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FOREWORD 

This paper  is the  survey of recent  developments in nonsmooth analysis and i ts  
applications t o  optimization problems. A t  f i r s t  the motivations of nonsmooth 
analysis are discussed and concepts of derivative f o r  Lipschitzian and lower sem- 
icontinuous functions are presented. Then the concepts of nonsmooth analysis are 
used t o  ge t  sensitivity resul ts  fo r  general nonlinear programming problems and t o  
clarify the interpretation of the  Lagrange multipliers. Promising directions of 
fu r the r  research  are indicated. 
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7HPSCEIEZIFL,Y S Y & L ? Z Y  LN OPTEIZATI3K:  TEE ROLE OF NONSKO3TH Ahr&YSiS 

R.T. Rockafellar' 

The motivations of nonsmooth znzlysis a r e  ciiscussed. Appiications a r e  given t o  

Line sensitivity of optimal vaiues, t h e  in terpreta t ion of i a g r a n g e  multipliers, and t h e  

stabii i ty of const ra int  systems uncier perturbntion.  

it h a s  been recognized f o r  some time t h a t  t h e  tools of ciassical  anniysis a r e  not 

adequate f o r  a sa t is factory  t reatment  of problems of optimization. Tnese toois work 

f o r  t h e  characterizatior,  of locaily optimal solutions t o  problems where a smooth (i.e. 

continuously differentiable) function is minimized o r  maximized. subject  t o  finiteiy mar,)' 

smooth equality constraints.  They a iso  s e r v e  in t h e  study of pe r tu rba t ions  of such con- 

s t ra in t s ,  namely through t h e  implicit function theorem and i t s  consequences. A s  soon 

as inequality const ra ints  a r e  encountered,  however, they  begin t o  fail.  One-sided 

derivative conditions start t o  r e p l a c e  two-sided conditions. Tangent cones r e p i a c e  

tangent subspaces.  Convexity and convexification emerge as more na tu ra l  than l inear-  

ity and linearization. 

in  problems where inequality const ra ints  actualiy predominate o v e r  equations, as 

is  typical  in most modern applications of optimization, a qualitative cnange occurs .  Ko 

longer i s  t h e r e  any simple way of recognizing which const ra ints  a r e  ac t ive  in a neigh- 

borhood of a given point of tine feasible set, such as t h e r e  would b e  if t h e  s e t  were z 

cube o r  simplex, say.  The boundary of t h e  feasible set def ies  easy descr ipt ion and may 

bes t  b e  thought of as a nonsmooth hypersurface .  I t  does not t a ~ e  long t o  reai ize  t o o  

t h a t  t h e  g raphs  of many of t h e  objective functions which naturally a r i s e  a r e  nonsmooth 

in a simirar way. Tnis i s  t h e  motivation f o r  much of t h e  e f fo r t  t h a t  n a s  gone into 
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introducing and deveioping var ious  concepts of "tangent cone!', "normal cone", "direc- 

tional derivative" and "generaiized g r a d i e ~ t " .  Tnese concepts  nave cnznged t h e  face  

of optimization theory  and given b i r th  t o  a new subject ,  nonsxro~th analysis, which is 

affecting o t h e r  areas of matnematics as weil. 

An important aim of nonsmooth analysis i s  the formuiztion of generaiized neces- 

s a r y  o r  sufficient  conditions f o r  optimality. This in t u r n  rece ives  impetus frorr. 

r e s e a r c h  in numerical methods of optimization thz t  invoive nonsinooth functions gen- 

e r a t e d  by decomposition, e x a c t  penalty representa t ions ,  and t h e  iike. The idea essen- 

tiaily i s  t o  provide tests t h a t  e i t h e r  establish (near)  optimaiity (pe rhaps  s tz t ionar i ty)  

of t h e  point a l ready  attained o r  generz te  a feasibie direction of improvement f o r  mov- 

ing t o  a b e t t e r  point. 

Sonsmooth anziysis ziso h a s  o t h e r  important aims, however, which shouid not be  

overlooked. Tnese include t h e  study of sensitivity and stabil i ty with r e s p e c t  t o  p e r t u r -  

bations of objective and const ra ints .  In an  optimization problem t h a t  depenes on a 

paramete r  vec to r  v ,  now t o  variat ions in ' ~ i  af fec t  t h e  optimal value, t h e  optimzl soln- 

tion set, and t h e  feasible solution se t?  Can anything b e  said about  rates of change? 

This i s  where Lipschitzian p roper t i e s  t a k e  on special  significance. They a r e  

intermediate between continuity and differentiabil i ty and cor responz  t o  bounds on 

possible r a t e s  of change,  r a t n e r  than  rates themselves, which may not exis t ,  at leas t  in 

t h e  classical  sense.  Like convexity p roper t i e s  they can b e  passed along through vari-  

ous constructions where  t r u e  differentiabil i ty,  even if one-sided, would be  iost .  Furth- 

ermore ,  they can  b e  formulated in geometric terms t h a t  suit  t h e  study multifunctions 

(set-valued mappings), a sub jec t  of g r e a t  importance in optimization tneory  but  f o r  

which classical  notions a r e  aimost entirely lacking. 

I t  i s  in th i s  l ight  t h a t  t h e  directional der ivat ives  and subgradients  introduced by 

F.H. Clarke [I] [2] snould b e  judged. Clarke's  theory  empnasizes Lipscnitzian p r o p e r -  

t ies  and sturdily combines convex anaiysis and ciassical  smooth anaiysis in a singie 

framework. A t  t h e  p r e s e n t  s t a g e  of development, thanits t o  t h e  e f fo r t s  of many indivi- 

duals, i t  has  a l ready  had s t rong  effects  on almost e v e r y  area of optimization, from non- 

l inear  programming t o  t h e  caiculus of variat ions,   an^ a l so  on mathematicai questions 

beyond t h e  domain of optimization p e r  s e .  

This is not t o  say ,  nowever, thz t  C l a r ~ e ' s  derivatives and subgradients  are t h e  

only ones t h a t  hencefor th  need to  b e  considerez.  Special  si tuations cer ta inly  do 

requ i re  specia i  insignts. in pa r t i cu ia r ,  t h e r e  a r e  cases where special  one-sided f i r s t  

and second der ivat ives  t h a t  are more finely tuned than Ciarke's  are worth introducing. 

Significant and useful r esu i t s  can  be oblained. ir, such manner. But such resu l t s  a r e  

likely t o  be  re la t ively  limited in scope.  



I ;he  power anC generaii ty of t h e  kind of nonsmooth anaiysis t h a t  i s  based or, 

Ciarke 's  i i e a s  can b e  credi ted t o  t h e  foliowing f e a t u r e s ,  in summary: 

(a)  Applicability t o  a huge c lass  of functions and o t h e r  objects ,  such as sets acd. 

mxitifunctions. 

(b) Emphasis on geometric constructions and. in terpreta t ions .  

(c)  Reduction t o  classical  analysis in t h e  p resence  of smoot'nness and t o  convex 

analysis in t h e  p resence  of convexity. 

(d) Unified formulation of optimality conditions f o r  a wide var ie ty  of probiems. 

(e)  Comprehensive calculus of subgradients and normal vec to rs  which makes pos- 

sible a n  effective specialization t o  pa r t i cu ia r  cases .  

(f) Coverage of sensitivity and stabil i ty questions and t h e i r  relat ionship t o  

Lagrange multipliers. 

(g) Focus on iocal p r o p e r t i e s  of a "uniform" c h a r a c t e r ,  which are less  likely t o  

b e  upset  o y  slight per turbat ions ,  f o r  instance in t h e  study of directions of 

descent.  

(h) Versatility in infinite as well as finite-dimensional spaces  and in t reat ing t h e  
. . in tegral  functionals and differentiai  inciusions t h a t  a r i s e  in optima: c o n r o i ,  

s tochast ic  programming, and eisewnere.  

In th is  p a p e r  we a i r ,  at putting th is  t'neory in a na tu ra l  perspect ive ,  f i r s t  by dis- 

cussing i t s  foundations in analysis and geometry and t h e  way t h a t  Lipschitzian p roper -  

t i e s  come t o  occupy t h e  s tage.  Tnen we survey  t h e  resu l t s  t h a t  have been obtained 

recent ly  on sensitivity and stability. Such resu i t s  a r e  not ye t  famiiiar t o  many 

r e s e a r c n e r s  who concentra te  on optimality conl i t ions  and. t h e i r  use  in aigorithms. 

Nevertheless they say  much t h a t  b e a r s  on numerical mat ters ,  and they demonstrate 

well t h e  s o r t  of challenge t h a t  nonsmooth anaiysis i s  now ab le  t o  meet. 

1. CXIGZ<S OF SUBGRADIEhT DEBS 

in  o r d e r  t o  gain a foothold on th is  new t e r r i t o r y ,  i t  i s  bes t  t o  begin by thinking 

about functions f :  Rn +R t h a t  are not necessar i ly  smooth Sxt have s t rong  one-sided. 

directional der ivat ives  in t h e  sense  of 

Examples a r e  ( f i ~ i i e )  convex functions [ 3 ]  an6 subsmoctiz functions, t h e  i a t t e r  being 

by definition re;reser;table ioca:iy e s  



wnere S is a compact space  (e.g., a finite,  d i sc re te  index s e t )  and ff, 1 s ES 1 i s  a family 

of smooth functions whose vaiues and der ivat ives  depend continuously on s znd z 

jointly. Subsmooth functions were  introduced in [4]; all  smooth functions and all  finite 

convex functions on R~ a r e  in pa r t i cu la r  subsmooth. 

The formula given h e r e  f o r  f ' (z  ;A) di f fers  from t h e  more common one in t h e  

l i t e r a t u r e ,  where t h e  iimit A'-A is  omitted (weak one-sided di rect ional  derivative).  

I t  corresponcis in s p i r i t  t o  t r u e  (strong) differentiability r a t h e r  than  weak differentia-  

bility. Indeed, uncier t h e  assumption t h a t  f ' ( z , h )  exis ts  f o r  a l l  h (as  in (1.1)), one has  

f differentiable at z if and only if f ' ( z ; h )  i s  l inear  in A. Then t h e  one-sided limit t &O 

i s  actually realizable as a two-sided Limit t -9. 

The classical  concept  of g r a d i e n t  a r i s e s  from t h e  duality between l inear  functions 

on Rn a n c  vec to rs  in Rn. To say  t h a t  f ' ( z ; h )  i s  l inear  in A is  t o  say  t h a t  t h e r e  i s  a 

vec to r  y E Rn with 

f ' ( z ; h )  = y .A f o r  al l  A. (1.3) 

Tnis y i s  called t h e  gradient  of f at z and i s  denoted by Of (2 ) .  

In a similar way t h e  modern concept of s u b g r a d i e n t  a r i s e s  from t h e  duality 

between sublinear functions on Rn and convex subsets  in Rn . A function L i s  said t o  b e  

s u b l i n e a r  if i t  sat isfies 

when Al 2 0,  . . ,A, 2 0. 

I t  i s  known from convex anaiysis [3, $131 t h a t  t h e  finite sublinear functions L on R~ are 

precise ly  t h e  support  functions of t h e  nonernpty compact subsets  Y of Rn: each L 

corresponds t o  a unique I' by t h e  formuia 

L(h) =max  y . h  f o r a l l  A. 
Y EY 

(1.5) 

Linearity can b e  identified with t h e  case where 1' consists of just a single v e c t o r  y .  

I t  t u r n s  out t h a t  when f is c o w e x ,  and more generally when f is subsmooth [4], 

t h e  derivative f ' ( z  ,A)  is  always sublinear in A. Eence t h e r e  is a nonenpty compact 

subset  Y of R" : uniqueiy determinee,  such t h a t  

f f ( z ; h )  =max p . h  f o r  a l l  h. ( I .  6) 
y EY 



This s e t  i' i s  denoted by af ( z ) ,  and i t s  elements y a r e  called subgradients  of f a t  z .  

With r e s p e c t  t o  any locai  r epresen ta t ion  (1.4), one h a s  

Y = c o t V f s ( z ) : s - { ,  wnereS,  = a r g m a x  f , ( z )  ( I .  7) 
s € s  

(co = convex hull), but  t h e  set Y = Zf ( z )  i s  of course  by i t s  definition independent of 

t h e  representa t ion used. 

In t h e  case of f convex [3, $231 one can define subgradients  at z equivalently as 

t h e  vec to rs  y such t h a t  

f (2 ' )  2 f ( z )  + y . ( z f - z )  f o r  a l i  z'. (1.8) 

For  f subsmooth th is  general izes  t o  

i 
f ( z f )  2 f (z)  + ~ . ( z ' z )  + o ( j 2'-z i ), ( I .  9) 

but caution must b e  exerc i sed  h e r e  about f u r t h e r  generalization t o  functions f t h z t  

are not subsmooth. Although t h e  vec to rs  y satisfying (1.9) d o  always form a ciosed 

convex s e t  I' at z ,  r e g a r d l e s s  of t h e  na tu re  of f , th is  set Y does  not yieid a n  extension 

of formula (1.5), n o r  does  i t  correspond in general  t o  a robus t  concept  of directional 

derivative t h a t  can be used as a substi tute f o r  f ' ( z ; h )  in (1.6). For  a number of y e a r s ,  

th is  i s  wnere subgradient theory  came t o  a halt.  

A way around t h e  impasse w a s  discovered by Clarke in his thes is  in 1973. Clarke 

took up t h e  study of functions f :  Rn + R tna t  a r e  local ly  L t p s c h i t z i a n  :n t h e  sense  of 

t h e  di f ference quotient 

being bounded on some neighborhood, of each point z .  This c lass  of h n c t i o n s  is  of 

intrinsic value f o r  s e v e r a l  reasons .  Fi rs t ,  i t  includes a l l  subsmooth functions and. co2- 

sequently a l l  smooth functions and a!! finite convex functions; i t  a lso  inciudes a l l  f inite 

concave functions and a l l  f inite saddie functions (which are convex in one vec io r  argu-  

n e s t  and. concave in ano ther ;  see [3, $351). Second, i t  is p rese rved  under  taking l inear  

combinations, pointwise maxima and minima of coliections of functions (with c e r t z i n  

mild assumptions), integration nnd o t h e r  operat ions  of ob-.:ious importance in optimiza- 

tion. ThirC, i t  exhibits  p r o p e r t i e s  that a r e  closely re la ted  t o  differentiabiLity. The  

loczl bo; lnde~ness  of t h e  di f ference quotient (1.12) is such z proper ty  i tself .  In f ac t  

when f is  iocoi!:: Lipschitzinc, the gra2ier.t Cf ( z )  exis ts  f o r  aii S c t  z negiigi'zie set of 

points z ir. Rn (the ciassical  theorern of Xzdemacher, s e e  51). 



Clarke discovered tha t  wnen f is ioczlly Lipscnitzian, t h e  specia l  der ivat ive  

expressior. 

i s  always a f inite subiinear function of h .  Hence t h e r e  exis ts  a unique nonempty com- 

pac t  convex set Y such t h a t  

f " ( ~ ; h )  = m a x  y.h f o r  a l l  h. 
Y EY 

Moreover 

Q " ( x ; h )  = f ' ( z ; h )  f o r  a:i h  when f i s  subsmooth. (1.13) 

Thus in denoting th is  s e t  'I' by a f  ( x )  and cailing its elements subgradients,  one a r r i v e s  

at c na tura l  extension of nonsmooth analysis t o  t h e  c iass  of a l l  locally Lipschitzizn 

functions. Many powerful f o r m ~ l a s  zn6 ru ies  heve been established f o r  caiculating or 

estimating L3f ( x )  in th is  b road  context,  but  i t  is not o u r  aim t o  go into them h e r e ;  see 

[2] and [ S ] ,  f o r  instance. 

I t  should b e  mentioned t h a t  Clarke himself did not incorpora te  t h e  limit hf+n 

into t h e  definition of f " ( z ; h ) ,  but because  of t h e  Lipschitzian p r o p e r t y  t h e  value 

obtained f o r  f " ( z ; h  ) i s  t h e  same e i t h e r  way. By writing t h e  formuia with h  '+n one is 

ab le  t o  s e e  more c lear ly  t h e  relat ionship between f " ( x  ;h  ) and Q ' ( x  ; h  ) and a lso  t o  

p r e p a r e  t n e  ground f o r  f u r t h e r  extensions t o  functions Q t h a t  a r e  mereiy lower sem- 

icontinuous r a t h e r  than Lipschitzian. (For such functions one writes x' -f z  in piace 

of x' - x  t o  indicate t h a t  x  i s  t o  be approached by x' only in such a way t h a t  

f ( s f )  -+ Q(x) .  More will b e  said about  th is  ia ter . )  

Some people,  naving gone aiong with t h e  developments up until th is  point, begin t o  

balk a t  t h e  "coarse" na tx re  of t h e  Clarke derivative f "(z;iL) in certair; cases  where f 

is not subsmooth and never theless  i s  being minimized. For exampie, if 
/ I  I f ( x )  = - z i 1 l2 one h z s  f O(S;h j = ! h I, whereas f ' (C;h) exis ts  too but  

I I 

f '(9;i;) = - h  . Thzs f '  revea i s  t h a t  e v e r y  h  +O gives a direction of descent  f r o x  0, 

in t h e  sense  of yie!tin,n f '(C;n)<O, but f "  revez i s  no such thing, inasmuch as 

f " ( 3 ; h )  > 3. Becznse of th is  i t  is f e a r e d  t h a t  f O  does not embody zs muck info~mat ior :  

as f '  anci t h e r e f o r e  may not be eaiire'ly suitable f o r  t h e  statement of necessary  condi- 

tions f o r  a minimur,, i e t  alone for em~inyment  ir; aigoritnms of descsn t .  



Clearly f "  cannot repLace f '  in every situation where the  two may differ ,  nor  kas 

this  eve r  been suggested. Eut  even in face of this caveat t h e r e  a r e  zrguments t o  be 

made in fzvor  of f O  t ha t  may heip t o  iliumilnate its nature  ane the  sxpporting motiva- 

tion. The Ciarke derivative f O  i s  oriented towards minimizztion probiems, in contrnst 

t o  f ', which is neutrai  between minimization and mzxinizztior,. 1;: n?ditior,, it. 

emphasizes a cer ta in  uniformity. A vec tor  n witk f " ( x  ;h ) < C provides a descent 

direction in a strong stable sense: t he re  is  an E > 0 such that  fo r  all z' nea r  z ,  h' 

nea r  h , and positive t nea r  0,  one has 

f ( z ' f  t h ' )  < f ( z ' )  - t ~ .  

A vector  h with f '(z;h) < 0 ,  or, the  o ther  hand, provides descent oniy from x ;  at 

points x'  arb i t ra r i ly  near  t o  z i t  may give a direction of ascent instead. This instabil- 

ity is not without numericai consequences, since z might be repiaced by z' b e  to  

round-of f . 

An algorithm tha t  relied on finding an  h with f ' ( x ; h )  < 0 in cases where 

f " ( x ; h )  2 0 f o r  ail h (such an x is said t o  be s u b s t a t i o n a r y  point) seems unlikely t o  

b e  very robust.  Anyway, i t  must be  realized. tha t  in executing a method of descent 

t h e r e  is very little chance of actually arr iving aiong the  way at a point x tha t  is subs- 

tationary but not a local minimizer. One is easily convinced from examples tha t  such 2 

mishap can oniy be the  consequence of an unfortunate cnoice of the  s tar t ing point and 

disappears under t he  slightest perturbation. The situation resembles t ha t  of cycling in 

the  simplex method. 

Furthermore i t  must be understood tha t  because of t he  orientation of the  defini- 

tion of f o  towards minimization, t h e r e  is no justice in holding the  notion of substa- 

tionarity up t o  any interpretation o ther  than the  following: a substationary point is 

e i ther  a point where a locai m i n i m u m  is attained o r  one where progress  towards a 

local minimum is "confusedv. Sometimes, f o r  instance, one nea r s  cited a s  a failing of f o  

tha t  f '  is able  t o  distinguish between a iocal minimum and a local maximum in having 

f ' ( x ; h )  2 0 f o r  all h in tine f i r s t  case,  but f ' ( x ; h )  s 0 f o r  ail ir ir, t he  second, whereas 

f " ( z ; h )  r 0 f o r  all h in both cases. But this is unfair. A one-sided orientation in 

nonsmooth anaiysis is merely a reflection of the fact  tha t  in virtually all applications 

of optimization, t h e r e  is unambiguous interest  in e i ther  maximization o r  minimization, 

but not both. For theoretical purposes i t  might as well be minimization. 

Certainly the idea tha t  a first-order concept of derivative, such as we a r e  dealing 

with he re ,  i s  obliged to  provide conditions tha t  distinguish effectively between 2 Local 

minimum and a local maximum is  out of line f o r  o ther  reasons. Classical anaiysis maites 

no attempt in that  direction, without second derivatives. Presumably: second 



derivative concepts  in nonsmooth analysis will eventually furnish t h e  a p p r o p r i a t e  ais- 

tinctions, cf .  Chaney [?I. 

A final note  on t h e  question of f a  versus  f' i s  t h e  reminder t h a t  f " ( x ; h )  i s  

defined f o r  any locally Lipschitzian funciion f and even more generally,  whereas 

f ' ( x ; h )  i s  only defined f o r  functions f in a nar rower  class.  

An important goal of nonsmooth analysis i s  not only t o  make full use  of Lipschitz 

continuity when i t  i s  p resen t ,  but  a lso  t o  provide c r i t e r i a  f o r  Lipschitz continuity in 

c a s e s  where i t  cannot b e  known a p r i o r i ,  along with corresponding estimates f o r  t h e  

local Lipschitz constant.  For  th is  purpose ,  i t  i s  necessary  t o  extend subgradient 

theory t o  functions t h a t  might not b e  locally Lipschitzian o r  even continuous every-  

where,  but  merely lower semicontinuous. Fundamental examples of such functions in 

optimization are t h e  so-called m a r g i n a l  functions, which give t h e  minimum value in a 

parameterized problem as a function of tine parameters .  Such functions can even t a k e  

on cm. 

Exper ience with convex analysis and i t s  applications shows f u r t h e r  t h e  desirabil-  

ity of being ab le  t o  treat t h e  indicator functions of sets, which play a n  essential  r o i e  iri 

t h e  passage between analysis and geometry. 

In fac t ,  t h e  ideas t h a t  have  been descr ibed so  f a r  can b e  extended. in a powerful, 

consistent manner t o  t h e  c lass  of a l l  lower semicontinuous functions f : Rn -, R,  where - 
R = [-=,-I (extended r e a l  number system). There  are two compiementary ways of 

doing this,  with t h e  same resu l t .  In t h e  continuation of t h e  analytic approach  w e  have 

been following until now, a more  subt le  directionai der ivat ive  formula 

i s  introduced and shown t o  a g r e e  with f " ( z ; h )  whenever f is  locally Lipschitzian and 

indeed whenever f " ( z ; h )  (in t h e  extended definition with x '  J ~ Z ,  as mentioned ear- 

l i e r )  i s  not +-. Moreover f ' ( z ; h )  i s  proved always t o  b e  a lower semicontinuous, sub- 

l inear  function of h (extended-real-valued). From convex analysis, then,  i t  follows 

t h a t  e i t h e r  f '(z;O) = -- o r  t h e r e  is  a nonempty closed convex set Y CRn, uniquely 

determined, witin 

f ' ( z ; h )  = su y - h  f o r  a l l  h .  't Y E  

T l a i s  ' i s  t h e  approach followed in Rockafellar  [8], [9]. One then  a r r i v e s  at t h e  

corresponding geometric concepts  by taking f t o  be  the  indicator 6C of a cioseG set C .  

For  any z E C ,  the  functior, h 4 6 ; ( z  l k )  is :tself t'ne indicator of z cer ta in  ciosed s e t  



TC(z) which happens  aiways t o  be  a convex cone; th is  is t h e  Clarite t a n g e n t  cone t o  C 

at x .  The suhgraciient set 

on t h e  o t h e r  hand, is a ciosed convex s e t  too,  t h e  Clarke n o r m a l  cone t o  C t o  x .  The 

two cones a r e  p o l a r  t o  each  o ther :  

In a more geometric approach  t o  t h e  des i red extension, t h e  tangent cone TC(z) 

and normal cone NC(z) can f i r s t  b e  defined in a d i r e c t  manner t h a t  accorcis with t h e  

polari ty re ia t ions  (1.16). Then f o r  a n  a r b i t r a r y  lower semicontinuous function - 
f : R" +R and point x at which f i s  ? k i t e ,  one can  focus on TE(z, f ( z ) )  and 

NE(x ,f (x)) ,  where E is  t h e  epigraph of f (a closed subset  of Rn +I). The cone 

TE ( z  , f (x) )  i s  itself t h e  epigraph of a ce r ta in  function, nameiy t h e  subderivative h '4 

f '(x ;h), whereas  t h e  cone NE ( x ,  f ( z ) )  provides t h e  subgradients: 

Tine polari ty between TE (x , f ( z  )) and NE (z  , f ( z  )) yieids t h e  subderivative-subgraciient 

re la t ion (1.14). (Clarke's  original extension of i3f t o  lower semicontinuous functions 

[I] followed th i s  geometric approach  in defining normal cones di rect ly  and then invok- 

ing (1.17) as a definition f o r  subgradients.  He did not focus much on tangent cones,  

however, o r  pursue  t h e  idea t h a t  TE (x , f (x )) might correspond t o  2 re ia ted  concept of 

directional derivative.)  

The details  of these  equivaient forms of extensior, need not  occupy us h e r e .  The 

main thing t o  understand i s  t h a t  they yield a basic  c r i t e r ion  f o r  Lipschitzian con- 

tinuity, as follows. 

- 
TEEOREM 1 (Rockafeliar  [lo]). For a Lower s e m i c o n t i n u o u s  f u n c t i o n  f :  Rn ->h' 

actuaLLy to  be L i p s c n i t z i a n  o n  some neighborhood of t n e  p o i n t  z ,  i t  i s  suff icierct  

(as  weLL as n e c e s s a r y )  t n a t  t n e  s z b g r a d i e n t  s e t  af (z) be rconempty a n d  bounded .  

T h e n  one  has 

f(x">-f( ,- '1 - I I iim say - - " _.. ' rriax y .. 
r -r * * Y E s f  ) 



Tnis c r i t e r ion  can be  applie2 without exac t  ~ n o w i e d g e  of Bf ( x )  but  only ar, esti- 

mate tha t  4 f Gf ( z )  C I' f o r  some s e t  Y. If Y is  boundec, one may conciude t h a t  f is 

locally i ipschi tz ian around. x .  if i t  is known t h a t  y < X f o r  a i l  y EY, one has  from 

(1.19) 

j f (z") - f (2') ! S  X ~ X ' ~ - X ~ !  f o r  Z '  and x" n e a r  z. 

2. LAGRANCE KULTPLIERS AND SENSITIVITY 

Many ways have been found f o r  cieriving optimzLity conciitions f o r  probiems with 

const ra ints ,  but  not a l l  of them provide full information about t h e  Lagrange multipliers 

t h a t  are obtained. The test of a good method is  t h a t  i t  should lead t o  some s o r t  of 

in te rp re ta t ion  of t h e  multiplier vec to rs  in terms of sensitivity o r  generalized rates of 

change of t h e  optimal value in t h e  problem with r e s p e c t  t o  per turbat ions .  Unti! quite 

recent ly ,  a sa t is factory  in terpreta t ion along such lines w a s  available only f o r  convex 

programming and special  cases  of smooth nonlinear programming. Now, however, t'nere 

a r e  general  r e s u l t s  tha t  apply t o  al l  kinds of probiems, a t  leas t  in R n .  These resu l t s  

demonstrate well t h e  power of t h e  new nonsmooth analysis and a r e  not matched by any- 

thing achieved by o t h e r  techniques. 

Let us  f i r s t  consider  a nonlinear programming probiem in i t s  canonical parameter-  

izatior,: 

(p ,  > minimize g (z ) subject  t o  x E K and 

gi  ( z ) + u i  5 0 f o r  -I =l, ..., r ,  

= !I f o r  i =s+l, ..., m ,  

where g ,gl,...,gm are iocally Lipscnitzinn f ~ n c t i o n s  on R n  znd K is  a closed subset  of 

R n  ; the  ui ' S  are paramete rs  and. form a vec to r  u ERm. Q y  anniogy with what i s  known 

in pa r t i cu la r  cases  of (P,), one can formulate t h e  potential  optimality condition on a 

fezsible solution z ,  namely tha t  

m m  0 E a g  ( z )  + ti =iyi Bgi ( x )  + NK(x)  with 

yi 2 0 and yiLgi (z)-uil  = 0 f o r  i=i ,  ..., s ,  

and a corresponciing constraint qualification at x 

t h e  only vec to r  y =(y  ;, . . . , y,) satisfying t h e  version 

of (2.1) in which t h e  term 6g (z) i s  omitted is p =C. 



. . In smoo th  p r o g r a m m i n g ,  where  t h e  funct ions  g , g l ,  . . . , g ,  are ail cont.~i~uo;;z!)r 

d i f f e ren t i ab le  and  t h e r e  i s  no  a b s t r a c t  cons t r a in t  z E K ,  t h e  f i r s t  r e l a t ion  in (2.1) 

r e d u c e s  t o  t n e  g r a d i e n t  equat ion  

0 = Vg ( z )  -+ CEly i  tgi ( z ) ,  

and  one  g e t s  t h e  c l a s s i ca l  Kuhn-Tucker conditions. The c o n s t r a i n t  qual if icat ion i s  t h e n  

equiva lent  (by duali ty)  t o  t h e  well known o n e  of Mangasarian and  Fromovitz. 

In convez  p r o g r a m m i n g ,  wnere  g , g l ,  ...,g, are (f ini te)  convex f a c t i o n s ,  

g, + l , . . . , g ,  are af f ine ,  and  K i s  a convex set, condition (2.1) i s  always suf f ic ien t  f o r  

optimality. Under  t h e  c o n s t r a i n t  qual if icat ion (2.2), which in t h e  a b s e n c e  of equalr ty 

c o n s t r a i n t s  r e d u c e s  t o  t h e  Slater condit ion,  i t  i s  also n e c e s s a r y  f o r  optimali ty.  

F o r  t h e  g e n e r a l  case of (P,) o n e  h a s  t h e  following r u i e  a b o u t  necess i ty .  

THEOREM 2 (Clarke [ I l l ) .  S u p p o s e  z is a LocaLLy optimaL soLu t ion  to (F,) a t  

w h i c h  t h e  c o n s t r a i n t  quaLif ica t ion  (2.2) is sa t i s f ied .  Then t h e r e  is a muLtipLier 

vec to r  y s u c h  that t h e  op t imaLi ty  c o n d i t i o n  (2.1) is sa t i s f i ed .  

This i s  n o t  t h e  s h a r p e s t  r e s u l t  t h a t  may b e  s t a t e d ,  a l though i t  i s  p e r h a p s  t h e  sim- 

p les t .  Clarke ' s  p a p e r  [ll] p u t s  a potential ly smai le r  set in p i a c e  of NK(z) and p rov ides  

along s ide  of (2.2) a less s t r i n g e n t  c o n s t r a i n t  qual if icat ion in terns of "caimness" of 

(P,) with r e s p e c t  t o  p e r t u r b a t i o n s  of u .  Hi r i a r t -Ur ru ty  [12] and Rocka fe l l a r  [13] 

c o n t r i b u t e  some a l t e r n a t i v e  ways of writing tine s u j g r a d i e n t  r e l a t ions .  F o r  o u r  Fur-  

poses  h e r e ,  let i t  suf f ice  t o  mention t h a t  Theorem 2 remains  t r u e  when t h e  optimality 

condition (2.1) i s  given in t h e  s l ight ly s h a r p e r  a n d  more  e i egan t  form: 

0 E a g ( z )  + y a G ( z )  + N K ( z )  with y € N C ( G ( z ) i u ) ,  

where  G ( z )  = ( g l ( z )  , . . . ,g ,  ( z ) )  a n d  

C = ~ W ~ ~ / W ~ S O  for  i = L  ,..., s and wi=O f o r  - I = s + l ,  ..., m]. (2.4) 

The  notat ion 5 G ( z )  r e f e r s  t o  C la rke ' s  genera l ized  Jacobian  [2] f o r  t h e  mapping G; o n e  

h a s  



Theorem 2 has  t h e  shining v i r tue  of combining t h e  necessa ry  conditions f o r  smooth 

programming and. t h e  ones  f o r  convex programming into a single statement. Moreover 

i t  covers  subsmooth programming and much more,  and i t  aliows f o r  a n  a b s t r a c t  con- 

s t ra in t  in t h e  form of x € K f o r  an  a r b i t r a r y  ciosed set K. Formuias f o r  caiculating 

t h e  normal cone NK(x) in pa r t i cu la r  cases  can  then be  used t o  achieve additional spe- 

c ializations. 

W'nat Theorem 2 does  n o t  do is  provide any in terpreta t ion f o r  t h e  muitipliers y i .  

In o r d e r  t o  a r r i v e  at such a n  in terpreta t ion,  i t  i s  necessa ry  t o  look more ciosely zi t h e  

p roper t i e s  of t h e  marginai function 

p ( u  ) = optimai value (infimum) in(P, ). (2.6) 

Tinis i s  a n  extended-real-valued function on R m  which i s  lower semicontinuous when t h e  

following mild inf-boundedness  cond i t ion  is fulfilled: 

F o r e a c h  2L € R m ,  a c R  and E > 0 ,  t n e s e t o f  ali x € K (2.7) 

- 
satisfying g ( x )  s c, gi ( x )  5 ui + E  f o r  i =I, .. . , s  , and 

- 
ui -E 5 gi ( 2 )  5 Gi +& f o r  i =S +I, ..., m ,  i s  bounded in R n .  

This condition a lso  implies t h a t  f o r  each  u with p ( u )  < (i.e. with t h e  const ra ints  of 

(P,) consistent) ,  the  set of all (globally) optimal solutions t o  (P,) i s  nonempty and com- 

pac t .  

In o r d e r  t o  state t h e  main general  r esu l t ,  w e  let 

Y(u ) = set of aii multiplier vec to rs  y t h a t  satisfy (2.1) 

f o r  some optimal soiution x t o  (P, ). 

THEOREM 3 (Zockafellar  r13-j). S u p p o s e  t h e  inf-boundedness c o n d i t i o n  (2.7) is 

satisfied.  Let u be s u c h  t h a t  t h e  c o n s t r a i n t s  of (P,) a r e  c o n s i s t e n t  and every  

op t imal  s o l u t i o n  x to (P,) sa t is f ies  t h e  c o n s t r a i n t  qua l i f i ca t ion  (2.2). Then 8 p ( u )  

is a nonempty  compact se t  w i t h  

8 p ( u )  ~ c o Y ( u )  and e x t  a p ( u )  c Y ( u ) .  (2.9) 

(where "ext" denotes  ezt reme points]. In p a r t i c u l a r  p is Locally L i p s c h i t z i a n  

a r o u n d  u w i t h  



p 0 ( u ; h ) S  sup y . h  f o r a l l  h. 
Y EY(u ) 

I I 

Indeed,  a n y  X s a t i s f y i n g  ' y i < X f o r  a l l  y EY(u) se rves  as a local  L i p s c h i t z  ccn- 

s tun t :  

I 

i p ( u " ) p ( u ' )  is h !u"-ii'l w h e n  u '  a n d  u "  a r e  n e a r  u. (2.11) 

For smooth programming, th is  r esu l t  was f i r s t  proved. by Cauvin [14]. S e  demon- 

s t r a t e 2  f c r t h e r  t h z t  when (P,) has  a unique optimal solution z ,  f o r  which t h e r e  is  a 

unique multiplier v e c t o r  y , s o  t h a t  Y(u ) = y j ,  then  actually p i s  differentiable at u 

with V p  ( u  ) = y . For  convex programming one knows (see  [3]) t h a t  ap ( u  ) = '17(u ) 

always (under  o u r  inf-boundedness assumption) and consequently 

Minimax formulas t h a t  give p f ( u ; k )  in certair .  c a s e s  of smooth programming w h e r e  

'IP(u) i s  not just a singleton car, be  f o r  exampie found, in Demyanov znd Yaiozemov ;:5] 

and Rocirafeliar [IS]. Aside from sucn special  csses t h e r e  a r e  no formxias iznowr, f o r  

p f ( u ; n ) .  Sever the less ,  Theorem 3 does provide zn  estimate,  beczcse  

p ' ( u  ;h ) I p "(21 ;i; ) whenever p ' ( u  ;h ) exists .  ( i t  i s  interesting t o  note  in th i s  cor,nec- 

tion t h a t  because p is  Lipscnitzian around u by Theorem 3, i t  i s  actua!!y differentiable 

aimost everywhere  around u by Raaemacher 's  theorem.) 

Theorem 3 h a s  recen t ly  been broadened in [6 j  t o  include more general  kines o i  

per turbzt ions .  Consider t h e  parameterized problem 

(Qv > minimize f (v ,z ) o v e r  a l i  z satisfying 

F ( v  , z )  c C an6 (v , z )  E D, 

where v is  a paramete r  v e c t o r  in R d ,  t i e  functions f :  Rd x Rn -R and 

F: Rd x Rn -Rm a r e  locally Lipschitzian, and t h e  s e t s  C cRm an6 D c Rd xRn a r e  

closed. Here  C couid b e  t h e  cone in (2.4), in which event t h e  const ra int  F ( v  ,,-) E C 

would reduce  t o  

f i  ( 2 , ~ )  I 0  f o r  i =l, ..., S ,  

= 0 f o r  i =s +I, ..., m ,  

but  tn is  choice of C is  not required.  The condition (v  ,z j E D may equivaiezt !~ 5 e  writ- 

ten  as z E I '(v), where F is tile ciosed multifunction whose graph is D. I t  r e p r e s e n t s  

t h e r e f o r e  an  a b s t r a c t  const ra int  t h a t  can v a r y  with v .  A fixed z c s t r a c t  const ra int  



x  E K corresponds t o  r(v ) =K,  D =Rd X K .  

In th is  more genera l  sett ing t h e  a p p r o p r i a t e  optimality condition f o r  a feas i j l e  

solution x  t o  (9, ) i s  

f o r  some y and  z with y m c ( F ( v  , x ) ) ,  

and t h e  const ra int  qualification i s  

t h e  oniy v e c t o r  p a i r  ( y  , z  ) satisfying t h e  version of (2 .13)  

in which t h e  t e rm af (v  , z )  i s  omittee is ( y  , z ) = ( 0 , 0 ) .  

TIYEOREI! 4 (Rockafellar  [6 ,  $81). Suppose tna t  x  is a locally opt imal  s o l u t i ~ n  

to (9,) a t  w h i c n  the cons t ra in t  qual i f i ca t ion  (2 .14)  is sa t i s f i ed .  Then there is a 

mul t ip l i er  p a i r  ( y  ,z) s u c h  tha t  the  o p t i m a l i t y  condi t ion  (2 .13)  is  s a t i s f i e d .  

Theorem 4 reduces  t o  t h e  version of Theorem 2  having ( 2 . 3 )  in place of ( 2 . 1 )  when 

( Q , )  i s  taken t o  b e  of t h e  form ( P )  namely when 

f ( v , x ) = g ( x ) ,  F ( v , x ) = G ( x ) +  v ,  D=Rm Y. K ( R ~ = R ~ ) ,  anci C is t h e  cone in ( 2 . 4 ) .  

For tine corresponding version of Theorem 3 in terms of tine marginal function 

q (v  ) = optimal value in (Q, ), (2 .15)  

w e  t a k e  inf-boundeaness t o  mean: 

For  each -7 md : a ER and E >0, t h e  set of a!; z 

satisfying f o r  some v wiik ! v  -C ! 5 E 

t h e  const rs in ts  F ( v  , x )  EC, (v ,z) ED,  and 

having f ( v  ,z) 5 a, i s  bounded in Rn 

Again: th is  p roper ty  ensures  tha t  q i s  lower semicontinaous, and thnt  f o r  e v e r y  2; f o r  

which t h e  const ra ints  of ( Q , )  are consistent ,  t h e  set of optimai soiutions t o  ( Q , )  i s  

nonempty and compact. Let 

Z ( v )  = set of a l l  vec to rs  z  t h a t  sztisfy t h e  multiplier (2 . :7)  
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condition (2.13) f o r  some optimal solution 

z t o  (Q,) and vector  y. 

THEOREX 5 (Rockafellar i6, $81). Suppose the inf-boundedness condit ion (2.16) 

i s  satisfied. Let v  be s u c h  tha t  tne constraints  of (Q,) are consistent and every 

optimal solut ion z to (Q,) sat is f ies  tne constraint  quaLifzcation (2.14). Ther, Bq ( v )  

i s  a nonempty compact set w i t h  

Bq(v) c c o Z ( v )  and ex t  6q (v )  c Z ( v ) .  (2.18) 

I n  par t icu lar  q i s  Locally L ipschi t z ian  around v w i t h  

q0(2; ;h)  I sup z - h  for all n. 
z EZ(V) 

, 8 

Any  A sa t i s fy ing  i z  i < h for aLL z  E Z ( v )  serves a s  a  Local Lipschi tz  constant: 

: q ( v " ) - q ( v ' ) ~ ~  h l v " - - v r ;  w h e n  v '  and v "  are near  v. (2.20) 

The generali ty of t ne  constra int  s t r uc tu r e  in Theorem 5 will make possibie in t he  

next section an  application t o  t he  study of multifunctions. 

3. STABILITY OF CONSTRkr'NT SYSTEKS 

The sensitivity resu l t s  tha t  have just been presented are concerned with wnat 

happens t o  t he  optimal vaiue in a probiem when paramete rs  vary.  I t  t u rn s  out,  though, 

t ha t  they car, be applied to  the  study of what happens to  t he  feasible solution s e t  and 

t he  optimal solution se t .  In o r d e r  t o  explain this and indicate the  main resu l t s ,  w e  must 

consider t he  kind of Lipschitzian p roper ty  tha t  per ta ins  t o  multifunctions (set-valued 

mappings) and the  way tha t  th is  car, be  character ized in terms of a n  associated dis- 

tance function. 

Let Y: Rd 3" be  a closed-valued multifunction, i.e. r ( v )  is  f o r  each 2; E Rd a 

closed subset  of Rn, possibly empty. The motivating exampies a r e ,  f i r s t ,  r ( v )  tzken to  

be  the  s e t  of al l  feasible soiutions to  t he  pnrameterized optimization problem (9,) 

above, and s econ i ,  ?(v) taken to  be  the  s e t  of al l  optimal s o i ~ t i o n s  t o  (Q,). 

One says  tha t  r ( v )  i s  Locally L ipschi t z ian  arocr.6 2; if f o r  ai l  2;' arid v"  irl some 

neighborhood of v one has  T(z; ') an2 T(v ") nonempty and bounded with 



f iere  B denotes t h e  cioseci unit ball in Rn and X i s  a Lipschitz constant.  This p r o p e r t y  

can b e  expressed  equivalently by means of t h e  classical  Hausdorff metr ic  on t n e  space  

of al l  nonempty compact subsets  of Rn : 

haus ( r ( v  "), r ( v  ')) 5 X ! v " -u ' i when v ' and v " a r e  n e a r  v.  (3.2) 

I t  is interesting t o  note  t h a t  th is  i s  a "differential" p roper ty  of s o r t s ,  inasmuch as it 

deals with rates of change,  o r  at l eas t  bounds on such rates. Until recent ly ,  however, 

t h e r e  h a s  not been any viable proposal  f o r  "differentiation" of r t h a t  might b e  associ- 

a ted with i t .  A concept  investigated by Aubin [I71 now a p p e a r s  promising as a candi- 

date ;  see t h e  end of th is  section.  

Two o t h e r  definitions are needed. The multifunction r i s  local ly  bounded at v if 

t h e r e  i s  a neighbornood V of v and a bounded set S cRn such t h a t  r (v  ') cS f o r  a l l  

V'EV.  I t  i s  closed at v if t h e  exis tence of sequences ivk 1 and izk ! with 

vk 40, zk Er(vk) and zk  -+z impiies z ~ r ( v ) .  Finaily, w e  in t roduce f o r  7 t h e  dis tance  

f unc t i on  

d r  ( v , w )  = dist  ( r ( v ) . ~ . )  = min - z  -zu . 
I Er(v ) 

The following genera l  c r i t e r ion  f o r  Lipschitz c ~ n t i n u i t y  can  then b e  s ta ted.  

THEOREM 6 (Rockafellar  [18]) .  The m u l t i f u n c t i o n  r i s  locally L i p s c h i t z i a n  

a round  v i f  a n d  o n l y  i f  r i s  closed a n d  locally bounded at v w i t h  r ( v )  + 6 ,  a n d  i ts  

dis tance f u n c t i o n  d i s  local ly  L i p s c h i t z i a n  a r o u n d  ( v  ,z ) for  each  x c F(v ). 

The c ruc ia l  f e a t u r e  of th is  c r i t e r ion  i s  t h a t  i t  r educes  t h e  Lipschitz continuity of 

I? t o  t h e  Lipschitz continuity of a function d r  which is  actually t h e  marginal function 

f o r  a c e r t a i n  optimization problem (3.3) parameterized by vec to rs  v and w . This prob-  

lem f i t s  t h e  mold of (Q,), with v rep iaced  by (v  , w ) ,  and i t  t h e r e f o r e  comes uncier t h e  

control  of Theorem 5: in an  adapted. form. One is readily ab le  by th i s  r o u t e  t o  cierive 

t h e  following. 

TKEOREK 7 (Rockafeilar  [18]). Let I? be t h e  m u l t i f u n c t i o n  t h a t  a s s i g n s  to  each 

v E Rd the  set of a l l  feasible so lu t i ons  to problem (8,): 

r ( z i )  = { Z  ! ~ ( v , z )  E C a n d  ( v , z )  E Df. (3.4) 



Suppose  for a g i v e n  v t h a t  r i s  Locally bounded a t  z:, a n d  t h a t  r ( v )  i s  n o n e m p t y  

w i t h  t h e  c o n s t r a i n t  q u a l i f i c a t i o n  (2.14) sa t i s f i ed  b y  e v e r y  x c r ( z ; ) .  T h e n  r i s  

local ly  L i p s c n i t z i a n  a r o u n d  v . 

COROLLARY. Let r :Rd=Rn be a n y  m u l t i J u n c t i o n  wnose  g r a p h  

D = I ( v  ,x ) ! z E ~ ( V  ) 1 i s  closed. S u p p o s e  for a g i v e n  v t h a t  r i s  local ly  bounded a t  v , 

a n d  t h a t  r ( v )  i s  n o n e m p t y  w i t h  t h e  following c o n d i t i o n  satisf iedj 'or e v e r y  z € ? ( v ) :  

t h e  o n l y  vector z w i t h  ( z  ,0)  E ND(v ,z) i s  z = 0. (3 .5)  

Then  r i s  local ly  L i p s c h i t z i a n  a r o u n d  v .  

The corol lary  i s  just t h e  c a s e  of t h e  t'neorem where t h e  cons t ra in t  F ( v  ,z) E C i s  

triviaiized. I t  corresponds closely t o  a r e s u l t  of Aubin [ l i ' j ,  according t o  whicn r is  

"pseudo-Lipschitzian" re ia t ive  t o  t h e  pa r t i cu la r  p a i r  ( v  , z )  with z E r ( v )  if 

t h e  project ion of t h e  tangent  cone TD(v , z )  c Rd x R n  

on Rd i s  a l l  of Rd.  

Conditions (3.5) and (3.6) are equivalent t o  each  o t h e r  by t h e  duality between ND(v , z )  

and TD(v , z ) .  The "pseudo-Lipschitzian" p r o p e r t y  of Auhin, which will not  b e  defined 

h e r e ,  i s  a sui table  localization of Lipschitz continuity which facil i tates t h e  t reatment  of 

multifunctions I' with r ( v )  unbounded, as is  highly des i rable  f o r  o t h e r  purposes  in 

optimization theory  ( for  instance t h e  t reatment  of ep ig raphs  dependent on a paramete r  

v e c t o r  v ) .  As a matter of f a c t ,  t h e  resu l t s  in Rocisafellar :I83 build on t i i s  concept  of 

Aubin and are not  limited t o  locally bounded multifunctions. Only z specia l  c a s e  has  

been presented in t h e  p r e s e n t  paper .  

This topic is a l so  connected with interesting icieas t h a t  Aubin h a s  pursued towards 

a differential  theory  of multifunctions. Aubin defines the multifunction whose g raph  is 

t h e  Clarke tangent  cone TD(v , z ) ,  where D i s  t h e  graph of I', t o  b e  t h e  d e r i v a t i v e  of r 
at v re la t ive  t o  t h e  point x E r ( v ) .  In denoting th is  derivative muitifunction by r;,, , 

we have,  because  TD(v , z )  i s  a ciosed convex cone,  t h a t  r;,, i s  z closed c o n v e z p r o c e s s  

from Rd t o  Rn in t h e  sense  of convex annlysis :3, 5391. Convex processes  are v e r y  

much akin t o  i inear  transformations,  and t h e r e  is  quite z convez  algebra f o r  them (see 

[3, $391, [iq, and 120:). In pa r t i cu la r ,  ,, h a s  a n  a d j o i n t  L"; ,: : Rn Z R d ,  which t u r ~ s  

out in th is  c a s e  t o  b e  t h e  closed convex process  with 



In these  terms Aubin's condition (3.6) can be  written as ciorr, r;,, = R": whereas the  

dual condition (3.5) is T;;(" = !!3 j .  The l c t t e r  i s  equivaient t o  , being iocally 

bounded a t  t h e  origin.  

There  i s  too  much in th i s  vein f o r  us t o  br ing f o r t h  h e r e ,  but t h e  f e w  f a c t s  we have 

c i ted  may s e r v e  t o  indicate some new directions in which nonsmooth anaiysis i s  now 

going. W e  may soon have a hignly deveioped appara tus  t h a t  can be  applied t o  t h e  study 

of a l l  kinds of multifunctions and t h e r e b y  t o  subdifferential  multifunctions in par t icz-  

iar . 
For  example, as an aid in t h e  analysis of t h e  stabil i ty of optimal solutions and mul- 

t ip l ier  vec to rs  in problem (Q,), one can t a k e  up t h e  study of t h e  Lipschitzian p roper -  

t i e s  of t h e  multifunction 

r ( v )  = s e t  of a l l  (x ,y  , z )  suck t h a t  x is  feasible in (Q,) 

and t h e  optimality condition (2.13) i s  satisfied. 

Some resu l t s  on such l ines are given in Aubin [I71 and Rockafellar  [2;<. 
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