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FOREWORD 

This paper shows how Real-Time can be introduced i n t o  t h e  a l y e b r a i c  

d e s c r i p t i o n  of f i n i t e  automata, t o  provide a t o o l  f o r  modelling 

discrete-event-systems. 

Alexander B. Kurzhanski, 

Chairman, 

System and Decis ion Sciences 
Program 



Pierre MOLLER 
International Institute for Applied Systems Analysis. 

September 1986. 

Algebraic automata theory and its corollary, regular language 

theory, are efficient tools used in computer science for modeling 

logical circuits, designing compilers, evaluating com~lexity of 

algorythms and other problems. 

Recently, W.M. Wonham and P.J. Ramadge (see ref. [ 7 ]  to [ I l l )  

applied this algebraic framework to "discrete-event systems", This 

is a new class of systems, which appears in various domias, 

ranging from flexible-manufacturing plants to 

communication-protocols controllers. 

The major drawback of the classical automata theory is that- it 

does not take into account the "real time". There is oniy an 

implicit notion of "logic time", due to the precgdence of events. 

After a brief introduction to the algebraic theory of finite 

automata, we shall show how real-time can be introduced in these 

models, 



ir:t:-odc;c:ng Real Time into the Algebraic Theory u i  Fin1 te  Autom3ts 

1 Introduction to f in i te  state automata. 

A good intoductlon t o  t h i s  theory can be found i n  reference i O j ,  
chapters 1 10 3 .  

A f i n i t e  s ta te  automaton i s  a mathematical rnocei for  a system? Which can 
be i n  any one of a f i n i t e  number of states,  and whjch moves f rom one 
s ta te  to  another according t o  d iscrete inputs, taken f rom a f i n i t e  set of 
Inputs, procucing discrete outputs, f rom a f i n i t e  set  of poss l t~ ie  outp[.~ts. 

The state of  t l re automaton sc;mrnarizes a l l  the past i n p l ~ t s  an0 tne i r  
influence on the f r ~ t u r e  outputs. 

This def in i t ion can ue formal ized i n  the fo l low ing  way: 

Definit ion 1 . 1  : 

A f i n i ~ e  automaton i s  a 5-tuple ( 3 , 1, 6 ,  q , F 1 where: 
Q i s  a f i n i t e  set  of states,  
Z i s  a f i n i t e  input alphabet, 
q i s  the i n i t i a l  s ta te ,  an element of Q 
F i s  the subset of Q of f ina l  states, 
S i s  the t rans i t ion  function, mapping Q X 1 to  Q. 

The las t  i t em indicates that  f o r  any s ta t?  p and input a, 6(q ,a)  i s  
d;fined and i s  a s ta te .  Thus, a can be viewed as a control.  

We can general ise thrs def rni t i on  to  acrtomata accepting st.ricgs of inputs, 
i n  the fo1lowing way: 

'4'4 aei'lne r* as the set of a l l  f in1 te st r lnas c ~ n s t r u r t e d  w i t n  rrnp ai9nabet 
2 ,  p'is tne e m ~ t v  ~ t r i n q  which we sfial l denote 2 ; 2" i s  ~ 5 1 j z j  :;/ c-i l ed  the 
6 ,- .. 
! . y e  rr-,i;noid ge:ierated by 1, becatise the roncstenation c ;  ~ t ? : i ' i q ~  ; ~ . T o L , I ~ ~ s  

I* w i t k  a strr icture o i  monoYd. 
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Concatenation of s t r ings 114 ar?d x wl l l Se !:encJtea \ f ix  

7 

Slnc? I* rmr,a lns 1, we can ex:end tne i'uncrlcn 6 t o  z* n ! c  15 r j m e  
r e ~ ~ r s i ~ ~ ~ i y  the State associated t o  a 3 t r ing IS !Re s ta te lX:ain$d 'sy 
ap i y~ng  successi\/ely a l l  l e t t e r s  of the s u m s  as inpvts, r22d  t r ~ r r l  l ~ r ' t  t o  
'lght 

Definit ion 1.2: 

The extecded t rans i t ion funct ion 6- of the f i n i t e  automator; 
( Q , 1 ,  6 ,  q , F ) i s  the funct ion niapping Q X I* or, C cfeilzeil 5y .  

E) = p f o r  every s ta te  p and the empty s t r ing  E, 

bA(p, wa  ) = b( bA(p,w),a) 
f o r  every s ta te  p, s t r ing  w ,  and l e t t e r  a. 

From now on, we shal l  use only 6- and denote i t  8, f o r  sake of s i  mpl i c i  t y  

A f i n i t e  autoniaton can be represented by i t s  t ransi  t loi? dizqram. This i s  a 
directed graph, which has one node associated w i t h  each state,  an6 whose 
arcs are labeled by the input aiphabet: f c r  every s ta te  2 a r d  every inpct  a, 
there 1s one arc labelled by a, leaving the node P.  

As an example, l e t  us consider a f i n i t e  zutomaton w i t h  3 stetes: 

L e t  Q = [cI,?,~,' q be the i n i t i a l  s tate,  

arid the ,input aiphabet be 1 = {0,1) 

The t rans i t ion funct ion i s  given by the table: 

state 

input '*I 
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The transition d i a ~ r a m  of th is  automaton is: 

!n  th is automaton, the input str ing 1 1 10 1 w i l l  take the automaton from 
the in i t ia l  state q to the state p. 

Definition 1.3 : 

A, str ing i s  said to  be acce~ ted  by a f in i te  acrtoma~on, I f  i t  moves tt?e 
automaton from the in i t i a l  state to a f inal state. 

S~~ppose that on the previous example, r i s  the only f inal  state, then the 
str ing 1 1 10 1 i s  not accepted by this automaton, but the s t r ing (3 1 1 is.  

I t  i s  easy t o  see that a s t r ing i s  accepted by this automaton i f  and only i f :  

There are 2n (n2 1 ) occurences of the input 1 and no G i n  the string, 
0 r: 

There are 2n (rill ) occurences of the input 1 ,  f o l l o w ~ n g  the last  
G i n  the s t r i ng .  

Definition 1.4 : 

Let Z* be the free rnono'id generated by an alphabet I. 
A suSset L of Z* (a language) is  said to  be regular. I f  t k e r e  exists a 

: I I Q S ;  ji7 L f i n i t e  suto;r;aton, w i t h  inputs in Z, which accepts al l  ti7e j ; i - ' . -  

ana oclv t h e  str incs in L. 

lJntll now, we have associated no output to a f i n i t e  automaion. To 
introcfuce outputs, we can use two type of models: 
Moore. 
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2 Mealv Machines: 

in  the seciuel, we shal l  suppose, for  sake of s imp l i c i t y ,  t ha t  all S a t e s  are 
f ina l .  

Mealy machines are obtained 5y associating one le t te r ,  chcsen i n  an o u t ~ u t  
31~habe!, t o  every arc i n  the t rans i t ion diagram. in the oreviou; example, 
we can re-label the arcs i n  the fo l lowing way: 

Thzn the lnput s t r ing  1 1 101 w i l l  give the cutput cfebc. 

T h l s  de i in i t i on  can be formal ized i n  the fo l low ing  way 

Def in i t ion  2.1 : 

A Mealy rnachine i s  a 6- tuple ( Q , 1, r, q , S ,  q i where: 
Q i s  a f i n i t e  set  o f  states, 
1 i s  a f i n i t e  input alphabet, 
q i s  the i n i t i a l  s tate,  an element o f  Q 
S i s  the t rans i t ion  function, mapping Q X 1 i n to  Q. 
r i s  a f i n i t e  output alphabet 
q i s  a funct ion mapping Q X 1 in to  r. 

q 1s tne o r~ tpu t  function, which associates arr output i n  r ,  tc:, every 
t r a n s i t ~ o n  i n  Q X Z . I f  q i s  not one-to-one, some moves or' the automatcn 
c x n c t  bit dist ini lulshed 5y an Cbsef\~ef of the outputs. 

- 
I hl;s de f in l t i cn  can 5e O ~ ~ J ~ O U S ~ ~  extended t o  i ~ c u t  str:r?qs, b;: usins 
y ? c ~ ~ , - i  e 2~,r;. T h ~ s  w e  can csnsider q as r n a p ~ i n g  Q X I* :n:c rY. 
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Restrictions: 

In tn i5 f i r s t  study, we shal l  concentrate onn t racking tne r_r.ar;sitions or' 
tne stares. Thus we snal l  assume taat  fo r  a l i  Kealv inacnines, That 

n i s  om-to-ne . This means that  t w o  d i f fe ren t  arcs i n  'ne t rans l i i on  
diagram ~ I W ~ Y S  have d i f fe ren t  labels. In th iz  case, o u t p u ~ s  are 
equivalent to  state- t ransi t ions,  This was not  the case on the example 
introaucerj previously. In the end of t h i s  paper, we shal l  lncilcate which 
problerr; ar ises i f  q i s  not  one-to-one. 

In the usual theory of f i n i t e  automata, the behaviour of the actcrnata i s  
described by the language of a l l  possible s t r ings of outpcts. To use 
numerical coef f ic ients,  we need to introduce the not ion of f ~ r m a l  and 
rat ional  series. 

3 Formal and rational series. 

Def in i t ion  3.1 : 

A dic'id i s  a 3-uple (D, $, x )  where 
D Is a se t  of "scalars", w i t h  t w o  distinquished eier'i-lerits 

sclch that:  
E9 IS an associat ive and commutat ive internal  o2erat ~ G R ,  

x i s  an associat ive internal operation, 
x i s  d is t r ibu t i ve  over $. 

E $  a = a f o r  every a i n  D 
E X  a =  for every a 'in D. 
e X  a = a f o r  every a i n  D. 

This means that iD, 8 i s  a commutat ive mono'id, (D,x) i s  a rnonoi'd and, D 
contains t w o  distinguished elements E and e : 

E i s  the neutrai eiement fo r  the "addit ion". 
e i s  the neutral element f o r  "mu1tiplical:ion" 
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This structure i s  often called semi-rinq; th is word mav rnOuce some 
confusion, because many authors use the word "semi-ring" oniy i f  trle 
operation EB i s  regular: th is  i s  the case in  the real isatinn of 
markov-chains, where the dioi'd i s  the posit ive real line i v l t h  usual 
operations. Therefore, we, shall use the word dio'id, which obviously stands 
for the extension of a monoi'd. 
Note that a l l  r ings and f ie lds are dio'ids, and that: 

In an?/ dio'id, matr ix c a l c ~ ~ l u s  can be defined by the clsual formulas. 

In the sequel, for  s impl ic i ty  of notations, the "product" aXb w i l !  be 
denoted a.b . And the sum i n  the sense of the dioi'd wi l l  be denoted $. 

Definition 3.2 : 

Let r be a f i n i t e  alphabet. 
A formal series, w i t h  coeff icients in  a dioi'd D and variabies in r 
i s  a function S mapping r*, the free mono'id generated by T, into D. 
S can be represented formally as: 

Definition 3.3 : 

Let T be a f i n i t e  alphabet 
A formal ~ o l ~ n o m i a l ,  w i t h  coeff icients i n  a dioi'd C and variables in r 
i s  a formal series P, such as 
P (oi = E only for a f i n i t e  set of strmqs o In r*. 

Usually, the notation D+: T>>  i s  used for  the set of formal series w i t h  
c ~ e f f i c i e n t s  in 13 and variables in T, and D< r> stands for the  set o: f c r n a l  
~ o l y i ' t ~ i - n i a l s  w i t h  coeff icients in D and variables in r .  

I f  r =(z. ,z  , , . . .  z,!. one can also w r i t e  D:<z,,z 2 .  z,?? a n d  D(:z,.z,,. z,l 
i - 
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W e  can ?%rend tire operations Gef lned on [he  clio'ia ;̂ , tne for rna i  series i n  

t h e  fo i !ow~ng  way. 

Definition 3.4 : 

The formal sum of two series S and i is the formal serles !S @ T.! 
defined by: 

iS 3 T)  (01 = S (01 @ T (a) for every s t r ing o in r*. 

Definition 3.5 : 

The formal product of two  series s and T is  the series (5.T) 
defined by: 

(SOT) (o) = %p=, ..r* psr* S ( 0 1 ) .  T (p) 
Where crp i s  the concatenation of str ings a arid p.  

According to these formulas, the neutral eleri~erlt fer  th? 51;;: of i;jr.;r~ai 
series i s  the function (or series) wRich associates c to eiiei-y coeff icient, 
t n ~ f ~ f o r e  ? t  i s  convenient to  denote this elenient E. 

The neutral element for  the ~ r o d u c t  i s  the %me, c?~cep t  th2t the 
coeff icient of the empty s t r ing 0 I s  e; for convenience we shall cer?@te tnis . 
series P .  

The dio'id D can be obviously inbeded in  D<< r>> by identifying every 
scalar A to the series denoted A ,which has a l i  i t s  coeff icients equal to c ,  
except the coeff icient of the empty str ing O, which is  equal to A; we just 
w r i t e  A.0 = A . 

Usually, the str ings w i t h  coeff icients equal to  E are omltted; and 
coeff icients equal to e are omitted too: For instance z @ 3z2 stands f o r :  

-, 
i m s ,  the sum o f  series appears as an extension o f  the stim in i h e  dic'ia, 
and the product of series appears as an extension both o i  the rjrodcct in  
i h e  dlo'id and df concatenation of strinqs. 
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Let us look for  a series S which is solution of: 

S = 5 . A  a B 

Where A 2nd B are given formal series. I t  i s  easy to cornpucie t n a t  

Thils, i f  An '"vanishes" when n tends to + 33, w e  ;;et cr:e scl\iticn ~f 
equa t i ~n  (3 . :  ) ,  which may or may not be the ~ i n l ~ u e  sc iu t i c~ i ,  decefiding ofi 

the dio'id: 

Where A* i~ def fned at least for  a l l  formal series such as the coeff icient 
of the empty s t r ing is  c. 

Definition 3.6 : 

I f  A i s  a formal series such as the coeff icient of the empty s t r ing is  E, 

We can now jus t l f y  the notation r* for  the set of a l l  str ings gecerated by 
an alphabet r. A language (a set of f i n i t e  strincjs) can be viewed as a 
fornial series w i t h  coeff icients in the Boolean algebra [ O , i ) ,  and variabies 
in  r: 

- 
i h e  coeff ic ient of a str ing i s  1 i f  i t  belongs to the lanr~uaae, - - 
The coeff ic ient of a s t r ing i s  0 i f  i t  does not beiong t o  the lang~~acje 

This is  true for r i t se l f ,  and i t  can be easily checked that the series r* i s  
actually obtained by applying the * operation to r, considered as the 
formal sum of a l l  i t s  let ters.  

This S* operation can be considered as the formal expansion of the 
quotient 1 / l -S . Control theorists w i l l  recognise the imp~ r t anc?  of th is  
operation, because i t  i s  associated to feedbacks in  systems. 
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Definition 3.7 : 

The rationai o~era t ions  on formal series are: 
The formal sum, the formal product, the * operation. 

Definit ion 3.8 : 

The rat ional closure of a subset L of OH T,, 
i s  the smallest subset of O<< T>> containing L 
whict; i s  stable under the rational operations. 

Definit ion 3.9  : 

The set of rat ional series i s  the rat ional closure 
r,f the set of polyomials. 

This implies that every rat ional series can be wr i t te r ,  as 3 f i n i t e  
expression, using polynoniials and rat ional operations. 

Theorem 3.10 : 

Every requl ar 1 anguage i s  a rat ional series 
w i t h  coej f  ic ients in  the Boolean algebra. 

Theorem 3.1 1 : 

The support of every rat ional series (the set of wcrds ~ ~ 2 i ~ t 7  have non-c 
coeff icients) i n  N<< r>> , is a regular ianguage. 

This theorem colds in  other dlolds than N, the set of p o ~ i t i ~ e  lnteqers, 
w i t 9  the  l ~sua?  operations, but i t  Goes rat hold fo r  all d i ~ i m  
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Theorem 3.1 2 : (Rea l  i s a t ~ o n  Theorem, Kieene-Schijtzen~erger) 

If 5 i s  a r a~ i ona i  series w i t h  coei f ic ients i n  D 3nC variables In  r, 
there exists: 

an integer n 
a ( 1  ,n) matr ix G w i t h  coeff icients i n  r ,  
a (n, 1 )  nclatrix N w i t h  coeff icients i n  r,  
an application cp mapping r 

into the set of (n,n) matrixes w i t h  coeft'ic;ents in  D, 
such that: 

i f  we extend cp recursively to r* by defining: 
rpA (c) = e 
qA (m) = cpA (o). q (a1 fo r  every str ing o and every le t te r  a ,  where 
cp' (o). q, (a) i s  the matr ix  product of cp (a) and cp (a). 

Then: 
The coeff icient of any word o in S i s  
S(o> = H, cp- (o>.G . 

This theorem ts obviously the extenion of the real isation theorem for  
f in i te  cfirnensional l inear systems. I: i s  due to G e e n e  foi' i-eoular 
ianguay es, and Schu tzenberger for  formal rational series. 

4 lntroducina rea l  t lme  In  automata theorv. 

Let us consider a Mealy machine, w i t h  output alphabet r. We s t i l l  suppose 
that the function q mapping f the arcs of the transi t ion diagram on the 
output alphabet r,  i s  one-to-one, and that a l l  states are f inal .  

To increase the power of th is  model, we are going to take into account the 
t ime needed to oerform a t rans i t  ion  from one state to another. 

Thus, we are given a function T mapping r on R+, such as: 

f o r  every outplit le t te r  a, ~ ( a )  i s  the t;me neeaed to produce a. 
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To th is  automata, we  are going t o  associate a formal  ser ies w i t h  real  i o r  
in f in i te )  coefflcienrls such as: 

The coef f ic ient  or' any s t r inq  w i s  the least t ime  neress3r;i ro  or~r_juce 
the o u t ~ u t  w. To be precise, i t  w i l l  be  he least  t i m e  cecessary un t i l  
the end of theprodliction of output a. 

I f  an output i s  in-~possible, i t s  coef f ic ient  w i l l  be +-, wh ich means that an 
M i n i t ?  t ime  i s  needed to  perform th i s  output. 

We shal l  work w i t h  the fo l lowinq dioi'd, o f ten cai led max-algebra, o r  
sath-alqebra, which has firit been intensiveiy s t ~ d i e i :  Sy 
R. tunn;ngham-yeene (see re f .  [61). 

Definition 4.1 : 

DRC i s  the dio'id defined by: 
The set  IR u (--,+-I 
The "addition" a $ b = max(a,b) 
The "product" a.b = a+b ( the product i s  the usual addit ion) 

- w i t h  the convention --.+- - -00 = e. 

Since we  denote -- bye, i n  the calculations, we can w r i t e  +- = - 
Formal series i n  one variable, w i t h  coef f ic ients  i n  the dlo ld DRC, have 
been introduced and studied by Cohen and al l .  , i n  references [4] 2nd [5j. 

Lemma 4.2: 

in  the dio id CRC, the formal  series B.A* i s  al!vays derined and !s the 
smal lest  solut ion t o  equation S = S.A $ B ir: the sense of the par t ia l  
order induced on the ser ies by the order on the coef f ic ients .  
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Demonstration of the lemma: 

We f i r s t  note that i n  th is  dio'id, since the "addition" is  the m a i t i ~ u i n ,  i f  the 
formal series 5,  A, B sat isfy 

Then S 2 A and S 2 B for  the partla1 order .  

implies that for  every str ing in  T*, i t s  coeff icient in  S i s  greater or 
equal than i t s  coeff icient i n  (e @ A @ A* @ .......... A"--')B. 

FurtP~ermore, the coefficient of every s t r ing i n  th is  partla1 sum defines 
monotonous non-decreasing sequence when n tends to  +-, and i s  
convergent i f  we al low in f in i te  coeff icients. 

So we can define the sum 

without intoducing a topology, and 

i s  defined and minorates every solution of the equation S = S.A 3 B 
for the part ia l  order. 

B.A* i s  obviously i s  a solution, thus i t  i s  the smallest solution. 

Now we can state the most important result.  



Introducing Reai Time into the Algebraic Theory of F in i te  Automata. 

Theorem 4.3 : 

i e t  r be the output alphabet of a Mealy machine, 
Let S be the formal series, w i t h  coeff icients in DRC and varhbles i n  r 
defined i n  the fol lowing way: 

I f  a str ing w i s  a possible output of the machine, 
the coeff icient o i s  the least t ime necessary t o  product? o . 

i f  a str ing w cannot be produced bi the machine, 
i t s  coeff icient i s  + -. 

Then: 

S i s  rational in the sense of the dioi'd DRC and can be corr~puted by the 
fol lowing formula: 

Where P, Q and R are the fol lowing polynomials: 

P i s  the sum of a l l  sinale o u t ~ u t s  ( le t ters)wn!cn ar-e possibie 
from the in i t i a l  state, niul t ip l ied by their curation. 

Q Is the sum of al l  sincle o u t ~ u t s  which are lmpossibie from the 
in i t ia l  state, n~u l t i p l i ed  by +=. 

T i s  the sum of a l l  single outputs (a l l  le t ters  i n  r ! mult ip l ied by 
their duration. 

R i s  the sum of a l l  s t r ings of 2 letters, which cannot be produced 
from any state, thus cannot appear in  any output string, 
mult ip l ied by +=. 
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Before g iv icg  the demonstration of the theorem, we shall sttidy an example 
to c lar i fy  this statement. Consider the fol lowing Mealy machine. We have 
omitted the inputs to s impl i fy  the graph. 

The polynomials are : 

I f  we compute the formal series associated t o  th is  automaton: 

we f ind that the only str ings w i t h  f in i te  coeff icients are the following: 

gn wXh coeff icient 3n ( in  the usual algeSra, o r  3% the djoldj. 
cina w i t h  coeff icient 3n + 2, 
anab w i t h  coeff icient 3n + 3 
$abc  w i t h  coeff icient 3n + 6 
cjnad w i t h  coeff icient 3n + 6 
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Demonstration of the theorem 4.3: 

We have defined 5 in  the fol lowing way: 

For any str ing o, S(o> i s  the least t ime needed to produce output w, i f  
th is output i s  possible, otherwise S(o) i s  + -. 

Note that by def in i t ion of S, a l l  i t s  coeff icients are greater o r  equal to e=O 
thus are never equdl to E. 

We need t o  prove that S i s  equal to X O  , which we define as the smallest 
solution, fo r  the part ia l  order, of equation: 

Where P, Q, 2, T are as defined in  the theorem. 

We know from the lernma 4.2 that: 

Firs t  part  of the demonstration: 

We f i r s t  show that S i s  larger or equal, for  the part ia l  order, than X o ,  by 
showing that S i s  a solution of equation 4-1, that means: 

Obviously 5 I ( P a3 Q 163 S.( e EB T $ R for  the part ia l  order, 

Thus we need only to show that 

- 
l h is can be done by showing that any term appearinq on the r ight  hand side 
i s  dorn!natec! by a term on the le f t .  
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By d e f ~ n i t i ~ n  o f  P, i t s  terms are  the single outputs w h ~ c h  are possible - from the in i r ia l  state, mult ip l ied by their duration. I hese Terrns appear 
also in  5, by def in i t ion of S. 

By def in i t ion o f  Q, i t s  terms are the single outputs whicn a r e  impossible 
from the In i t ia l  state, mul t ip l ied by + -. These terms appear also in  5,. 

A term i n  the product S.T has the form S ( ~ ) . T ( K )  o~ , where S( o ).T!K) i s  
the dioi'd notation for the usual sum of S(o) and T(K). 

I f  the output o i s  impossible, S( o ) = + - and the output o~ i s  
irr~possi ble too; thus we have S(o).T(lc) I S( olc i = + - as required. 

I f  the output o is  possible, but UK i s  irnposslble, we s t i l l  have 
S(~ ) .T (K)  i S( o~ = + - as required. 

I f  the output o i s  possible, and o~ is  poss'ible, then the duraticn 
needed to produce olc Is  at  least the sum of the needed durations, so 
we have S (~ ) .T (K )  I S( o~ as required. 

A term in  the product S.R has the form + - o ~ ,  where o i s  a s t r ing i n  S and 
K i s  a s t r i r ~ g  i n  R. This means that the output K i s  i rn~oss ib le  froin any 
in i t ia l  state, thus the output olc is  impossible for the automaton, thus i t s  
coeff icient i n  S i s  + - as required. 

in conclusion of th is part  of the demonstration, S I S  a solut:on of equation 
4- 1 ,  thus i t  i s  greater o r  equal than the smallest solution X'. 

Second par t  o f  the demonstration: 

To complete the proof, we need t o  show that X O  i s  larger than S for the 
part ia l  order. 

To do this, we are going to show, by induction on n, the fol lowing 
assertion: 

For any str ing o of lenath smaller or eaual than n, i t s  coeff ic ient i n  S 
i s  smaller o r  eaual that i t s  coeff icient in  X " .  
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This i s  true for n=O, when the only possible str ing i s  the empty string, 
which has coeff icient e in  both cases. 

We now suDoose the assertion is  true for a f lxed n, le t ' s  consider a 
str ina w of lenath n+ 1 .  

I f  n=O, the str ing i s  a single le t te r  and the resul t  i s  obvious: from equation 
3- 1 ,  we deduce that X O  i s  larger than P @ Q, which is, by def init jon, equal 
t o  the sum of the terms of degree 1 in S. So we now suppose that 922. 

I f  the output w i s  possible, we can sp l i t  w in  u~ where u Is  a pcsslbl? 
output of  1er;gth n- 1 ,  and K i s  a le t te r  which appears i n  T. 

From the recl,~rsion hypothesis, we know that S(u) l X0(u) 

Then S ( ~ K )  i S(u).T(a) because S ( ~ K )  i s  the smallest d e l q  needed t o  
produce u ~ ,  and 'the decomposition u fol  lowed by K i s  only one of the 
possible decompositions. 

Since X' i s  solution of equation 4-1, which implies that X 0  i s  larger 
than Xa.T, we deduce that: 

XO(u~)  L XO(u) .T(~) ,  thus we obtain S ( ~ K )  i XO(uv). 

I f  the output u~ is  impossibie, i t s  coeff icient i n  S i s  + W, thus we need t o  
show that i t s  coeff icient in  X O  i s  + 00 too.  

I f  w i s  impossible, o must contain a substring u of length 2, made of 
t w r ~  outputs which cannot be produced successively. i h c j ~  the t?rm -,a 
aPpears in  R. 

I f  we sp l i t  o i n  u.k.A,. A,. .... A , where the Ai are let ters,  we can 

deduce from equation 4- 1 that: 

By definit ion of T, none of the terms TQ,) T(1,). .... T(A,) i s  equal to c 

The recursion hypothesis implies that Xa(u) 2 0. 
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Because R(u1 is + -, we f ina l ly  have XO(w) r + - 
This completes the proof 

5 The case of Moore machines. 

Another class of automata w i t h  outputs i s  given by Moore machines: in  th is  
model, outputs are genereted when the automaton enters a new state: 

Definition 5.1 : 

AMoore machine i s  a 6-uple ( 0 ,  2 ,  T, q ,  6 , A  1 where: 
Q i s  a f i n i t e  set of states, 
2 i s  a f i n i t e  input alphabet, 
q i s  the in i t i a l  state, an element of Q 
6  i s  the transi t ion function, mapping Q X I: into Q. 
T i s  a f i n i t e  output alphabet 
A i s  a function mapping Q on T. 

The main difference w i t h  mealy machines i s  that the in i t ia l  output 
appears f i r s t  in  any possible output string. 

I t  can be proven that Mealy and Moore machines are equil~alent, in the 
sense that: 

Every system modelled by a Mealy machine can be modelled by a Moore 
machine and vice-versa. 

iYoore machines are less convenient for our purpose, because they generate 
output str ings which are one wit lonaer than those generated by a Mealy 
machine. We shall br ie f ly  indicate how to apply our resul ts tc, Mcore 
machines. 

In Moere machines, gutputs are associated to  tne states and not to  
t rans i t~ons.  Therefere, i t  i s  natural to temporize states Instead cf  
transitions: 
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To each state, we shall associate a minimal stay of t b e  LoKen , before 
i t  Secomes available for another transit ion. 

W e  shall suppose that the token is  in i t ia l l y  available a t  Cline 0, i n  state q. 

r i s  s t i  11 a napp'ing from r onto the dioi'd D 

I f  we suppose that the mapping A of states on the output alphaaet i s  
one-to-one, we can ident i fy the states w i t h  the outputs, and talk of the 
duration ~f a state. 

Theorem 5.1 : 

Let r be the output alphabet of a Moore machine ( Q , 2 ,  r, q , 6 ,  A ), 

where A Is  one-to-one. Let S be the formal series, w i t h  coeff icients in  
DRC and variables In  r such that the coeff ic ient of any str ing o i s  the 
least t ime necessary to  produce o . Then: 

S i s  rat ional in  the sense of DRC and can be computed by the formula: 

Where q i s  the in i t i a l  state and P,Q and R are  the following 
polynomials: 

P is  the sum of a l l  states which are reachable from the in i t i a i  
state, mult ip l ied by their minimal duration. 

Q i s  the sum of a l l  single outputs which are impossible from the 
in i t ia l  state, mul t ip l ied by +-. 

T i s  the sum of a l l  states mult ip l ied by their duration, 

R i s  the sum of a l l  str ings of 2 states, which cannot be 
succesively reached , mult ip l ied by +-. 

U i s  the sum of a l l  ouputs di f ferent from A(q), which i s  the 
output of the in i t i a l  state, mult ip l ied +-. 
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6 Remarks on the restr ict ions and the alaebra. 

'what hapoens ;! an output le t te r  could Se producecl by ciifferent state 
trans1 t i ons? 

I f  those transit ions have di f ferent durations, 3 minimization proDlem 
occurs: two str ings of outputs niay be produced w i t h  di f ferent durations; 
and we are looking for  the minimal t ime needed to perform outputs. This 
would imply the use of the min  operator, so question may be reformulated 
in  another way: 

Why use (max,+) algebra anci not (min,+)'? 

There are three reasons fo r  this: 

+- needs to  be an absorbing element for  the = of the dioid, because tne 
f i n i t e  coeff icients have to be cancelled i f  a s t r ing i s  impossible. 
unfortunatly, += IS the neutral element for  the min. 

To compute the series associated to the IYeaiy machine, we introduce 
an imp l ic i t  equation in  the (max,+) algebra; the serles we are looking 
for i s  ;he minimal sclut ion of th is  equation ; th is  i s  essentiai for  the 
proof, because i t  shows that we can use the resoi\/ent iormuia to  
compl~te the series. I f  we were working w i t h  (min,+), :he resolvent 
formula would give us a maximal solution. 

The (max,+) algebra has been used by Coben et al,  to descrlbe 
discrete-event systems w i t h  only synchronisations probiems. Using 

the same algebra gives us 'the hope to 1 ink both modeis to  apply th is  
calcuius to more general models. 

To generalize th is  resul t  to  automata w i t h  several transitions producing 
the same outputs, we shall have to assume that one outout i s  performed i n  
a f ixed duration, whatever s tate transit ion has produced i t , .  

Another polnt wort9 noticing, is that a l l  these resul ts s t f l l  nold wnen the 
real [;me is  discrete: 
(IF! u (+=,-=I,  max, + I  i s  replaced Sy ( Z  u [+=,--I, max, + )  
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7 Conclusions and new directions of research. 

We nave shown that  the so-called "max-algebra" can be applied to the 
temporal descr ipt ion of f i n i  te-state of automata. The too ls  used, rat lonal  
series, i s  an extension of regular languages, which was used by Wonham 
and Ramadge t o  solve some contro l  problems i n  refrences 7 to  1 1 .  

These models, f i n i t e  automata, are only a sub-class of a l l  possible 
discrete-even systems: no synchronisation problems are model led. The 
interest ing point  i s  that  the same alaebra has been used by Cohen e t  a1. i n  
references 2 to  5, t o  model discrete-event systems where only 
synchronisation probiems occur, which i s  the other "extreme case". 

This gives us the hope tha t  t h i s  mathematical theory, ra t iona i  series i n  
the max-algebra, can be applied to  a broader c lass of discrete-event 
syst,ems, containing the t w o  special cases we mentioned. 

Introducing these ser ies ra ises a new problem. the study [he s t ruc ture  of 
rat ional  series i n  i n  the max-algebra, w i t h  several variables The case of 
one variable has been completely studled by Cohen et  a1 , but a l l  resu l ts  do 
not seem to  extend to  the case of several variables, Decause these 
variables ao not commute. 

Another issue i s  t o  l ink  t imed-outputs t o  t imed inputs. Tnis was acne Dy 
Cohen and Al l ,  who introduced the not ion of t ransfer  funct ion f o r  the c iass 
of systems they were able t o  model. Doing t h i s  w i l l  probably be much more 
d i f f i c u l t  i n  the case of f i n i te -s ta te  automata, since the output alphabet i s  
d i f fe ren t  f rom the input alphabet. 
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