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Preface 

For many years, designers of environmental monitoring systems have faced 
the problem of optimal allocation of resources fo r  observational networks (see, 
for  instance, Munn, 1981): where, how frequently and what characteristics have to 
be measured or observed in o rder  to obtain data that will be sufficient fo r  prog- 
noses o r  warnings. From the  1970's t o  the early 19809s, a number of heuristic ap- 
proaches appeared in the  "environmental" literature. Most of them are based on 
the analysis of space and time correlation structures (usually historical time 
series are used fo r  their  estimation) of the observed entities with subsequent siev- 
ing to keep the  less correlated (and hopefully most informative) observational 
points. 

Different procedures fo r  "sieving" have been used in applications: viz., for- 
ward and backward versions with various objective functions. These procedures 
have led to reasonably good results; however, no accurate mathematical analysis 
were undertaken. 

In this present paper, a new approach to optimal allocation of an observation- 
a l  network is proposed and some iterative numerical procedures are considered. 
The approach is essentially based on the  theory of the optimal design of regression 
experiments (Ermakov, ed., 1983). Using the classical results from the  moment 
spaces theory, the author investigates the properties of optimal allocations and 
the oonvergence of the numerical procedures to optimal solutions. 

Prof. M. Antonovsky 
(Environment Program) 

- iii - 



The Ekperimental Design of an Obsemational Network: 
Optimization Algorithms of the Exchange Type 

K K Fedorov 

1. Introduction 
In this paper the numerical procedures of the "exchange" type for  construc- 

tion of continuous optimal designs with restricted measures (see definitions in 
Fedorov, 1986, Wynn, 1982) were considered. The "exchange" type procedures 
were based on the simple heuristic idea: a t  every subsequent s tep t o  delete 'bad" 
(less informative) points and to  include "good" (most informative) ones. 

Before giving the  accurate mathematical formulation of the problem and to il- 
luminate the  place of the results in experimental practice, let us start with two 
simple hypothetical examples. "Real" examples, where the considered approach 
seems to  be appropriate can be found, fo r  instance, in Munn, 1981. 

Ezample 1. Let X be an area where N observational stations have t o  be locat- 
ed. An optimal (or at least, admissible) location depends upon models describing a 
system: "object under analysis - observational techniques". 

The regression models: 

yi  = q(zi ,9)+ci , i  =1,~ (1) 

are commonly used in experimental practice. Here yi is a result of an observation 
of the i -th station, q ( z  ,6)  is an a priori given function, 9 is a vector of parame- 
ters t o  be estimated and ci is an e r r o r  which one believes t o  be random (more de- 
tailed specification will be given later). The optimal location _of stations has t o  
provide the  minimum of s o m e  measure of deviation of estimates 6 from true values 
of 6. 

For sufficiently large N the  location of stations can be approximately 
described by some distribution function #(&) and one needs t o  find an optimal 
#*(&). If X is  not uniform, then one comes to the  rcstrictior~ Mrat the share 
N(AX)/ N of stations in any given pa r t  AX cannot exceed some prescribed level. In 
terms of distribution functions, i t  means that  

where is  defined by an experimenter. Here is the crucial feature of the  problem 
considered in this paper. 

Ezample 2. Let some characteristic yi be observed for  members of a sample 
of size N. Every i -th member of this sample can be chosen f r o m  a group labelled 
by variables zi. If the  sampling is  randomized, then the observed characteristic 
yi  can be described by s o m e  distribution (y / zi , 9). 

In many cases, a f ter  some manipulations, the initial model can be reduced to  
(I),  where q(zi ,6)  is an average characteristic of an i -th group and ci reflects a 
variation within this group. The size of any group (or number of units available 
for  sampling) is normally bounded. When applied to a continuous version of the  



design problem one oan easily repea t  the  considerations of t he  previous example 
and come to model ( I) ,  (2). 

In what follows, i t  will be  assumed tha t  in model ( I ) ,  (2): 

- a response function is  a linear function of unknown parameters,  i.e. 
q ( z  , 9 )  = gT) ( z  ) , 9- and functions ) ( z  ) are given; 

- errors E( are independent and E[rf]=l (or  E [ E ~ ] = A ( z ~  ) , where X(z) is  
known, this case can  be  easily transformed to the  previous one). 
A s  usual, some objective function O defined on the  space of m Xm information 

matrices 

will descr ibe t h e  quality (o r  accuracy) of a design t (M-'(€) as a normalized 
variance-covarianoe matrix of t he  least square estimators of parameters 9. 

The purpose of optimum design of experiments i s  to find 

Constraint (4) defines t h e  peculiarity of t h e  design problem with respec t  to 
standard approaches. Similar to t h e  moment spaces theory (compare with Krein 
and Nudelmann, 1973 Ch. VII), a solution of (3) and (4) will be called "(0 , *)-op- 
timal design". In pract ice,  *(&) r e s t r i c t s  t h e  number of observations in a given 
space  element dz (see t h e  examples). 

Optimization problem (1) and (2) were considered by Wynn, 1982 and Gaivoron- 
sky, 1985. To some extent,  they translated a number of classical resul ts  from mo- 
ment spaces theory to experimental design language. Gaivoronsky also analyzed 
t h e  convergence of t h e  i terat ive procedure f o r  optimal design construction based 
on t h e  traditional idea of s teepest  descent (see, f o r  instance, Ermakov (ed), 1983, 
Wu and Wynn, 1976) 

where t has  to satisfy (4) and some additional l inear constraints: 

J ~ ( z ) t ( & ) s c  . 
X 

Wynn briefly discussed a number of heuristic numerical procedures based on some 
results from t h e  moment spaces theory. 

The main objective of this  pape r  i s  to consider t he  i terative procedures of ex- 
change type which extensively use t h e  nature of optimal designs f o r  problem (3), 
(4) and therefore  promises to be more efficient than t h e  ones mentioned above. 

General propert ies  of optimal designs are discussed in Section 2. Section 3 
deals with formulation and basic analysis of t he  i terat ive procedure and i ts  modifi- 
cations. 



2. Charac te r i zn t ion  of (+ , +)-optimal Desigas 
In this section, t h e  propert ies  of optimal designs will be  discussed only to the 

extent sufficient f o r  the  analysis of the  proposed iterative procedures. More de- 
tails can be found in Wynn, 1982. 

The set of assumptions used la te r  is the following: 
a )  X is compact,  XER' ; 

b) j ( z  ) ERm are continuous functions in X ; 

c )  +(z ) is atomless; 

d) t he re  exists c <- such tha t  

E c ( + )  = {t:+[M(#)] S c < - , t ~ z ( + ) j  + 4 , 
where Z(+) is the  set of designs satisfying (4); 

e )  0(M) i s  a convex function of M ; 

c') *(z ) has a continuous density q ( z  ) ; 

80 
f') derivatives - = k exist  and are bounded fo r  all designs satisfying (d). 

8M 

Let z(+) t o  be a set of measures t which ei ther  coincide with 9' or equal t o  0. 

Theorem 1. & assumpt ions  (a) - (e) hold, then  there ex is t s  an optimal 
design t * €2 (4'). 

Proof. The existence of a n  optimal design follows from (d)-(e) and the  conr- 
pactness of the set of information matrices. The compactness of the  latter Ls pro- 
vided by (a) and (b). The fact tha t  at least one optimal design has to belong :(*) is 
the  oorollary of Liapounov's Theorem on the  range of a vector measure (see, for 
instance, Karlin and Studden, 1966, Ch. VIII, Wynn, 1982). 

Note 1. Liapounov's Theorem leads to another - - resul t  which can b e  useful in 
applications: f o r  any design 4 t h e r e  is a design ~ E Z ( + )  such tha t  M(~)=M(Z). 

A function q ( z , t )  is said to separa te  sets Xi and X2 if t he re  is a constant C 
such tha t  p (z  , t )SC (a.e. *) on XI and q ( z  , t)ZC (a.e. +) on X2 , (a.e. *) means "al- 
most everywhere with respec t  t o  the  measure q". 

Theorem 2. U assumpt ions  (a)-V) hold, w e n  a necessary a n d  sl4;riEcient 
condit ion that t 8 f E ( + )  is (+,+)-optimal is that v(z,4')  s epa ra t e s  two sets: 
X* =suppt0 and x\x*. 

This theorem w a s  f i r s t  formulated by Wynn, 1982; but i t s  proof was not per- 
fect. Therefore, w e  give t h e  newer one which i s  also more illuminative f o r  the  for- 
mulation and analysis of the  numerical procedures. 

Proof. Necessity. 

Consider t w o  designs: to and t ~ ? ( + ) .  Let 



Assume tha t  #' i s  (*,*)-optimal. Then f o r  any design # (see (f)): 

o s /  cp(z,tS) #(&I 
X 

From the  definition of cp(z ,t): 

and, therefore,  for  any E and D : 

j t + j c p  *(&I. 
E D 

This proves necessity. 

Sr4fSicisncy. Consider designs # *  and # ~ z ( + )  satisfying t o  (7) and (8) and as- 
sume now tha t  #* i s  nonoptimal, i.e. 

Let 7=(1-a)t*+a # , am and # i s  now ( 9  , +)-optimal. Then, the  convexity of @ 
leads then to the  inequality: 

@ ~ ~ ( 7 1 1  d ( 1 - 4  9 C M ( ~ * ) I  + a @ CM(#)I (10) 

r (1 -a) 9 [M(#*)] + a t@[M(#*)]-bj = 9 [M(#*)]-a d . 
Assumption (f) and inequality (8)  lead t o  the  inequality 

@ [ M ( ~ ) I  = 4 [M(t*)l + a j cp(z , to)  #(&I + o(a)  = (11) 
X 

2 @ CM(#*)I + 0 ( a )  

where E and D describe the  difference between the  supporting sets f o r  t* and #. 

When a + ,  t he  comparison (10) and (11) gives a contradiction. This completes the  
proof. 

Note 1. If instead of (c), one uses (c ' ) ,  then a necessary and sufficient condi- 
tion can be formulated in the  form of the  following inequality: 

max cp ( z , t * )  d min cp ( z , t o )  
2 a* z m x *  

Note 2. If (f) i s  complemented by (f), then 

cp (z,#) = 7  ( z . 0  - t r  9 ( t )  M(t) , 
where b(z , t )  = f' T(z  ) & (4) f' (Z ), and (12) can be converted to 

max y ( z , t * )  d min v ( z , # ' )  
z a* z m x *  



3. Numerical Procedure of Exchange Type 
Theorem 2 gives a hint on how t o  construct optimal designs numerically: if fo r  

some given design # one can find a couple of sets: 

then i t  is  hoped tha t  the  design 7 with 

supp 7 = s u m  # \ D U E  

will be "better" than #. The repetitions of this procedure can lead t o  an  optimal 
design. 

A number of algorithms based on this idea can be easily invented. In this pa- 
p e r  one of t he  simplest algorithms is considered in detail and i t  is  evident tha t  
thorough consideration of o thers  from this c luster  i s  routine technique. 

In what follows, t he  fulfillment of (c') is  assumed. 

ALgori thm. Let 
- 

lim 6, = 0 , lim x 6, = - and lim x 6: = k <- . 
s +- s+- ,= i  S +- 

Step a. There is a design #, EZ(+). Two sets D, and E, with equal measures: 

and including, correspondingly, points: 

z = A r g  max 6 ( z  ,#, ) and zz, = Arg min 6 ( z  , #, ) , 
+ + e m  

where XI, =supp t, and Xzs =X\X1,, have t o  be found. 

Step b. The design #, with t he  supporting set 

SUPP ts +I = Xl(S +1) = XIS \Ds UES 
is constructed. 

Iterative procedure (14)-(16) i s  based on the approximation (6+0): 

The analysis of i terat ive procedure (14)-(16) becomes simpler if 

(g) f o r  any design #€z(+): 
IM ( 0 1  2 ( > O  

This assumption is not very restrictive. If, f o r  instance, $(z)2q >O and the 
functions f ( z )  are linearly independent on any open finite measure subset of X, 
then (g) i s  valid. 

Most optimality c r i t e r i a  (g) lead t o  t he  fulfillment of t he  following inequalities: 



f o r  any €EE(*). Otherwise (17) i s  supposed to be  included in (g). 

Theorem 3. assumpt ions  (a), 0, (c '), (e)-(g) hold,  then  

lirn O [ M ( t  )I = iw O [M(€)] = 0' 
S *- C 

R o o f .  The approach i s  standard for  optimization theory (in t h e  statistical 
l i terature see,  f o r  instance, Wu and Wynn, 1978). Therefore,  some elementary con- 
siderations will be  omitted. 

Expanding (see (g) and (17)) by a Taylor se r ies  in 6, gives: 

where 1 %  1 SK,=K,(Kl,K2,K3). Due to this inequality and (14) t he  sequence 
S2, = tx K~ 6:j converges. By definition: 

s 

and, therefore,  the sequence: 

s,, = C 6, [7(z2, 9 €s )  - Y (2,s 9 €s ) l  
s 

monotonically decreases.  

F r o m  (g) and (19): 

K120[M (€2+1)] = @[M(t0)I + Sls + s2s2@* 

leads t o  t he  boundness of SlS . 
Subsequently, the  monotonicity of IS,, provides i t s  convergence and the  con- 

vergence of 0[M (€, )] j . Assume tha t  

lirn @ [M(€,)] = 2 @*+a , a > o .  
s +- 

(20) 

Then, from Theorem 2 and assumptions (b), (c') i t  follows tha t  

and 

lirn SlS r b lim x 6, = -ao, 
s +- s +- 

lim O [M(€,)] s -. 
s +- 

The contradiction between (20) and (21) proves the  theorem. 

Note 1. In (14)-(16), t h e r e  i s  some uncertainty in t he  choice of Ds and Es. 
Somehow, they have to be  located around z ,, and z2,. When $(z ) = const (and one 
a r r ives  at this  case by t h e  transformation &=$(z)&), then zls and z2, could be 
t h e  "geometrical" cen te r s  of Ds and Es . 

Note 2. The i terat ive procedure can be  more effective (especially in t he  f i r s t  
steps) if t h e r e  i s  a possibility to easily find 

and 



subject to  

Note 3. When 6, is  sufficiently s m a l l  and 

J f ( z ) f T ( z )  S (2)  d z  * f ( z l s ) f T ( z l s )  6, 
D 

then, the calculations in (14)-(16) can be simplified if one use the  following recur- 
sion formula (see, fo r  instance, Fedorov, 1972) 

(M*bffT) = ( I T  6 ~ - I  ff 
) a-I 

i r t 6 f T  M-11 

The modified version of the  algorithms, presented in Note 2. gives a hint fo r  
the  construction of 

Algorithm 2. 

Step a. The same as (22). but instead of (23) 

(no constraints on the sizes of D, and E, !). 
Step b. Coincides with step b of algorithm 1. 

This algorithm seems to be ra the r  promising fo r  changing the structure of an 
initial design €, rapidly. but i t  allows some oscillation regimes, at least principally. 
The author failed t o  prove i ts  convergence. Probably some combination of both 
considered algorithms (for instance, the  majorization of (24) by some vanishing se- 
quence 6, ) could be useful. 

4. Exchange algorithm in the standard design problem 
The possibility of changing the  algorithms similar to (14)-(16) fo r  design 

problem (3) (without constraint (4)) w a s  somehow overlooked in the  design theory. 
Atwood (1973) proposed a very similar algorithm but based on (5) and therefore 
handling all supporting points in design €, . 

The simplest analogue of (14)-(16) can be formulated as follows: 

Step a. There i s  a design €, . Two points 

z 1, = Argmax v(z , €, ) and z 2s = Argminv(z, t, ) , 
x %  x u  

(25) 

where & = suppX, have to be found. 

Step b. 

where t ( z )  is  a design with one supporting point z . 
The sequence id, 1 can be chosen as in (14). The convergence of the  algorithm 

can be proven similarly t o  Theorem 3. 



It is worthwhile noting that the convergence of procedures (25), (26),  in the 
discrete case (when 6, = K/N , a N - I ,  where N is  the total number of observa- 
tions) is  questionable. because proof of Theorem 3 is  essentially based on the fact 
that 6,4. 
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