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PREFACE 

Optimal experimental designs became a r a t h e r  efficient tool in applica- 
tions. There  are numerous catalogues of optimal designs for  some s tandard  
situations, fo r  instance, when t h e  response function is a multidimensional 
power polynomial o r  trigonometrical series.  In cases when t h e  response 
function is not of t h e  approximation t y p e  bu t  i t s  s t r u c t u r e  is based on some 
"physical" assumptions, one can not hope t o  find a n  optimal design suitable 
for  specific conditions, and usually one needs t o  apply  numerical methods t o  
find th i s  design. 

This shor t  survey is devoted t o  numerical methods fo r  t h e  construction 
of optimal designs fo r  experiments when a system "object under  investigation 
- process of observation" is described by  t h e  model (see (1) in t h e  paper)  
which linearly depends  upon unknown parameters and contains an  additional 
s tochast ic  component (usually r e f e r r e d  t o  as an e r r o r  of observation, bu t  i t  
could also ref lec t  t h e  stochast ic  nature  of t h e  object). The objective of a n  
experiment is t o  estimate t h e  unknown parameters and an optimal design (for 
instance, optimal location of observations) has  t o  provide t h e  smallest e r r o r s  
of estimates. Usually. these  e r r o r s  are character ized by  t h e  
variance-covariance matrix (or some functions of it)  which are t h e  inverse of 
t h e  so-called information matrix used in t h e  paper. 

Sections 1 and 2 contain some general information on numerical methods. 
The subsequent sect ions deal with more specific situations. For instance, 
section 3 and 6 (containing some new resul ts  by  t h e  author) deal with spatial- 
ly distr ibuted observations and could be especially useful in optimization of 
monitoring systems, a very acu te  problem for  many environmental studies. In 
Section 4, one can find algorithms which can  be used fo r  t h e  design of exper-  
iments re la ted  t o  remote sensing of t h e  e a r t h ' s  atmosphere by  a satellite r e  
diometer (findings of optimal frequency bands o r  "windows"). 

Prof. M. A. Antonovsky 
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Opthal Design of Ekperiments: Numerical Methods 

KV; Fedorov 

In this paper numerical approaches for the construction of optimal 
designs will be considered for experiments described by the regression 
model 

where f (x ) is a given set of basic functions, x EX , and X is compact; at least 
some of the variables x can be controlled by an experimenter, 2p ERm are es- 
timated parameters, y* ER' is the i -th observation, and &* ER' is the ran- 
dom error, E [&* ]  = 0, E [&* &,] = d t j .  In practice, technically more compli- 
cated problems could be faced (for instance, y* could be a vector or errors 
could be correlated) but usually the methods are straightforward generaliza- 
tions of the methods developed for problem (1). 

The most elegant theoretical results and algorithms were created for a 
continuous (or approximate) design problem when a design is considered to 
be a probabilistic measure defined on X,  and an information matrix is defined 
by an integral M(C) = jj (x)*(x)€(dx). In this case, the optimal design of 
the experiment turns out to be the optimization problem in the space of pro- 
bability measures: 

where @ is the objective- function defined by an experimenter. 

The first ideas on numerical construction of optimal designs can be found 
in the pioneer works by Box and Hunter (1965) and Sokolov (1963), where 
some sequential designs were suggested. These procedures can be con- 
sidered as very particular cases of some iterative procedures for optimal 
design in construction, but nevertheless they implicitly contain the idea that 
one can get optimal design through improving intermediate designs by 
transferring a finite measure to some given point in X at  every step of the 
sequential design. 

This idea was developed and clarified by many authors and the majority 
of algorithms presented in this survey (which does not pretend to be a his- 
torical one) are based on it. 



2. First-rder iterative procedures. 

It  will be  assumed that  

(a) the  functions f ( z  ) a re  continuous on compact X, 

(b) @ (M) is a convex function, 

(c) t he re  exists q such that  

and 

(d) for any [EE(q) and any other  

If these assumptions hold, then the  following iterative procedure will 
converge t o  an optimal design: 

where [(z,) is a design with the  measure totally concentrated a t  the  point 

Zs * 

2, = Are m i n [ ~  (z:, tS 1, - v ( z ~ , t s ) l ,  (5) 

+ Xs is the  supporting set of t he  design [, , a, =7,, when z, =z, , and 
a, = -%in [y, , pst / (1  -pSc)] , pst is a measure for point zsi of design Ex.  

To provide weak convergence, the  sequence ty,  j has to  satisfy, for in- 
stance, the  following condition: 7, + 0 and C ys + m , s  + m. In addition, some 
other  alternatives for t he  sequence 17, j can be  found in Ermakov, 1983; 
Fedorov, 1972; Fedorov and Uspensky, 1975; Fedorov, 1981; Silvey, 1982, Wu 
and Wynn, 1978. The iterative procedures (4), (5) comprise practically all 
t he  first-order methods widely discussed in the  statistical literature since 
the  late nineteen sixties. I t  should be  pointed out that  the  iterative pro- 
cedure can be  realized in practice if t he  optimization problem (5) is not very 
difficult from a computational point of view, i.e., if the  dimension of X is not 
too high. I t  is especially difficult to work with cases when the  controllable 
variables belong to some functional space (see section IV). 

There is a simple idea behind the  iterative procedure (4), (5). If one 
wishes t o  move along the  "best" direction 

then for sufficiently small a, ( see  (3)): 



Therefore 

can b e  chosen from t h e  set of point measures t ( z  ) , z  EX and has t o  be concen- 
t r a ted  a t  t h e  point: 

The same idea is behind "deleting" some points from design t,. These 
points @,-j a r e  "worst " in t h e  sense (6). 

For fulfillment of th is  f ac t ,  assumption (d) is crucial. The majority of op- 
timality criteria used in pract ice  sat isfy th i s  assumption. But fo r  some quite 
natural cr i ter ia ,  f o r  instance,  

where z,  is given. Q is t h e  variance of G T f  (zJ and '"" s tands  for  pseu- 
doinversion, formula (3) is not generally valid. One can st i l l  use t h e  i terat ive 
procedure (4), (5) applying t o  some regularized version of t h e  initial problem: 

where M ( t J  is regular matrix (M ([J a). Then 

To adjust t h e  i terat ive procedure (4), (5) t o  part icular  optimality cr i ter ia ,  
t h e  following formulae can be useful: 

where t h e  exis tence  of a corresponding derivative is assumed, 



The convergency rate of the above mentioned algorithms decreases in 
the vicinity of the optimum. As in general optimization theory, attempts were 
made to develop second order methods. These methods are based on quadrat- 
ic approximations of the function @ [ M I  and it is necessary to assume the ex- 
istence of derivatives am/ apt .aZ@/ apt ap, . where pt  is the weight for sup- 
porting point x t .  Second-order algorithms have at least two features which 
are handicaps for their use in practice: first, at every step it is necessary 
to invert the matrix I$@/ 3pt apt 1, and second, all existing modifications 
can handle only the discrete operability region X (see Ermakov (ed), 1983 Ch 
4, Wu, 1978). 

In the late seventies, some attention was paid to algorithms which work 
in the space of information matrices M (X); they are computationally effective 
if one can easily find the mapping E(X) +M (X) (see, for example, Gribik and 
Kortanek, 1977). But  usually it is very difficult to realize this mapping nu- 
merically. 

3. Construction of optim a1 designs under constraints. 

In (2) there is only one constraint j [ (dx)  = 1. If one considers addi- 
tional constraints, say j + ( x )  [ (dx) * . where +(z) is a vector of given 
functions (c ,+ mk), then the iterative procedure becomes technically more 
complicated, although based on the same ideas, see (Fedorov and Gaivorov- 
sky, 1984). In this case, (6) became equivalent to the following optimization 
problem 

subject to j+(z)i(dx)*. 
X 

Due to the classical theorem of Caratheodory, design Ts can be found 
within the set of designs containing no more than k +1 supporting points. 
The optimization problem (8) is essentially more complicated than (5). From a 
computational point of view, the dual problem (see Karlin and Studden, 1966, 
ch. XII): 

where U =fu  :ut 10-,i =l,k j, can be useful to define the location of the sup- . 
porting points of t, . They have to coincide with the solutions x i ,  xz ,... of 
(9). The corresponding measures can be found by any linear programming al- 
gorithm. 

In some applications (see Wynn, 1982), designs have to be restricted in 
the following sense 

f x 1 J 1 for all A ~ 1 (  (10) 
A A 

where f to(dz)=c, c 21, A C1( and a measure [, is atomless (see Karlin and 
X 



Studden, 1966, p. 233). In this case (6) leads to  the  following problem 

where a probability measure js has to  satisfy (10). 

I t  is evident tha t  7, has t o  coincide with to on any subset  of X, where 
~ ( x  , [ , ) a  and has t o  be  equal 0 otherwise (compare with theorem 1 from 
Wynn, 1982). Computationally, t he  search for  these  sets can be  realized 
through discretization of X.  The idea of t h e  iterative procedure (4). (5) will 
apply once again if one will additionally delete from design e,, some sets 
where ~ ( x  ,c,)>O. Thus 

where Es is t h e  set of new included points and Ds is t h e  set of deleted 
points. 

The procedure similar t o  (12) (but without t he  operation of deleting) was 
considered by Gaivorovsky (1985), and i ts  weak convergency was proven 
under r a the r  mild conditions. Usually, deleting "bad" points essentially im- 
proves t h e  quality of t h e  iterative procedures (compare with t he  traditional 
case, Atwood, 1973, Fedorov and Uspensky, 1975). 

Let E(cJ be  a class of probability measures c with supporting se t s  A cX, 
and [(dz)=c,(&), when x EA and equal t o  0 otherwise. For any design prob- 
lem (2), (lo), t he re  exists an optimal design c'E$(cJ, see, for  instance. 
Wynn, 1982, whose results have their  origin in t h e  classical moment space 
theory, particularly in t he  Liapunov Theorem, see Karlin and Studden, 1966, 
C h . .  VIII). Therefore, i t  is reasonable t o  demand tha t  
cs =c(A, ,dx ) €Z(c,J,s =1,2, ... Iterative procedure (12) does not satisfy t he  
la t t e r  demand. Instead of this type of iterative procedure (which repeats  
t he  idea of (4), (5)), one can apply an iterative procedure of t he  exchange 
type: 

where 

~ C , ( ~ ) = ~ F , ( ~ X ) = ~ ~ .  As Ms =O. 
E8 0 8  

Ds a,, E, nD, =O. 

If 

(e) derivatives & exist ,  

(f) to has a continuous density p,(x), 

and assumptions (a)-(c) hold, then for  sufficiently small 6,. t he  approxi- 
ma tion 

- 
@[M (cs +I)] =@[M( cs )I +[7(x,+. C,) -7(xs . ts )I 6, +o (6,)- (15) 

where X$EE,, x;€LlS and y(x .o=f ~ ( x ) i ( c )  f (x)  can be  used. If X is 



- 
covered by  t h e  grid Xd with densi ty proportional t o  p,(z), t h e n  12 and  xs 
can coincide with i t s  nodes and Es , Ds with some cells of th is  grid. 

From (15), it is c lear  t h a t  t o  provide approximately t h e  s t eepes t  descent  
on every  s t e p  of t h e  discretized version of procedure  (13). one has  t o  find 

x:  AT^ min y(z  , ts ) and zs-=Arg max y(z  , ts ), 
xEX6\A6r ad* 

where A ds is a discrete analogue of A,. I t  is worthwhile t o  point out t h a t  f o r  
t h e  discretized version of t h e  i terat ive procedure,  one can use a recursive 
formula fo r  M , - . ~  (see (17)) t o  simplify calculations. Complementing assump- 
tions (a)-(f) by assumptions: 

(g) for  any design t with Q[M (t)]SQ <m and  any C 
t,IA:y(x,t)=C1=0 . 

(h) 6s 4, C 6, +m 

S 

t h e  weak convergency: 

lim @[M(ts)]= min @[M(t)] 
s -+m €cE(t0) 

can  b e  proven. 

Result (17) is based on t h e  fac t  t h a t  t h e  fulfillment of t h e  inequality: 

max y(x ,[*)( min y(z , t *  ) 
z a* x a\x* 

is a necessary and  sufficient condition for  a design t* t o  b e  optimal (x* is a 
supporting set of t* ). 

4. Optimal designs when controls belong to a functional space. 

This case will b e  illuminated h e r e  by  a r a t h e r  specific example which 
nevertheless ref lec ts  t h e  major difficulties. 

Let f (v)ERm and x = j f  (v)h(v)dv,  where h (v )  can b e  controlled. 
v 

h (v) EH. If one manages t o  c o n s t r u c t  t h e  mapping X ( H )  cRrn of t h e  set H, 
then all approaches discussed in t h e  previous sections can  b e  used without 
any al terat ions t o  find an  optimal design on X. The problem to b e  faced 
afterwards is t h e  construction of a n  inverse mapping X+H t o  convert  t i  t o  
some design defined on H. The l a t t e r  problem is beyond t h e  scope of this  
paper  and  its discussion can be find in Kozlov, 1981, Ermakov (ed), 1983, 
Ch.7. For t h e  case  discussed in section 2 ,  t h e  situation is slightly simpler be- 
cause of t h e  Equivalence Theorem (see, fo r  instance, Ermakov (ed), 1983 
Ch.2); thus  only boundary points X(H) of X(H) are needed f o r  optimal design 
construction. Unfortunately, t h e  numerical construction of X(H) happens t o  
b e  sometimes a very difficult problem and  it could b e  more efficient t o  work 
in t h e  original space  H. 



To be more specific, let us assume that VEVCR' and OSh ( v ) S  and res- 
trict ourself to the design problem in section 2. The most straightforward 
approach consists of discretization of V and approximation of h (v) by same 
piecewise function. Under rather mild conditions, it is possible to prove that 
there exists optimal design which supporting points belong to the set 
H=lh (v):h (v)[l -h (v)]=O,vEVj, see, for instance Fedorov, 1806. If V is 
discretized by a grid with elements A,, then the simplest version of pro- 
cedure (4), (5) (without "deleting" operation) converts to the following one: 

a) ts +1=(1 -as >t, +a, t(hs) ; 

b) steps for finding h, : 
-collect all A j  which negatively contribute to the sum 

where Fj =I f (v)dv (usually Fj sf (vj)Aj). 
* j  

- put h, (v)=l, vEAj if A j  was chosen in the previous stage, otherwise 
hs(v) =O , 

- the fulfillment of the inequality p(C,)<t+ q ( t s ) M  (c,) tests that h, can be 
used for C(h, ). 

This iterative procedure guarantees that 

where t i  is an optimal design for the discretized design problem and can be 
called a A - optimal design. When a c v s b  and functions f (v) constitute a 
Tchebycheff system over the open interval (a,b), where a and b are possibly 
infinite, then the rather effective iterative procedure can be used for op- 
timal design construction. The idea of this procedure is based on the follow- 
ing result (see, for instance, Fedorov, 1986). 

Let h (v)EH and let I be the number of separate nondegenerate intervals 
where h ( v ) = l  with the special convention that an interval whose closure 
contains point a or b, is counted as 1/2. For any point x =,I* stands for the 
least possible I. Then a necessary and sufficient condition that z belongs to 
the boundary of X is that I* ((m -I)/ 2. Moreover, every boundary point 
corresponds to a unique h (v ) with I (z )=I * ( x  ). 

Let now G =(v l,...,vm where a SvlS . . Sum -lSb. According to the 
previous result, there exist optimal designs with all supporting points (in the 
operability region H) which have the following structures: 

h ( v ) = 1 . ~ ~ ( a , ~ ~ ) : 0 . ~ ~ ( ~ , , v ~ ) ; 1 , v ~ ( v ~ , v 3 > ;  . . - 
and _h (v )  =1 -h (v) . 

That fact allows for modification of the iterative procedure (4), (5) 
(without deleting "bad" points) to the procedure with maximization in space. 
with dimension less than or equal to (m -I), where m is a number of basic 



functions: 

h, =~rgmi_n@[x 7(%),ts I ,  
Y*V 
b b 

-=b .xi(%) = Sf (v) h(u)dv  and x Z ( ~ ) = S f  (v)b (v)dv where a <vlS . . . <V, 

a a 

The design problem considered in this section comprises t h e  major diffi- 
culties which can be  m e t  when X is a functional space. Other examples can 
be  found in Mehra, 1976, Pazman, 1986. These authors use mainly t h e  same 
ideas surveyed here.  In concluding this section, i t  would be worthwhile to  
notice tha t  parametrization of controls (a r a the r  standard method in optimal 
control theory), e.g. linear approximation cSTq (v) of h (v) in our example, 
could be a useful tool allowing one to  convert t h e  original problem to  a finite 
dimension design problem. 

5. Discrete designs 

To construct  optimal discrete  (or exact)  designs, a number of exchange 
type algorithms can be  used (for detailed information, see Cook and 
Nachtsheim, 1980; Johnson and Nachtsheim, 1983; Steinberg and Hunter, 
1984). 

The idea of t he  simplest algorithm (originated by Mitchell, 1974) can be  
formulated in the  following way: 

A f t e r  t he  s-th s t e p  t he re  is a design tNs =)xis, ..., xNs 1 , where some sup- 
porting points can coincide. This design is complemented by k points: 

Then the  same number of points: 

a r e  deleted and one arrives a t  t he  new design IN,, containing N observa- 
tions. The notation tK+x (or z) means tha t  a point is included in (or ex- 
cluded from) design tK,Xs comprises all of t he  different supporting points of 
t h e  design from t h e  previous stage. 

In practice, t h e  excursion length k is usually r a the r  modest (1-3) and 
the re  a r e  no indications tha t  an increase could be  useful. Iterative pro- 
cedure (la) ,  (19) are computationally simple and often lead t o  very good 
results, especially when one faces discrete  X ,  for example, z ,=*I. 

In t h e  iterative procedures (18), (19). t he  deletion and complementary 
s teps  a r e  separated. If w e  unite them (Fedorov, 1972), then w e  arrive a t  t h e  
following iterative procedure (with excursion length 1): 



where Xs is the  supporting set of CN,. This procedure demands N /  2 times 
more calculations a t  every s t e p  than (18), (19), but in most cases i t  gives 
be t t e r  final results, see Johnson and Nachtsheim, 1983. The above minimiza- 
tion problem is equivalent t o  coordinate wise minimization of @[MI: 

minmin 9[M(zi, ,..., xjs ,... z ~ , ]  
f z j a  

if one s t a r t s  t he  numerical optimization in (21) with zP=zj,. 

A similar choice of an initial point is appropriate in many optimization 
problems, but not in t he  optimal design of experiments when t h e  objective 
function usually has a large number of local minima along t h e  variation of z j  , 
and (21) will lead t o  t h e  local minimum closest to  xjs. The application of (20) 
helps to  approach the  global minimum by explicit forcing of z + t o  be  away of 
x j-. Procedures (18), (19) o r  (20) become a practical tool when one manage to  
find a simple formula for  calculation of increments for @[MI at every stage. 
For t he  majority of widely used cr i ter ia  (D-criterion, linear cr i ter ia  and so  
on) these  formulas can be  found in t he  above cited publications (see also sec- 
tion 2). 

In spi te  of t h e  r a the r  long history of t he  numerical procedures dis- 
cussed above, their  convergence properties a r e  not well known except  for 
numerous empirical results. I t  is not a problem, for  instance, t o  prove t h e  
convergence of (20) to  some design be t t e r  than an initial one but i t  has not 
yet  been proven t h a t  t h e  limit design has t o  be  optimal. 
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