with r e s p e c t  t o  o. Algorithms f o r  solving th is  problem 

as well as various applications t o  operat ions  r e s e a r c h  and systems analysis c a n  be  

found in Ermoliev [7], [8], Kall [13], P rekopa  [21], Wets [23] [24] where one can  

find f u r t h e r  re fe rences .  I t  w a s  assumed usually t h a t  probabil i ty distr ibution H is  

known. This distr ibution is obtained from t h e  set of observations tol, . . . , o,, . . . I  
of random vector  o through application of a p p r o p r i a t e  s ta t is t ica l  techniques. 

However, information contained in observations i s  of ten insufficient t o  identi- 

fy unique distr ibution H. Then i t  i s  often possible t o  define some set G t o  which dis- 

tr ibution belong and apply minimax approach (worst case analysis) to t h e  problem 

(1). This approach war; studied by DupaEov6 [4] [5], Ermoliev [6], Golodnikov [12], 

Ermoliev, Gaivoronski and Nedeva [9], Birge and Wets [I], Gaivoronski [lo] f o r  t h e  

c a s e  when the  set G of admissible distr ibutions is defined by const ra ints  of moment 

type  and by Gaivoronski [I l] for- t h e  c a s e  when t h e  measure H is  contained between 



some upper  and lower measures. In this case however some unspecified statist ical  

methods should be used to obtain these bounding measures or moment constraints. 

The resulting set G a s  well as the solution of the problem (1) and its accuracy will 

heavily depend on these techniques. 

This paper  presents  the attempt t o  solve the  problem (1) starting directly 

from the  finite set of observations [al, . . . , o, 1. In this case i t  is possible only to 

identify some upper  and lower bounds on the optimal value of the  objective func- 
1 

tion and point z which yields value within these bounds in s o m e  probabilistic 

sense. These bounds should possess the following properties:  

- be valid f o r  all s, nonasymptotical; 

- be successive i.e. permit easy updates when new observations a r r i ve ,  this will 

allow t o  compute them in r ea l  time; 

- be independent from any par t icular  parametric family of distributions such as 

normal, lognormal etc. 

This approach, if successfully implemented, would allow to avoid such ques- 

tions as "where do  you ge t  your distribution"? which are often confronted by sys- 

t e m s  analyst who applies model (1) to r ea l  systems. I t  could also present  a "middle 

road" between a purely stochastic approach, when unknown parameters o are con- 

sidered to possess known probability distributions H and deterministic approach 

when i t  is assumed that  all what is known about o is tha t  i t  belongs t o  s o m e  set fl 

(for m o r e  details see Kurzhanski [17]). 

This paper  presents  only f i r s t  s teps  towards this direction. In the section 2 

the precise  formulation of the  problem is developed using cer ta in  techniques of 

extracting information about distribution from observations. This leads to minimax 

problems with a n  inner problem which allows an  explicit solution defined in t he  

section 3. Finally in the section 4 numerical techniques for computing successive 

upper  bounds is described. Results of s o m e  numerical experiments are presented 

in the  course of exposition. 

I t  should be  noted tha t  s o m e  techniques fo r  computing bounds for  solution of 

the problem (1) in different contexts w a s  described in Birge and W e t s  [I], Cipra 

[Z], Kall [14], Kankova [15]. 



2. PROBLEM FORMULATION 

In,formal statement.  Solve the problem 

when all tha t  is known about random parameters o is the s e t  of observations 

to1,. - .  . us!. 

We shall make two basic assumptions: 

1 .  Distribution H of random parameters o exists,  but unknown 

2. Observations ol, . . . , o, a r e  mutually independent and form the sample from 

this distribution H. 

In o rde r  t o  solve the problem (2) i t  is necessary t o  clarify what is considered 

a s  solution and learn how t o  ex t r ac t  information about distribution H from obser- 

vations wi . 

Let us assume tha t  o belongs t o  some s e t  n c Rm with Bore1 field B; probabili- 

ty measure H is defined on this field, thus we have a probability space (n,  B, H). - - -  
For each fixed s le t  us consider the sample probability space (n ,  B, P) which is a - - -  
Cartesian product of s spaces (n,  B, H). The space (n ,  B, P) is the smallest space 

which contain all (nS,  w ,  p ) .  In what follows the "convergence with probability 

1 "  will mean the "convergence with probability 1 in the space (nS , p, p ) " .  With 

the s e t  of observations tol, . . . , o, j the s e t  of distribution G, will be associated 

in the following way. 

Let us fix the confidence level a : O  < a < 1 .  We shall consider events with 

probability p less than a "improbable" events and discard them. Let us consider 

a rb i t r a ry  set A c B. Among s observations lol, . . . , o, j t he re  a r e  iA observa- 

tions which belong t o  set A ,  0 S iA S s. The random variable iA is distributed bi- 

nominally and i ts  values can be used t o  estimate H(A) (Mainland [19]). To do this 

let us consider the following functions 

S s! 
9 ( s l  k ,  2 )  = C z i  (I - z), -i 

= k  i ! ( s  - i ) !  

observe that  



The function # ( s ,  k ,  z )  is  a monotonically increasing function of z on the interval 

[ O ,  11, # ( s ,  k ,  0 )  = 0 ,  # ( s ,  k ,  1) = 1, k  # 0 .  Therefore the solution of equation 

# ( s ,  k ,  z )  = c  exist  fo r  any 0  5 c  5 1. Let us take 

a ( s ,  k ) : # ( s ,  k ,  a ( s ,  k ) )  = a ,  k  # 0  (5) 

b ( s ,  k ) : c k ( s ,  k ,  b ( s ,  k ) )  = a ,  k  # s 

The values a  ( s ,  k )  and b  ( s ,  k )  a r  the lower and upper bounds f o r  the probability 

H(A)  in the following sense. 

LEMMA 1. For a n y  fixed set A  C B t h e  bound a  ( s  , k  ) defined in (5 )  possess t h e  

foLLowing propert ies  

1 .  p [ a ( s ,  i d )  > H ( A ) ]  4 a f o r a n y m e a s u r e H .  

2. If for some func t i on  c ( i ) , i = O : s ,  c ( i  + I ) > c ( i )  we  have  

p [ c ( i A )  > H ( A ) ]  4 a f o r  a n y  H  t h e n  c ( i )  4 a ( s ,  i )  

This lemma shows tha t  a ( s ,  id)  is  in a certain sense the best lower bound f o r  the 

probability H(A) .  The similar result  holds fo r  the upper bound b  ( s ,  id): 

LEMMA 1'. For a n y  f i zed  set A  C B b  ( s ,  k )  defined in (5) possess t he  JoLLowing 

properties: 

1. p [ b ( s ,  id )  < f f (A ) I  5 a 

2. for some func t i on  c ( i ) ,  i = O : s ,  c ( i + l ) > c ( i )  we have  

p 1 c ( i A )  <H(A) I  4 a f o r a n y H  t h e n c ( i ) r  b ( s ,  i). 

PROOF of the Lemma 1 

1. Statements(3)-(5)imply 



where  j  (H,  A )  = min I j  : @ ( s ,  j  , H ( A ) )  < a j. T h e r e f o r e  PS la ( s ,  iA) > H ( A )  j 5 a 
j 

f o r  any  H. 

2. Consider  now a r b i t r a r y  function c ( i ) ,  i = 0 ,  . . . , s .  W e  obta in :  

= 2 S !  H ( A ) ~  (1 - H ( A ) ) ~  -i 

i = j ( H , A )  
i ! ( s  - i ) !  

where  j  (H ,  A )  = min I j  : c ( j )  > H ( A )  j. 
j 

Assumption 2 of t h e  lemma now implies 

s 3 3 @ ( ~ ,  j ( H ,  A ) ,  H ( A ) )  5 a ( 6 )  

Suppose  now t h a t  c  ( 0 )  > 0 .  Taking H ( A )  such  t h a t  0  5 H ( A )  < c  ( 0 )  we obta in  

j  (H,  A )  = 0  and  @ ( s ,  j  (H ,  A ) ,  H ( A ) )  = 1 which c o n t r a d i c t s  (6 ) .  T h e r e f o r e  

c ( 0 )  = O .  In case if c ( i )  > a ( s ,  i )  we c a n  t a k e  a ( s ,  i )  < H(A)  < c ( i ) .  Then 

j  (H,  A )  = i and @ ( s ,  j  (H,  A ) ,  H ( A ) )  > a which aga in  c o n t r a d i c t s  ( 6 ) .  Thus, 

c  (i ) 6 a ( s  , i ) f o r  a n y  i and  t h e  proof  i s  completed.  

The va lues  a ( s  , k  ) a n d  b ( s  , k )  defined by (5 )  h a v e  t h e  following useful  p r o -  

p e r t y .  

LEMMA 2. There e x i s t s  a s u c h  that for aLL a < a t h e  b o u n d s  a ( s  , i )  a n d  

b ( s ,  i )  satisfi t h e  foLLowing property:  

The proof  of t h i s  lemma i s  v e r y  t echn ica l  and  i s  t h e r e f o r e  omitted. The va lue  of a 
computed with f o u r  d ig i t s  a c c u r a c y  i s  a = 0.4681. This p r o p e r t y  i s  v e r y  impor t an t  

f o r  f u r t h e r  cons ide ra t ions  and  i t  will b e  assumed t h a t  a < a. 



N o w  i t  i s  possible to specify precisely t h e  p rocess  of obtaining bounds f o r  t h e  

solution of t h e  problem (1): 

Precise statement. The solution p rocess  evolves in d i s c r e t e  time 

s = 0, 1 ,... . Before time in terval  s t h e  set lol, . . . , w, of observations i s  

available which define t h e  set G, of admissible distr ibutions.  A t  the  time in ter-  

val s t h e  solution p rocess  consists  of t h e  following s teps:  

1. N e w  observat ion o, ar r ives .  The whole available set of observations 

lol, . . . , w, ] defines t h e  set of admissible distr ibutions G, in t h e  following way: 

f o r  any measurable A ,  where a (s , iA ) and b (s , iA ) are defined in (5). Additional 

information about  t h e  ac tua l  distribution H of random paramete rs  o can  b e  includ- 

e d  in t h e  definition of t h e  set G, . Some ways of doing th is  will be  discussed l a te r .  

2. The solution of problem (1) at s t e p  s i s  defined as t h e  p a i r  wf., f:) of lower and 

u p p e r  bounds 

ff = min min ff(z, o)dH(o) 
t E X H  €12. 

p: = min max J f  (z, o)d~(o) 
z E X H E G .  

* 
and t h e  optimal point z, i s  defined as follows: 

* 
max J f  (zs*, o) ti~(o) = /,Y. Z, E x 

H  €12, 

3. The p rocess  i s  r epea ted  nex t  time in terval  s + 1 with a r r i v a l  of new observa- 

tion. 

The bounds on solution obtained in th is  fashion are const ructed involving t h e  

"best" and t h e  " w o r s t "  admissible in t h e  sense  of lemma 1 distribution H and t h e  

* 
point z, yields t h e  value of t h e  objective within these  bounds. In what follows we 

shall  concentra te  on t h e  numerical a spec t s  of the  problems (8)-(10). 



3. THE SOLUTION OF THE MNER PROBLEM 

The minimax problems (8)-(9) look very  difficult because the  inner  problems 

involve optimization o v e r  the  s e t  of probabil i ty measures defined by quite compli- 

ca ted constraints.  I t  a p p e a r s ,  however, tha t  inner  problems have explici t  solu- 

tion. Let us consider  th is  problem in more detail  and denote f o r  simplicity 

f (x , o )  = g (a ) .  W e  are interes ted in solving the  following problem: 

minimize ( o r  maximize) with r e s p e c t  t o  H 

subject  t o  const ra ints  

Let us assume tha t  g ( o O )  = min g ( o )  and g ( o S  + I )  = m a x g ( o )  ex i s t  and ar- 
o s n  o s n  

range  the  set of observat ions  lol, . . . , os 1 in o r d e r  of increasing values of t h e  

function g (o):  

oO, o l , .  . . , u s ,  us +l  

Here  and elsewhere t h e  original o r d e r  of observations i s  indicated by subscr ip t  

and arrangement  in increasing o r d e r  of t h e  values of g i s  indicated by super -  

s c r i p t .  The f i r s t  element of new arrangement  will always b e  t h e  point with t h e  

minimal value of the  objective function on the  s e t  fl and t h e  las t  element (with 

number s + 1 )  will b e  t h e  point with maximal value. This ar rangement  depends on 

t h e  number s of t h e  time in terval ,  but th is  dependence will not  be  explicitly indi- 

ca ted f o r  t h e  simplicity of notations. 

The solution of t h e  problem (10)-(11) i s  given by t h e  following theorem: 

THEOREM 1 Suppose that  e z i s t  points  o0 and  us+' such that  

8 (oO) = min g (o), g (oS + l )  = max g (o).  m e n  
~n w E n 

1. The solution of the problem W)-(rZ) ez i s t  and  among eztremal measures al-  

w a y s  e z i s t  discrete one wh ich  is concentrated in  s + l points: 



where Ag = max g ( w )  - min g ( o )  
O E ~  O E ~  

3. 

with probability 1 as s - -. 
PROOF 

1. Let us consider the upper bound g', and define the s e t s  

and functions 



Each  set Ri conta ins  s - i poin ts  of . Let  u s  cons ide r  t h e  problem 

where  

W e  have  

t h e r e f o r e  

s +1 
= x g(oi)(b(s, s - i + 1) - b(s, s - i)) = & 

i =1 

where  we took b (N, - 1) = 0. Hence  6 i s  t h e  solut ion of problem (15) with & be- 

ing i t ' s  optimal value.  W e  h a v e  

and t h e r e f o r e  

I t  i s  l e f t  to p r o v e  t h a t  is E G,. To d o  t h i s  let u s  c o n s i d e r  a r b i t r a r y  measu rab le  

s u b s e t  A of R which con ta ins  k f rom s + 1 poin ts  lo1, . . . , oS +'I ,  s a y  

i l  ik lo , . . . ,  0 1. 



According t o  t h e  lemma 2 

b ( s ,  s - i j  + 1 )  - b ( s ,  s - i j )  5 b ( s ,  k - j )  - b ( s ,  k - j  - 1 )  

Therefore  

On the  o t h e r  hand 

b ( s ,  s - i j  + 1 )  - b ( s ,  s - i j )  

2 b ( s ,  s - j  + 1 )  - b ( s ,  s - j )  

= a ( s ,  j )  - a ( s ,  j  - 1 )  

Therefore  

Inequalities ( 1 6 )  and ( 1 7 )  prove t h a t  4 ( A )  E G, . The proof of the  f i r s t  statement 

of the  theorem is  completed. 

2. We have 

Consider now t h e  di f ference p: - q: 

The f i r s t  term is monotonically increasing,  the  second is  monotonically decreasing 

and f o r  odd s  we have 

s  + l  p,i -q,i < O  f o r  1 5 i  <- 
2 



s  + l  
pf - qf = o f o r  i = - 

2 

+ l  < i  s s  pf - q,i > o f o r  - 
2 

Therefore  f o r  odd s  w e  can continue (18)  as follows: 

According t o  t h e  definition of pf and qf w e  have 

Taking into account t h a t  b ( s ,  0 )  = 1 - a  ( s ,  s )  las t  equali t ies toge ther  with 

(18) will give 

To proceed f u r t h e r  w e  have t o  obtain t h e  lower bound f o r  a ( s ,  (s  + 1 ) / 2 )  and 

a  ( s  , (s  - I ) /  2 ) .  To d o  th i s  remember t h a t  a  ( s ,  (s  + I ) /  2 )  i s  t h e  solution of 

equation 

with r e s p e c t  t o  probabil i ty z in t h e  binomial distribution, by Pr  we denoted t h e  bi- 

nomial distribution with s  t r ia ls .  This c a n  be  rewrit ten as follows: 



On t h e  o t h e r  hand  w e  h a v e  t h e  following Okamoto inequal i ty  [20]  

f o r  a n y  c r 0 .  Due to 1 /  2  + 1 /  2 s  - a  ( s ,  ( s  + I ) /  2 )  > 0  f o r  a l l  s  w e  ob ta in  f rom 

p rev ious  inequal i ty  

f o r  z = a ( s ,  ( s  + 1 ) / 2 ) .  

T h e r e f o r e  t h e  so lu t ion  of t h e  equat ion  

will g ive  t h e  lower  bound f o r  a ( s ,  ( s  + 1 ) / 2 )  This g ives  

a ( s .  ( s  + I ) /  2 )  a 1 /  2  + 1 /  2 s  - ,/%. In t h e  s ame  way we ob ta in  

1 1  a s ,  2- ---  [ ] 2  2 s  

subs t i tu t ing  t h i s  i n  (20)  w e  ob ta in  

In case of t h e  e v e n  s  w e  ob ta in  

S 
= , i - q , i < O  f o r  1 ~ i ~ -  

2  

S = , i - q , i > O  f o r  - + 1 5 i  4 s  
2  

This g ives  

a n d  f inal ly 



After applying Okamoto unequality w e  again obta in  from (21) t h e  des i red  unequali- 

t Y .  

3. Observe t h a t  t h e  empirical  distr ibution H: = [(ol ,  l/ s), . . . , (o, , l/ s )  1 al- 

ways belongs to G,. There fo re  t h e  last s ta tement  of t h e  theorem follows from state- 

ment 2 ,  boundedness of g ( o )  o n  R and t h e  l a w  of l a r g e  numbers. 

The proof i s  completed. 

Results  of numerical exper iments  f o r  computing bounds g', and g, are shown - 
in Figures 1-6. These bounds were computed f o r  confidence level  a = 0.1. They al l  

exhibit  similar behavior:  r ap id  convergence f o r  a small number of observat ions  

which slowed down as t h e  number of observat ion grows in accordance  with r e s u l t  of 

t h e  theorem. Almost in al l  examples t h e  ac tual  value of f g ( o ) d H ( o )  always s tayed 

within bounds, although t h e  value of a w a s  chosen 0.1. This happened because  t h e  

bounds w e r e  computed f o r  t h e  worst distr ibutions which are those  concen t ra ted  in 

a finite number of points. When such distr ibutions were taken  t h e  behavior  of 

bounds worsened (Figures 2-4) and in some cases t h e  bounds did not  contain ac tua l  

value (Figure 4). A t  t h e  same time f o r  smoother  distr ibutions convergence i s  fas- 

ter (Figure 5, where  distr ibution i s  close to normal). 

Within t h e  framework of nonparametric s t a t i s t i c s  [16] t h e  bounds proposed in 

th is  sect ion can  b e  considered as a spec ia l  type  of L-estimates. 

4. INCORPORATING ADDITIONAL INFORMATION 

The method developed in t h e  last section dea l s  with t h e  case when t h e  only 

available information o n  t h e  distr ibution H of random paramete r s  o comes from ob- 

se rva t ions  oi. In many cases ,  however, additional information i s  available which i s  

drawn from observat ions  on similar systems. One of t h e  ways of using th is  informa- 

tion i s  considered in  th is  sect ion.  

Suppose t h a t  additional information comes in t h e  form of const ra in ts  on  t h e  

values of moments l ike expecta t ion,  va r i ance  e t c .  This can  b e  expressed  in t h e  fol- 

lowing way: 



The problem of gett ing upper  and lower bounds in th is  case can be expressed 

similarly t o  (10)-(11). Let us t ake  t h e  problem of gett ing t h e  upper  bound: 

maximize with r e s p c t  t o  H 

sub jec t  t o  const ra ints  

The Lagrange multipliers are used t o  t ake  account of const ra int  (24) and reduce 

t h e  problem (22)-(24) to t h e  problem (10)-(11). 

Let us consider t h e  function 

and assume tha t  f o r  e a c h  u 2 0 exis t  oO(u ) and oS "(u) such t h a t  

For each  fixed u a r r a n g e  wi in increasing o rder :  

where L (of (u ), u )  S L (of +l(u ), u ). Here  again w e  use supersc r ip t  t o  indicate 

o r d e r e d  observations,  th is  time, however, order ing will depend on u . 

cons t ruc t  HS (u) = [(oO(u ), p:), . . . , (aS +'(u ), p: +I) j 

and take  

where p: are defined in (14). 



THEOREM 2 

Suppose tha t  

1. For u 2 0 ex is t  wO(u  ), wS (u ) s u c h  tha t  (25) is sat is f ied.  

2.  Ex i s t s  b > 0 s u c h  tha t  

* * 
Let U S  take  u : u r 0, p (u * ) = min p (u ) (ij t h i s  u * esis ts) .  Then the  

u 2 0  

measure fiS(u*) defined in (26) i s  t he  so lu t ion  of t he  problem 622)-(24) w i t h  

probabili ty PS in the  space ( R S ,  BS , H S )  at  least equal to y where 

qS (u ) is  defined in (27) a n d  the  corresponding u p p e r  bound i s  qS (u *). 

PROOF Observe t h a t  f o r  empirical  distr ibution H: consisting of s points con- 

s t r a i n t s  (23)  are satisfied.  Let us est imate t h e  probabil i ty with which 

Jvi(w)cW,e(w) = ~ / S Z ~ = ~ V ~ ( O ~ )  < - E  with E > O .  

According to generalization of Tchebyshev inequality 

There fo re  

f o r  some E > 0 with probabi l i ty  at l eas t  y. Convexity of t h e  s e t ,  defined by (23)  

similarly to [9] implies now equivalence of t h e  problem (22)-(24) and the  problem 

min max f L (w. u ) dH(o)  
u 2 O  H 

(29)  



subject  t o  (23) ,  which holds f o r  al l  o E RS such t h a t  (28)  is satisfied. The inner  

problem in (29)  h a s  explici t  solution defined by theorem 1. This solution i s  

described by re la t ions  (26)-(27) .  

The proof i s  completed. 

A similar r e s u l t  holds f o r  lower bound if w e  t ake  L ( o ,  u )  = g ( o )  + 
E ; ~ . ' ~ U ~ ~ ( G J )  and qS(o)  = ~ f ~ ~ q f ~ ( o i ( u ) ,  u ) .  

The theorem 2  reduces  t h e  problem of gett ing upper  bound t o  minimization of 

function qS(u) ,  defined in (27) .  This is  a convex function with readily available 

values of subgradient.  Therefore  suitable nondifferentiable optimization tech- 

niques can b e  applied t o  g e t  i t s  minima [18, 221. Different si tuations can  o c c u r  dur- 

ing such computations. 

1 .  I t  was found t h a t  q S ( u )  i s  not bounded from below. This means t h a t  problem 

(22)-(24)  i s  infeasible. To g e t  a n  upper  bound in th is  case i t  is necessary  t o  d r o p  

const ra int  (24)  and solve t h e  problems (10)-(11)  instead. According t o  theorem 2  

the  probabil i ty of th is  case tends t o  0  as s --, =. 

2 .  The point u *  w a s  found such t h a t  within p resc r ibed  a c c u r a c y  ckS ( u *  ) will be  

t h e  optimal value of t h e  problem (22)-(24) ,  i.e. t h e  des i red u p p e r  bound with pro- 

bability t h a t  tends t o  1  when s --, =. For finite s ,  however, i t  is possible t h a t  

qs(u *) exceeds  t h e  optimal value of (22)-(24) .  In both cases i t  will be  t h e  u p p e r  

bound, but in t h e  second case not t h e  bes t  one. 

5. NUMERICAL TECHNIQUES FOR FRYDING THE UPPER BOUNDS 

FOR THE SOLUTION OF OPTIMIZATION PROBLEMS 

Let us r e t u r n  t o  t h e  problems ( 8 ) - (9 )  now. Define 

_F(s, x )  = min f j ' ( x ,  o)dH(o) 
H E C ,  

I t  is now possible t o  compute t h e  values of these  functions using resu l t s  of t h e  sec- 

tion 3 .  The problem of finding upper  and  lower bounds f o r  t h e  solution of ( 1 )  can  

be  formulated as follows: 

4; = min F ( s  . I ) ;  j'? = min F ( S  , z) 
2 E X  2 EX- 



Successive bounds f o r  simple problem are given in Figure 7 to give a feeling how 

they evolve. For  more complicated problems i t  i s  necessa ry  to develop specia l  nu- 

merical  techniques. The problem of finding lower bound j': i s  not  convex because 

t h e  function _F(s, z )  i s  not  convex with r e s p e c t  to z .  T h e r e f o r e  i t  needs specia l  

t rea tment  in e a c h  p a r t i c u l a r  case and genera l  efficient  techniques are ou t  of 

r e a c h  so f a r .  In th i s  sect ion w e  shal l  concen t ra te  on  t h e  problem of finding t h e  

u p p e r  bound j': which i s  much e a s i e r  because  t h e  function F ( s ,  z )  i s  convex. This 

allows application of convex programming algorithms to find jt . These algori thms 

however, need a substant ia l  number of i tera t ions  to g e t  close to a solution and with 

a r r i v a l  of e a c h  new observat ion t h e  p rocess  should b e  s t a r t e d  anew. The main 

point  of th is  section i s  t h a t  techniques c a n  b e  developed t h a t  perform v e r y  limited, 

p e r h a p s  only one,  i t e ra t ion  of convex programming algorithm with e a c h  new obse r -  

vation and s t i l l  g e t  reasonable  u p p e r  bound. Generally speaking t h e  p r o c e s s  of ob- 

taining bounds look like th i s  

1. Start from some fixed number of observat ion r and point  zT .  

2. Suppose t h a t  p r i o r  to s t e p  number s t h e  observat ions  ol, . . . , us a r r i v e d ,  

t h e  point x S  w a s  obtained and t h e  c u r r e n t  u p p e r  bound i s  t aken  equal  to 

F ( s  - 1, zS -I). The following calculat ions are performed at t h e  s t e p  number 

S.  

Za. The observat ion os a r r i v e s .  The function F ( s ,  x )  and i t s  subgradient  i s  

computed at t h e  point  xS and possibly at some additional points. 

2b.  These values are used to perform one s t e p  of minimization of t h e  function 

F ( s ,  x )  which gives t h e  new point zS . The p rocedure  goes  to t h e  nex t  

s t ep .  

W e  shall  consider  a pa r t i cu la r  method based on generalized l inea r  program- 

ming [3]. This technique provides  na tu ra l  bounds f o r  t h e  solution of the  problem 

min,F(s, x )  which enables  to con t ro l  accuracy .  With each  new observat ion new 

supporting hyperplane i s  introduced.  

1. Take a n  initial collection of points 

For  e a c h  y E ? compute u ( y ) :  



Take F(0, y ) = j' (y , o(y )) and compute 

Solve t h e  problem 

min max [F(o, y) + <z - y, F, (0, y)] 
x y€9 

This is  a l inear  programming problem which solution is  zl. This will be  t h e  initial 

solution of t h e  original problem. Take t h e  set of observations R0 = 4. 

2.  A t  the  beginning of s t e p  number s we have t h e  set of observations RS t h e  set 

of approximating points YS c u r r e n t  approximation t o  t h e  minimum of t h e  upper  

bound zS and f o r  each  y E YS w e  have a l ready computed j'(y, o) o E RS 

j' (v, o(y )), f, (y, o), f, (y, o(y )), and estimates 

then w e  do t h e  following: 

(a)  Obtain new observation os and t a k e  RS = RS u to, j .  The set RS consists 

now of s points ol, . . . . OS 

(b) For  y = zS compute o(y ): 

and compute j' (y , o), j', (y , o) f o r  a l l  o E C I S  . 

Arrange t h e  set RS U io(y) j in t h e  o r d e r  of increasing values of j' (y , w): 

and oS +l(y) = o(y) 

Assign ps (y) = s and take  

For  y E YS t ake  ps (y) = pS -l(y). Update t h e  set YS 



(c)  Find 

min max [ F ( p s  (Y ), Y )  + <z - Y ,  Fz ( ~ s  (Y ) I  Y )>I 
EXy € r  

This is  l inear  programming problem and suppose t h a t  is i t s  solution. Consider 

t h e  s e t  

= min max [ F ( p s ( y ) ,  Y )  + <z - y ,  F , ( p S ( y ) ,  Y ) > ]  
EXy E r  

and p S ( Y )  < s j  

If Z S  = # then t a k e  z S  + I  = 5 and g o  to t h e  s t e p  number s + 1, otherwise proceed 

t o  (d). 

(d) For  each  y E Z S  compute f  ( y ,  w i )  and f , ( y  , wi) ,  p S ( y )  < i 5 S .  Take 

Assign p s ( y )  = s and g o  t o  (c). The following theorem deals with t h e  convergence 

of th is  method. 

THEOREM 3. Suppose  that t h e  following condi t ions  a r e  satisj'ied 

1. Se t s  X c Rn a n d  D c Rm are  compact sets. 

2 .  The f u n c t i o n  f ( z ,  w)  i s  convez  o n  z a n d  c o n t i n u o u s  o n  O, 

I l  o - I 5 L I Z ~  -z21 for zl ,  z 2  EX, o E n m e n  

F ( s ,  z ' )  - min F ( s  , z )  4 0 as s 4 m w i t h  probabi l i ty  1. 
z  E X  

PROOF Let us denote 

F S ( s ,  z )  = max [ F ( p s ( y ) ,  y )  + <z - y , F z ( p S ( v ) ,  y ) > l  
Y E r  

Then 

Let us prove t h a t  F ( s ,  z S )  - F S  ( s ,  z S )  0 with probability 1. Note t h a t  



F ( s  , z S )  2 FS ( s  , z S )  i s  always satisfied. Suppose that for  some A > 0 exist subse- 

quence sk such that 

Due to compactness of the s e t  X w e  may assume without loss of generality that 
* 

Zsk 4 X  , 

where sk  S p  ( x S k )  S sk +l .  According to  condition 2 w e  have 
Sk  

I F ( s ,  z l )  - F ( s ,  x2)1S  L i z l  - zz l  , 

IFS( s ,  x l )  - F S ( s ,  x 2 )  d L  Ixl  - x21 

for  all s and x  l ,  x  E X .  Therefore 

lF(Sk,  X S k )  - F ( s t ,  z * )  d L IxSk - z *  1 

-st +I I F  ( s k  + I ,  xsk+l)  -FSk+l(sk s L IzSk+' 

I f  ( p S k ( x  sk ) ,  x - F . ( p S k ( ~  sk ) ,  *) 1 s L I X  sk - I * I 

The theorem 1 gives 

1F(sk, x * )  -F(X*)I 4 0 

/F (psk (x sk ) ,  x * )  - F ( z * ) ~  4 0 

with probability 1. 



Definition of t h e  algori thm implies 

Compactness of t h e  sets X and fl with continuity of f ( z  . o) implies boundedness of 

F ( s ,  z )  uniformly on s .  There fo re  w e  may assume without loss of genera l i ty  t h a t  

combining (32)-(36) we obta in  

with probabil i ty 1. 

This con t rad ic t s  initial t h e  assumption and t h e r e f o r e  

with probabii ty 1. 

Thus 

F ( s ,  z S )  - m i n F ( s ,  z )  - o 
2 EX 

because 

The proof i s  completed. 

The theorem suggests  t h a t  proposed techniques could be  viable f o r  computing 

upper  bounds. The important  question now is  whether t h e  speed  of convergence to 

upper  bound is  f a s t e r  than  convergence of t h e  bounds themselves. To find condi- 

tions which guaran tee  this  is  t h e  objective of f u r t h e r  study.  
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