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FOREWORD 

Stochastic programming methodology is applied in this pape r  to a capital  in- 
vestment problem in water resources.  The authors  introduce possible model formu- 
lations and then find the  solutions by using a number of specific solution tech- 
niques. These are part ly  based on the  SDS/ADO tape for  stochastic programming 
problems and also on standard l inear and nonlinear programming packages. Such 
an approach allows a thorough analysis of the  solution as well as a comparison of 
the algorithmic procedures  used to obtain these solutions. 
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ABSTRACT 

To analyze the  influence of increasing needs upon a given water resources  
system in Eastern Slovakia and to ge t  a decision on the  system development and ex- 
tension, severa l  stochastic programming m o d e l s  can be  used. The t w o  selected 
models are based on individual probabilistic constraints f o r  t he  minimum storage 
and f o r  the  freeboard volume supplemented by one joint probabilistic constraint 
on releases or by a nonseparable penalty t e r m  in t he  objective function. Suitable 
numerical techniques f o r  t he i r  solution are applied to alternative design parame- 
ter values. As a result ,  t he  pape r  gives an  answer to the  case study which is  based 
on multi modeling within the  framework of stochastic programming and, at the  s a m e  
time, i t  gives a comparison of various solution techniques par t ly  included in t he  
SDS/ADO collection of stochastic programming codes. 

- vii - 



STOCHASTIC PROGRAMMING IN WATER RESOURCES 
SWlXM PLANNING: n CASE SIVDY AND A 
COWPARISON OF SOLUTION TECHNIQUES 

J. h p a E  ovk A. Gaivoronski, 
2. Kos and T. Szhntai 

1. mRODUCTION 

Operation of reservoi rs  in water resources system is a multistage stochastic 

control problem. Water resources planning has to consider multiple users  and ob- 

jectives, reservoi r  operation policies need t o  be analyzed to obtain a n  effective 

use of water resources.  In the planning procedure, a g r e a t  variety of water 

resources systems designs or operation plans need t o  be confronted and the i r  

economic, environmental and social impacts evaluated. Two basic tasks are often 

solved: (a) a new system is developed o r  an existing one is enlarged by s o m e  pro- 

posed investments in reservoirs ,  pipes, canals, pumping stations, hydroelectric 

water plants, etc., or (b) the management and control of an  existing system has t o  

be al tered t o  accommodate t o  the new conditions. Analysis in both these cases  rests 

on mathematical modeling, the objectives and constraint of the problem have t o  be 

expressed mathematically. The mathematical models involve the selection of many 

engineering, design and operating variables. The optimization means the determi- 

nation of the best values of these variables regarding the constraints. A lot of the 

variables and parameters occurring in the objective function and in the con- 

s t raints  has t o  be taken as stochastic as they describe a stochastic real life prob- 

lem.  

Out of many possible goals, the water supply fo r  industry and irrigation, flood 

control and recreat ion purposes a r e  considered in this study. The m o s t  important 

decision variable is the s torage capacity of reservoirs .  

There were drawn up a lot of stochastic programming models f o r  inventory 

control and water s torage problems by Prdkopa (1973). One of these models w a s  

applied fo r  designing serially linked reservoir  systems (Prdkopa e t  a1 1978). 

Another application of these models concerning the  flood control reservoi r  design 



w a s  described by Prdkopa and Szdntai (1978). In Czechoslovakia where the 

analyzed system is located, t he re  is an  old tradition t o  use chance constrained 

models f o r  the considered type of problems. Applications of these models were 

described by DupaEov6 and Kos (1979), Kos (T979) in conjunction with the l inear 

decision rule  o r  with the direct  control. Here, we shall follow this tradition and in 

addition, we shall consider the  possible use of alternative stochastic programming 

models. 

It  is  the evident stochastic nature of inflows which causes the  most of the sta- 

tistical and modeling problems and which causes the necessity of a detailed 

analysis of the  data  and of the  variables occurring in any of model formulations. 

In water resources modeling, four  types of variables occur: 

(1) constant coefficients and parameters tha t  are used f o r  design values (e.g., 

active s torage of the  reservoir ,  reliability, cost  coefficients) o r  variables 

with small variation (e.g., the withdrawal of water f o r  the  thermal power sta- 

tion); 

(2) uncontrolled random variables with a known o r  estimated distribution (month- 

ly flows, meteorologic variables, e.g., precipitation, potential evaporation); 

(3) partly controlable random variables with known distribution (e.g. irrigation 

water requirements with controlable acreage);  

(4) random variables with an  incomplete knowledge of distribution, such as the fu- 

tu re  demands, future pr ices  and costs. 

In o u r  paper  the type (3) of stochastic variables were incorporated into the 

model taking into account t he i r  joint probability distribution. In this way the in- 

terrelations between the succeeding months values of irrigation water require- 

ments could be considered. It  is the theory of logconcave measures developed by 

Prdkopa (1971) which gives the  theoretical background f o r  the handling of joint 

probability constraints in stochastic programming problems. 

W e  pursued in this study two objectives. One is t o  develop optimization sto- 

chastic models t o  determine the required reservoi r  capacity under increasing 

needs. The goal of the model i s  t o  show how the irrigation, flood control and re-  

creation needs influence the reservoi r  operation and the reliability in meeting the 

multiple goals of the water resources system. This was done in section 2, 3 and 6 

which contain the description of the water resources system, a s  well a s  several  

suitable stochastic programming models and an  application of one of them t o  the 

basin of the Bodrog River in the Eastern pa r t  of Slovakia (Czechoslovakia), s ee  



Figures 1 and 2. 

Another of ou r  objective was t o  use this comparatively simple but meaningful 

and rea l  life problem t o  tes t  various approaches f o r  solution of stochastic pro- 

gramming problems and coh,.pare various solution techniques which a r e  implement- 

ed in IIASA and constitute SDS/ADO collection of stochastic programming codes. 

The results of this comparison can be found in sections 4 and 5. 

2. THE WATER RESOURCES SYSTEM 

The water resources system consists of t h ree  reservoirs ,  V., D., K., two of 

which are in operation (D., V.) and the third one is to be built o r  not (K.) - see  Fig- 

ure  3. The main purposes of the water resources system are the irrigation water 

supply, industrial uses - mainly water withdrawal f o r  the  thermal power station, 

flood control (bet ter  flood alleviation), environmental conservation and recrea-  

tion. The subsystem of the Laborec r ive r  (see Figure 4) w a s  originally designed f o r  

industrial water supply and flood control. During the operation of the reservoi r  

V., an  accelerated development of the  recreat ion occurred and the demands f o r  

maintenance of the  minimum recreat ion pool during the summer period were sup- 

ported by authorities. The area of irrigation grew and according to the plan will 

be increased substantially. The main questions fo r  the decision-makers are: 

- Can the presented water resources system still m e e t  a l l  the requirements? 

And if so,  with which reliability? 

- Is the construction of the  reservoir  K. necessary and when it will be neces- 

sa ry?  

The analysis of this problem w a s  divided into two steps.  The f i r s t  one 

comprises the screening modeling and i t  is discussed in this paper.  Optimization 

models, however, cannot ref lect  all the details of the water resources system 

operation. Therefore the results of the stochastic optimization model a r e  supposed 

t o  be verified using the stochastic simulation model with the input generated by the 

methods of stochastic hydrology. For the stochastic programming screening model, 

which is the subject of the present paper ,  an  aggregated model w a s  used and the 

monthly flows and the irrigation water requirements were aggregated into four  

periods: 
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FIGURE 1 Location of the water resources system of the Bodrog river. 
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FIGURE 2 The water resource  system allocation. 

(1) November till April of the  following year ,  

(2) May and June, 

(3) July and August, 

(4) September and October. 

The f i r s t  period starts at the beginning of the hydrological y e a r  and comprises the  

winter and the  spring periods filling the  reservoirs .  As the main interest  of the i r -  

rigation is  concentrated on the  vegetation period and recreat ion season, the 

aggregation of the six months is acceptable. The second and fourth periods in- 

clude irrigation and industrial demands, the  third period includes in addition the 

recreat ion demands. The requirements for the minimum pool due to environmental 
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FIGURE 3 Schematic representa t ion of t h e  water r e s o u r c e s  system of t h e  Bodrog 

r i v e r .  

control  and enhancement and flood control  pe r ta in  to a l l  t h e  periods.  

3. THE MATHEMATICAL YODELS 

The models were designed f o r  screening a l ternat ives  on t h e  cost basis. 

Using probabilistic constraints ,  t h e  resu l t  identifies t h e  capaci ty  zo of 

r e s e r v o i r  V. t h a t  should meet the  needs with a presc r ibed  reliability. The t a s k  i s  

formulated as t h e  cost of r e s e r v o i r  V. minimization. As t h e  cost is  a n  increasing 
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FIGURE 4 Schematic representation of t he  subsystem of the  Laborec r iver .  

function of reservoi r  capacity zo, w e  can evidently minimize the  capacity zo in- 

s tead of minimizing the  cost. 

The constraints involve exceeding of water supply need pi + di by the 

released volume zi in periods 2, 3 and 4 (vegetation periods). The needs consist of 

the  fixed demand di (minimum flow and industrial water needs) and random demand 

pi (irrigation water requirements). A s  to the  f i r s t  period, t he  fixed demand d l  



(caused mainly by the needs of the thermal power station) should be met with such 

a high probability tha t  the deterministic constraint zl 2 dl w a s  used. Taking into 

account the intercorrelations of random demands p i ,  i = 2 ,  3, 4, the constraint f o r  

the vegetation period, w a s  formulated as follows 

where a is the required joint probability level. 

The second type of constraints reflects the environmental control and 

enhancement, fishing and recreat ion needs. These requirements are expressed in 

the form of maintaining a minimum pool o r  minimum reservoi r  s torage m i .  In 

periods 1, 2 and 4,  the environmental and fishing needs a r e  reflected, in period 3 

the recreat ion needs are added. This constrain1 is then as follows 

where sf i s  the reservoi r  storage, ai the  required individual probability thres- 

holds in period i . 

The third type of constraint expresses  the flood control t a rge t  assuming tha t  

some flood control s torage v i  will be f r e e  in the  reservoi r  operation during the 

whole period i with probability y i ,  i.e., 

The resulting optimization problem has the form 

minimize zo 

and subject t o  additional constraints 



which stem mostly from natural  hydrological and morphological situation. The 

upper  bounds uf, i = 1, . . . , 4 ,  are given by the  volume of flood with respective 

duration and probability of exceedance. 

Using the  d i rec t  (zero-order) decision rule  and neglecting losses due to eva- 

poration, the  reservoi r  s to rages  sf can be  expressed via t he  water inflows and 

releases  in t he  relevant periods. Let r j  denote the  water inflow in t he  j - th  period 

and le t  ti denote the  cumulated water inflow, 

Denote fu r the r  by so t he  initial reservoi r  s to rage  at the  beginning of t he  hydro- 

logical year .  A s  a rule,  w e  can  put so = m 4, i.e., t he  reservoi r  s to rage  is  supposed 

t o  be at i t s  minimum a f t e r  t he  vegetation period. Repeated use of t he  continuity 

equation gives 

Substituting into (2) and (3) yields 

Using the  corresponding lOOpX quantiles zk(p)  of the  distribution of the  random 

variables t k ,  k = 1 ,  2, 3, 4 ,  w e  can rewri te  t he  individual probabilistic constraints 

(7) and (8) in the  form 



Unfortunately, th i s  simple device does  not apply to t h e  joint probabil ist ic con- 

s t r a i n t  (1). 

The resulting optimization problem 

minimize zo 

can  be  solved e.g. by specia l  techniques developed by Prdkopa  et al. (1978), see 

Section 4. 

Alternatively, s tochast ic  programming decision models c a n  b e  built solely on 

t h e  evaluation and minimization of t h e  overal l  expec ted  costs ,  which contain not 

only t h e  cost of t h e  r e s e r v o i r  of t h e  capaci ty  so but a l so  t h e  losses connected with 

t h e  f a c t  tha t  t h e  needs were not fulfilled and/or  t h e  requirements on t h e  minimum 

r e s e r v o i r  s t o r a g e  and on t h e  flood control  s t o r a g e  were not met. This type of 

models i s  called mostly stochastic programs w i t h  recourse or w i t h  penalties. 

Suppose f i r s t  t h a t  t h e  const ra ints  on water  supply, minimum water  s t o r a g e  and 

flood control  s t o r a g e  d o  not contain random variables,  i.e., w e  have (besides of t h e  

u p p e r  and lower bounds (5)) 



In case of random p i ,  i = 2 ,  3, 4 and tk ,  k = 1, . . . , 4, t h e  chosen decision z o ,  

z . . . , z need not fulfill  const ra ints  (12) f o r  t h e  actual  (observed) values of p i ,  

tk .  If th is  i s  t h e  case ,  costs evaluating losses on c r o p s  (not being i r r iga ted  on a 

sufficiently high level), on t h e  decrease  of r e c r e a t i o n  (due to t h e  lower r e s e r v o i r  

pool) and t h e  economic losses due to flood can be  a t t ached  to t h e  discrepancies.  

Let  c ( z o )  denote t h e  cost of r e s e r v o i r  of t h e  capaci ty  z o ,  let t h e  penalty 

functions be  of t h e  type 

2 0 and nondecreasing if y > 0 . 

Denote by v:, v2,  vz t h e  penalty functions corresponding to t h e  considered t h r e e  

types  of const ra ints  in (12), i = 2, 3 ,  4 ,  k = 1, . . . , 4. W e  try to find such a deci- 

sion f o r  which t h e  total  expec ted  cost will be minimal sub jec t  to inequality con- 

s t r a i n t s  (5): 

4 
minimize c (zo)  + E v,'(@i + di - zi ) 

s u b j e c t t o  i oSzo  5 U O  

The choice of t h e  penalty functions should be  based on a deep  economic and 

environmental analysis of t h e  underlying problem. On t h e  o t h e r  hand, f o r  a 

screening study, i t  seems sa t i s fac to ry  to r e s t r i c t  t h e  choice to piece-wise l inear  

or piece-wise quadrat ic  penalty functions. 



a )  piece-wise l i n e a r  p e n a l t y  (simple r e c o u r s e  model) All penalty functions 9 

are of t h e  form 

~ ( y )  = qy', where q 2 0 and y' = max (0, y )  . 

The coefficient q has  t o  be  given by t h e  decision maker; i t  co r responds  t o  t h e  

unique costs f o r  t h e  di f ferent  considered discrepancies.  A s  a resu l t ,  w e  have t o  

sub jec t  t o  t h e  const ra ints  (5). 

The solution method i s  mostly based on approximation of t h e  marginal distr i-  

butions of P i ,  t by d i s c r e t e  ones and,  in case of c ( z o )  l inear ,  t h e  resulting pro- 

gram can  b e  solved by simplex method with upper  bounded var iables  (see e.g. t h e  

SPORT program (by Nazareth) contained in t h e  ADO/SDS tape).  For  o t h e r  types  of 

piece-wise l inear  penalt ies see e.g. DupaEov& (1980). 

b)  If t h e  c o s t  function c (zo)  i s  s t r i c t ly  quadrat ic  on t h e  considered in terval  

<lo, u O > ,  a specia l  type of piece-wise q u a d r a t i c  p e n a l t y  function was suggested 

by Rockafellar  and Wets (1985), namely, 

~ ( y )  = O  f o r  y S O  

1 
=-y2 /p  
2 

f o r  0 5 y 5 p q  

(see  Figure 5). 

For  solving problem (15) with penalty functions of t h e  mentioned type,  pro-  

gram LFGM (by King) implementing Rockafellar  and Wets' Lagrangian Finite Gen- 

e ra t ion  Method i s  at disposal on t h e  ADO/SDS tape.  The paramete rs  p ,  q of t h e  in- 

dividual penalty functions have t o  b e  given by the  decision maker.  

The use of t h e  s tochast ic  program (15) with penalt ies does  not r e q u i r e  t h e  

knowledge of t h e  joint distr ibution of t h e  random needs f o r  i r r igat ion water. I t  

means, t h a t  due t o  t h e  assumed separabi l i ty  of t h e  penalty functions (i.e., due t o  

t h e  f a c t  tha t  s h o r t a g e  in i r r igat ion water  i s  penalized in each of t h e  t h r e e  vegeta- 

tion per iods  separa te ly  and t h e  to ta l  penalty is taken as t h e  sum o v e r  t h e  t h r e e  



FIGURE 5 

periods),  no in te rcor re la t ions  are considered. Alternatively, we c a n  a t t ach  a 

penalty cost to t h e  si tuation,  when t h e  to ta l  needs f o r  water i r r igat ion in t h e  vege- 

tation per iod as a whole were  not met. In t h a t  case ,  w e  can  t a k e  e.g. 

with p of t h e  form (12) and minimize 

subject  to const ra ints  (5). 

Finally, i t  i s  possible to combine t h e  probalist ic const ra ints  and t h e  penaliza- 

tion: one can  define t h e  set of admissible decisions by means of probabil ist ic con- 

s t r a i n t s  (4) and inequalities (5) and,  at t h e  same time penalize t h e  o c c u r r e n c e  of 

t h e  discrepancies in (12) by corresponding penalty terms in t h e  objective function. 

In th is  case study, t h e  set of admissible solutions w a s  defined by t h e  individual 

probabil ist ic const ra ints  on a minimum pool and on t h e  flood control  s to rage ,  i.e., 

by t h e  system of inequalities (9), ( lo ) ,  and by inequalities (5). Instead of t h e  joint 

probabil ist ic const ra int  on t h e  water supply needs, one penalty t e rm of t h e  form 



i ( B i  + d i  - x 2 .  i = 2 . 3 . 4 )  = c[  m a r  ( B i  + d i  - x i ) + ]  
i = 2 , 3 , 4  

0, max ( B f  + d i  - X i  ) 
i = 2 , 3 , 4  

w a s  used. The resulting problem 

minimize x o  + max ( B i  + d i  - Z* 1 +} 
i = 2 , 3 , 4  

k 
subject t o  z xi S zk( l  - a k )  + m 4  - m k ,  k = 1 ,  . . . , 4 , 

i = l  

can be solved by the stochastic quasigradient method Ermoliev (1976) o r  by tech- 

niques designed to  solution of the complete recourse problem; see  Section 4 .  For 

the optimal solution of (17) ,  the values of the joint probability 

were computed. 

Observe tha t  in (17) ,  the  cost c ( x o )  of the reservoi r  of capacity zo  is  sup- 

posed to  be linear in the interval L o  S z0 S uo and that  the coefficient c of the 

penalty t e r m  evaluates unit losses due to water shortage r e l a t i v e  t o  the  cost p e r  

unit capacity of the reservoir .  

4. SOLUTION TECHNIQUES USED TO SOLYE THE PROBLEM 

In this section we shall describe briefly the solution techniques used fo r  nu- 

merical experiments with models (11)  and (17)  described in the previous section. 

We could choose among several  stochastic optimization programs from the SDS/ADO 

stochastic optimization l ib rary  available at IIASA. 



For  solving problem (11) with t h e  joint probabil i ty const ra int ,  nonlinear pro- 

gramming techniques c a n  b e  used. The choice  among them depends on t h e  p roper -  

t ies  of t h e  set of feasible solutions. For  log-concave probabil i ty measures,  which i s  

t h e  case of multidimensional normal, gamma, un:form, Dirichlet  distr ibutions of 8,  
t h e  set descr ibed by 

is  convex and among o t h e r s ,  t h e  method of feasible d i rect ions ,  supporting hyper- 

plane method and penalty methods supplemented by a n  efficient  rout ine  f o r  comput- 

ing t h e  values of t h e  function p ( z )  and i t s  der ivat ives  c a n  b e  applied. (For a sur -  

vey see Prdkopa  (1978), (1986).) For  multinormal distr ibution,  t h e  supporting hy- 

pe rp lane  method was implemented at IIASA by Szdntai as PCSP code.  

For  solving problem (17), one possibility i s  to approximate t h e  original  distr i-  

bution of 8 by a sequence of discrete distributions. The penalty c a n  b e  given im- 

plicitly via so called second stage program: f o r  f ixed values of z , ,  pi, d , ,  i = 2 ,  

3, 4 ,  ? ( p i  + d ,  - x i ,  i = 2 ,  3, 4 )  equals to t h e  optimal value of t h e  objective func- 

tion in t h e  following l inea r  program 

minimize c y  

so t h a t  t h e  problem (17) c a n  b e  considered as t h e  complete r e c o u r s e  problem and 

solved accordingly. For  d i s c r e t e  distr ibution t h e  approach  leads  to l inear  pro- 

gramming problems of specia l  s t r u c t u r e  which should b e  exploited by adequate 

solution techniques. One such technique i s  L-shaped algorithm by Van Slyke and 

Wets (1969) implemented at IIASA by Birge in NDSP code. For  f u r t h e r  exposition 

see e.g. Kall (1979), Wets (1983). 

Finally, to s tochast ic  programming models of expectation type  such as (17). 

s tochast ic  quasigradient (SQG) method c a n  b e  applied, see Ermoliev (1976), Ermo- 

l iev and  Gaivoronski (1984). The s tochast ic  optimization so lver  ST0 based on th is  

method solves t h e  following problem 

minimize E, f (z  , w )  = F ( z  ) 



sub jec t  to const ra ints  

where f ( z ,  o)  i s  a functic? which depends on decision var iables  z and random 

paramete rs  o. The u s e r  h a s  to provide a n  algorithmic descr ipt ion of th is  function. 

The set X is  t h e  set of const ra ints  and in the  c u r r e n t  implementation, i t  would be  

t h e  set defined by l inear  const ra ints ,  say ,  

The optimal solution of (18)-(19) i s  r eached  i tera t ively  s t a r t ing  from a n  initial 

point z0 by applying t h e  following i t e ra t ive  procedure:  

where p, i s  t h e  s tepsize ,  CS - s t e p  direction,  9 - projection o p e r a t o r  on t h e  set 

X: 

The projection in t h e  ST0 i s  performed using QPSOL quadrat ic  programming pack- 

age,  see Gill et a l .  (1983). 

The s t e p  di rect ion CS should, roughly speaking,  be  in a v e r a g e  close to t h e  

gradient  of t h e  objective function F(z)  = E,j'(z, o)  at point zS,  although indivi- 

dual CS may b e  f a r  from ac tua l  values of t h e  gradient.  This i s  expressed with t h e  

help of conditional expectations:  

where a, i s  some vanishing term. Each par t i cu la r  s t r a t e g y  of choosing sequence of 

stepsizes p, and s t e p  di rect ions  lead to par t i cu la r  algorithm and many such 

s t ra teg ies  are implemented in t h e  program ST0 some of them are fa i r ly  sophisticat- 

ed.  I t  i s  a l so  possible to change s t ra teg ies  interactively during optimization pro- 

cess .  Detailed description of th is  program is  given in Ermoliev and Gaivoronski 

(1984), f o r  theore t i ca l  background and f u r t h e r  r e f e r e n c e s  see Ermoliev (1976). 

Here  w e  shall  desc r ibe  only f e a t u r e s  re levant  to t h e  numerical experiments con- 

ducted with water r e s o u r c e  models. 



First  of all i t  w a s  necessary t o  put the  problem in the  f o r m  (18)-(19). Observe 

that  the  model with the  joint probabilistic constraint cannot be  easily put in the  

frame-work (18)-(19) while the  expectation models (14), (15). (16) and (17) are al- 

ready fc-mulated in the  required fashion. But expectation models do  not give the 

value of probability 

which is  important f o r  decision making. Therefore w e  conducted numerical experi-  

ment in t w o  stages.  

1 Solve the problem based on the expectation model: 

minimize 

E f l ( z ,  8 )  = z o  + c E m a x  max [pi + d i  - z i j  
i =2 ,3 ,4  I 

subject to constraints 

and additional constraints (5) (see (17)). Program ST0 generates  cer ta in  ap- 
* 

proximation z to the  optimal solution. 

2 Evaluate the value of probability constraint,  that  is  compute 

This w a s  done using the  genera tor  of multivariate normal distribution from 

IMSL l ibrary which w a s  a lso used on the f i r s t  stage. If p ( z  *) appeared to be 

less than admissible level a then w e  increased the  penalty coefficient c from 

(21) and solved the problem (21)-(22) again. This process  w a s  repeated until 

desirable value of ( z  * ) w a s  reached. Clearly, p (z*  ) 4 1 when c w. 

N o w  w e  shall  discuss s t ra teg ies  which w e r e  used fo r  solving (21)-(22). In this 

case i t  i s  possible t o  compute subgradients j',(zS, pS) of function f ( z ,  8 )  f o r  

given values of z = zS and random parameters 8 = pS, the components are 



and take  tS = f , ( z S ,  PS) in method (20) .  W e  decided, however, to use a method 

which is  based only on values of f ( z S ,  PS) and is  applicable therefore  fo r  m o r e  

complex models. Various types of random search  techniques and finite differences 

are implemented in STO. For this model the  following analog of random sea rch  w a s  

used: 

- Generate L random vectors  ?fl, . . . , tlSL : tlSi = (adi,.  . , a f ' )  where tl;i are 

uniformly and independently distributed on [- 6 , ,  6 , ] .  

- Generate 1 independent random vectors  p l ,  . . . , pSL, psi = ( @ i f ,  @ti) 
with multivariate normal distribution. 

- Compute p :  

f z i ( z s ,  B S )  = 

During computations w e  took 1 S L S 5 .  

- c  if @; + di  -2;  = 

= maxto, max 18; + di  -z;jj 
i  

0  otherwise 

- Select p, and perform one s t ep  in (20).  

The value of search  s t ep  w a s  taken constant 6, = 10 .  Stepsize p, w a s  updated 

interactively, but a f t e r  severa l  t r ia ls  t he  following pa t te rn  emerged, which w a s  re- 

peated afterwards: 

1 S s S 5 0  
5 0 S s  S 1 5 0  

1 afterwards 

In o r d e r  to ge t  exac t  solution i t  is necessary to take  6 ,  --, 0 .  But in this particu- 

l a r  case i t  appeared tha t  sufficiently good approximation w a s  obtained even with 

fixed 6,.  Usually i t  took 200-300 i terations to ge t  solution. The resul ts  obtained 

by this method for solving water resource  problems with different parameters  are 

discussed f r o m  the  application point of view in the section 6. One of the sets of 

problem parameters  w a s  used to compare performance of various models and solu- 

tion techniques described at the  beginning of this section. 



5. COMPARISON OF THE SOLUTION TECHNIQUES 

This is  the  par t icular  problem of the type (17) which w a s  used fo r  comparison: 

minimize F ( z )  = EJ ( z  , o )  = zo 

+ C E ,  max 0, max toi + di -zii [ [ 1=2,3,4 

subject  to constraints 

where di = 12.7, i = 2, 3, 4. The random vector o = (ol,  oz ,  u3) is  distributed nor- 

mally with 

expectations e = (20.2, 27.37, 10.65) 

s tandard deviations q = (8.61. 10.65. 6.00) 

0.360 0.125 
and correlation matrix 0.360 1. 0.571 , 

[::I25 0.571 1. 1 
penalty coefficient c was equal 100. This problem is  the same as discussed in the  

case study in Section 6,  only t he  upper  bound uo  = 500 mil. m3 was used instead of 

u o  = 334 mil. m3 and the  reliabilities Tk  = 0.75 were taken instead of yk = 0.4. 

The convenient fea ture  of this problem is  that  we can easily obtain very good lower 

bound f o r  solution by minimizing zo subject  to constraints s ta ted above. This gives 

F ( z * )  2 494.88 where z *  is  t he  optimal point. 



5.1. A p p r o z i m a t i o n s  of s tochas t i c  problem b y  Large scale Linear 

programming problem 

To use this approach i t  is  necessary to approximate initial continuous distri- 

bution by discrete distribution consisting of N points. Various ways of doing this 

are described in Birge, Wets (1986). Here w e  used the following two schemes: 

1 "Intelligently" 

- variance matrix w a s  computed from the  given correlation matrix and 

variances; 

- eigenvalues ri and eigenvectors v i ,  i = 1, 2 ,  3 of the  variance matrix 

were computed; 

- number k  w a s  chosen and f o r  one-dimensional normal distribution points 

bi , i = 1, . . . , k  were selected such tha t  

f o r  i = 1, ... k  - 1 

- approximating discrete  distribution consisted of all points 

f o r a l l  i = l , .  . . , k ,  j = l , .  . . , k ,  1  = l , .  . . , k  and 

These points were taken with equal probability l / ( k 3 ) .  Approximating distri- 

bution chosen in this way is symmetric and has the same expectation and vari- 

ance matrix as original distribution. 

2 Just throwing specific number N of points distributed according t o  original 

distribution and assign t o  each of them probability 1/N. 

After such discretization i s  performed, the original problem becomes 

equivalent t o  the following stochastic optimization problem with complete 

recourse: 

C N 
minimize zo = - vj 

j =l  



subject to constraints 

and constraints (24). 

where uj E j = 1, . . . , N, are the  points where the discrete  distribution i s  

concentrated. 

This is  l inear programming problem which could be of very  high dimension be- 

cause large N is  needed f o r  accura te  approximation. W e  did not, however, make 

very accurate approximations and therefore  were able to use a general  purpose 

l inear programming tool, namely l inear programming p a r t  of MINOS 4.0, see Mur- 

tagh and Saunders (1983). 

The resul ts  are summarized in the  Table 1. To each en t ry  in the  left  column of 

this table correspond t w o  rows of numbers in the columns 2-4. The upper  number 

corresponds to "intelligent" approximation and the  lower to "just throwing". The 

column marked ST0 presents  results obtained by the  variant of SQG described in 

section 4 a f t e r  100 i terations,  each iteration required 40 observations of random 

function. It  i s  amazing tha t  f o r  much bigger problem of 1331 points in case of "in- 

telligent" approximation MINOS found solution much f a s t e r  than f o r  343 points. I t  i s  

also worth noting what a big difference makes "intelligent" approximation as com- 

pared with "just throwing": approximation which uses only 125 points is be t t e r  than 

one with 1331 points. The estimate of the value of the objective function in Table 1 

w a s  made using a sample of 10000 points generated by subroutine f o r  multivariate 

normal distribution from the  IMSL l ibrary.  

W e  complete the  discussion by comparison of the  empirical expectation and 

correlation matrix computed using the s a m e  10000 random numbers with the 

corresponding preasigned parameter  values. I t  gives an  idea how accura te  the  es- 

timates a r e :  

expectations of random vector  o e = (20.2000, 27.3700, 10.6500) 

empirical expectations from 10000 points (20.2855, 27.3912, 10.6841) 

0.360 0.125 ' 
correlation matrix of o 0.360 1. 0.571 

1 2  0.571 1. , 

empirical correlation matrix 
1. 0.354429 0.107631 
0.354429 1. 0.572717 
.0.107631 0.572717 1. 1 



TABLE 1 

- - 

Total number of points 
in approximating distr ibution 

Optimal value of t h e  complete 
r e c o u r s e  object ive  function 

Estimate of t h e  value of 
original  objective function 

Number of MINOS i tera t ions  

MINOS u s e r  time 

5.2. Stochastic quasigradient  method 

In t h e  ST0 implementation t h e  u s e r  can choose between two options: in terac-  

t ive and automatic. In t h e  in te rac t ive  option t h e  u s e r  chooses t h e  s teps ize  p, from 

(20)  himself, h is  judgment i s  based on such notions as "oscillatory behavior"  of 

var iables  or "visible t r end"  aided by some additional "measures of p rocesss  quali- 

ty". These are displayed on t h e  terminal along with c u r r e n t  point and u s e r  can  in- 

t e r r u p t  i t e ra t ive  p rocesss  and change t h e  value of stepsize.  In o r d e r  to use th i s  

possibility effectively t h e  u s e r  h a s  to b e  qui te  exper ienced.  However, as p rac t i ce  

shows even a n  inexper ienced u s e r  c a n  quickly g e t  necessa ry  skills. All th is  i s  

descr ibed in more deta i l  in Gaivoronski (1986). 

In exper iments  with in te rac t ive  mode t h e  s t e p  di rec t ion from (20)  was com- 

puted using c e r t a i n  analogue of random s e a r c h :  g e n e r a t e  random v e c t o r  h = ( h l ,  

h 2 ,  h3)  where hi a r e  independent random var iables  uniformly dis t r ibuted on 

[- G ,  G ]  and G i s  chosen in teract ively  from t h e  in terval  [I, 201, compute llh I (  corn- 

pute vec to r  u = ( u l ,  up, u g )  such t h a t  



where oi a r e  independent observations of o 

r e p e a t  t h e  f i r s t  two s t e p s  L times with di f ferent  independent observations of ran-  

dom var iables  w and h ,  obtain 1 vectors  u and take  as s t e p  directions ts  average  

of these  vec to rs  (in example given below 1 = 10). 

Stepsize w a s  chosen interactively.  A t  f i r s t  sufficiently l a r g e  stepsize chosen 

(10.0) which w a s  reduced if i r r e g u l a r  behavior of t h e  z var iables  w a s  observed.  

The resul ts  a r e  in Table 2. 

TABLE 2 

S t e p  Stepsize zo z 1 2 2 2 3  z 4 F(z) 
number 

The value of s t e p  G in random s e a r c h  w a s  s e t  10.0 

A t  th is  point t h e  s t e p  in random s e a r c h  w a s  changed t o  5.0 

During actual  computations information was displayed more frequently and, of 

course ,  without l a s t  column which contains t h e  est imates of t h e  values of t h e  objec- 

tive function f (z) at t h e  c u r r e n t  points using t h e  same 10000 observations of t h e  



random vector  o which were used f o r  estimations of MINOS results.  These estimates 

were obtained afterwards (and consumed a lot of computer time!). From the  table i t  

i s  evident that  very  good solution (be t te r  than 1331 points approximate scheme) 

w a s  obtained a f t e r  20 i terations,  that  is a f t e r  800 function evaluations and all  sub- 

sequent points oscillated in close vicinity. 

The major disadvantage of the  interactive option is tha t  i t  requires  too much 

from the  user.  Therefore automatic option w a s  developed in which computer simu- 

la tes  behavior of an  experienced user.  For experiment with automatic option w e  

choose the  simplest version of SQG: one which uses fo r  s tep  direction the  values of 

I, ( z  , o) ,  which are very easy to compute here:  

f * ( z ,  o )  = Il . ,  o., - c t i ,  -c t2 ,  -c t3 j  

where t j  = 1 if 

O j  + d j  t i  - z j  + I  =maxIO, max I o i - l + d i  -zi j j  
i =2,3,4 

and t j  = 0 otherwise, c = 100 - penalty coefficient. 

On each iteration only one observation of I, ( z S ,  o )  w a s  computed, which w a s  

used as s t ep  direction. 

Stepsize ps w a s  computed automatically according to the  simple rule: 

- on each iteration one observation I (zS , oS ) was made and these observations 

were used to compute estimate F ( s )  of the  cu r r en t  value of the  objective 

function: 

cu r r en t  path length L ( s )  w a s  computed also: 
S 

L ( s )  = C JJzi +' -zil( 
i =1 

- initial stepsize pi w a s  chosen sufficiently la rge  (in examples below i t  w a s  5.0) 

and each M i terations t h e  condition fo r  reducing stepsize w a s  checked (in ex- 

amples below M = 20, t ha t  is conditions were checked on iterations number 20, 

40, 60,. . . ). This condition i s  the  following: 

p s + l  = D p s  if (F(s  -K)  - F ( s ) ) / ( L ( s ) - L ( S  -K)) S A  

PS + I  = PS otherwise 

In examples below D = 0.5, K = 20, A = 0.01, starting point was (1000, 100, 

100, 100, 100). Each iteration required one observation of random function 

f ( z ,  0 )  and one observation of i t s  gradient. Below the re  are two runs with dif- 



fe ren t  sequences of random vectors  o. One is  "very good" another  - "not as good 

but quite reasonable". When cu r r en t  point approaches optimum the  event It, = 1 j 

becomes less and less likely. Therefore the  method spends much of i terations 

standing at the  same point (for instance i terations 260-400 in Tables 3 and 4). The 

last  column again w a s  obtained afterwards using the  same 10000 observations of w 

as in the  previous tests. I t  shows that  the  algorithm reaches  quite good vicinity of 

solution a f t e r  120 iterations (except a slight jump on iteration 420). In Table 4 w e  

have a big jump on iteration number 220, the method, however, quickly reaches  the 

vicinity of solution again. This jump is due to too big stepsize. After i teration 

number 240 everything is OK again. 

The problem with SQG i s  the  stopping cr i ter ion and current ly  the cr i ter ion 

implemented is  based on assumption that  if stepsize becomes'too small w e  are in the 

vicinity of optimum. This of course is  not necessarily t rue  but experience shows 

that  nevertheless this c r i te r ion  is quite reliable if coupled with repeated runs. 

The same input data  were used f o r  solving the  problem (11) with joint proba- 

bility constraint. N e w  variables So  = zo  - L o  and = z 1  - d l  were introduced to  

eliminate the individual lower bounds. For the resulting program 

minimize So  

O S ~ o S ~ O - ~ O ; O S ~ l S ~ ~ - d ~ ; O S ~ ~ S ~ ~ ; O S ~ ~ S ~ ~ ; O S ~ ~ S ~ ~ ,  

t w o  solution techniques were implemented: 

subject to P 

zZ  S 0 1  + d 2  

z 3  2 0 2 + d 3  

2 o3 + d 4  

2 a  



TABLE 3 "Very good". 

Step  Stepsize 20 Z1 Z~ 23 z 4 F(z 1 
number 

TABLE 4 "Not as good as previous but quite reasonable". 

S tep  Stepsize Zo Z1 2 23 4 F(z 1 
number 



5.3. The PCSPcode b y  SzdLntai 

The program solves problems of stochastic programming with joint probabil i ty 

const ra ints  under  assumption of multinormal distribution of random right-hand 

sides ( o f  = pi ,  i = 2, 3,  4 in o u r  case).  I t  i s  based on Veinott's supporting i .1~-  

perplane algorithm (see Veinott (1967)). The individual upper  bounds on var iables  

a r e  handled separa te ly  and t h e  pa ramete rs  of the  multinormal distribution are 

used t o  ge t  a s ta r t ing  feasible in te r io r  solution. For  constructing t h e  necessary  

l inear  and s tochast ic  da ta  f i les,  one can tu rn  t o  t h e  brief documentation by Ed- 

wards (1985). Some computational resul ts  of t h e  test problem with da ta  given at t h e  

beginning of th is  Section are given in Table 5. 

TABLE 5 Results of t h e  calculations by using t h e  PCSP code. 

zo 1 Zz 3 4 Prob .  lev. CPU time No. of 
cutting 
planes 

5.4. The app l i ca t i on  of t h e  n o n l i n e a r  ve r s ion  of t h e  MINOS sys tem 

For  this purpose  one h a s  t o  write a s e p a r a t e  subroutine named CALCON which 

calcula tes  t h e  value of t h e  probabil ist ic const ra ints  and i t s  gradient .  The subrou- 

t ines are contained in t h e  PCSP code. They were  coded on t h e  base  of a n  improved 

simulation technique by Szdntai (1985). Computational resul ts  given in th is  section 

show t h a t  t h e  d i r e c t  application of t h e  MINOS system f o r  t h e  solution of t h e  optim- 

ization problem (11) i s  less  comfortable than the  use of the  PCSP code. We obtained 

t h a t  without giving a good initial set t ing on t h e  values of t h e  nonlinear var iables  

the  MINOS system failed t o  find a feasible solution. 

Finally in Table 7 t h e r e  i s  t h e  summary of experiments. 

In t h e  f i r s t  column t h e r e  is  a s h o r t  description of experiment including name 

of t h e  program, number of approximating points and type of approximation ( for  

MINOS, I and R mean the  same as before) ,  number of i tera t ions  and indication of in- 

t e rac t ive  or automatic mode ( for  STO), value of probabil i ty const ra int  ( for  PCSP). 



TABLE 6 Results of t h e  calculations by using t h e  nonlinear MINOS system direct -  
ly. (We applied the  z2 = 63.035, z3 =77.345, z4  = 30.0 initial set t ings.  For  these  
initial values t h e  probabil ist ic const ra int  is infeasible with value 0.866.) 

2 3  z4 P r o b .  lev. CPU time No. of 
major 

i tera t ions  

In t h e  column 7 t h e r e  are values of objective function (24) computed by averaging 

1 0  000 observations genera ted  by IMSL subroutine f o r  multivated normal distribu- 

tion. In t h e  column 8 are t h e  values of probability const ra int  computed using the  

same random numbers and in t h e  l a s t  column cpu time of t h e  VAX 780. For  in terac-  

t ive mode of ST0 cpu time is  not included because t h e  c ruc ia l  f a c t o r  t h e r e  w a s  

use r ' s  response.  

Experiments suggest  t h a t  both considered models give comparable resu l t s  and 

t h a t  t h e  methods ST0 and PCSP contained in the  ADO/SDS l i b r a r y  of s tochast ic  pro- 

gramming codes performed b e t t e r  on th is  pa r t i cu la r  problem than t h e  d i r e c t  use of 

s t andard  LP o r  NLP packages.  To solve t h e  c a s e  study, t h e  s tochast ic  quasigra- 

dient  method w a s  chosen as i t s  implementation is  not essentially limited by t h e  as- 

sumed type of distr ibution and through increasing t h e  penalty coefficient value a n  

approximate optimal solution which fulfills t h e  joint probabil i ty const ra int  can be  

achieved. 

6. THE CASE STUDY 

In t h e  case  study of the  water r e s o u r c e s  system in the  Bodrog River  basin t h e  

model (17) w a s  used with added const ra ints  (see discussion): 

The input values of the  3-dimensional multinorrnal distribution of were as follows 

(with exception of cor re la t ion  matrix in mil. m3) 



TABLE 7 

Experiment 

MINOS 
MINOS 
MINOS 
MINOS 
MINOS 
MINOS 
ST0 I 
ST0 I 
ST0 A 1  
ST0 A2 
PCSP 
PCSP 
PCSP 
PCSP 
PCSP 
PCSP 
PCSP 

Function 
value 

Prob. 
value 

CPU 
time 



Cor re l a t ion  matr ix 

The p a r a m e t e r s  of t h e  margina l  normal d is t r ibut ions  of cumulated monthly inflows 

<i were  

As t h e  va lues  ak = O.g, k = 1, 2, 3, 4 a n d  y k  = 0.4, k = 1, 2, 3, 4 were  used ( see  

discussion) t h e  following va lues  of quant i les  zk were  ob ta ined  (in mil. m3 

The va lues  di were  as follows (mil. m3) 

Pe r iod  k 

zk (1. - 0.9) 
zk (0+4> 

The minimum a n d  maximum r e s e r v o i r  capac i ty  zo was: l o  = 100 mil. m3 and u,, 

= 334 mil. m3. (In t h e  a l t e r n a t i v e  discussed in t h e  p rev ious  sec t ion  a less rea l i s t i c  

value u O  = 500 mil. m3 was used.)  The u p p e r  bounds f o r  va r i ab le s  were  252 mil. m3 

( u i  = 252, i = 1,  2, 3, 4 in mil. m3) t h a t  i s  t h e  volume of a long-term flood. This 

c o n s t r a i n t  was no t  e f f ec t ive  and t h e r e f o r e  i t  was not  analysed.  

1 2 3 4 

146.8 205.0 252.9 283.0 

272.5 342.1 397.1 446.1 



Due to r e c r e a t i o n  purposes ,  t h e  accep tab le  minimum s t o r a g e  in t h e  3-rd 

per iod i s  m 3  = 194 mil. m3. However, t h e  comparison of t h e  t h i r d  inequality of (9), 

t h e  th i rd  inequality of (10) t o g e t h e r  with zo  S 334 gives a n  upperbound of 189,4  

fc; t h e  sum m 3  + v3, so t h a t  t h e  pa ramete r  value m 3  = 194 would lead to contrad-  

i c to ry  const ra in ts .  Thats why t h e  minimum s t o r a g e  value m 3  h a s  been put  up to 1 3 7  

mil. m3 (see a l t e rna t ive  C) and t h e  s t o r a g e  values m k ,  k = 1 ,  2, 3, 4 have been kep t  

f ixed o v e r  al l  per iods  (see  a l t e rna t ives  A and B). The rel iabil i ty of maintaining t h e  

summer r e s e r v o i r  pool h a s  been evaluated e x  post .  

6.1. Choice  of r e l i a b i l i t y  v a l u e s  

The v e r y  important  pa ramete r s  of t h e  model are t h e  r e q u i r e d  probabi l i t ies  a, 

72  and ai. The value a i s  t h e  requ i red  joint probabil i ty of t h e  water supply.  The 

tests with t h e  model have shown t h a t  i t  i s  necessa ry  to add t h e  determinist ic con- 

s t r a i n t  (25) in o r d e r  to s e c u r e  t h e  requ i red  values of constant  industrial  water 

demands. The penalty t e rm is  of ten  so weak t h a t  t h e  cons t ra in t  (25) may be  violat- 

ed. Using t h e  determinist ic cons t ra in t  (25) a re la t ively  low value a, e.g. a = 0.85 

may b e  accep tab le .  However, t h e  value of joint probabil i ty (1) i s  t h e  output of t h e  

model; t h e r e f o r e  t h e  condition (1) i s  t e s t ed  and if i t  cannot b e  fulfilled, t h e  a l t e r -  

native i s  r e j ec ted .  

The values ai r e f e r  to t h e  re la t ively  s t rong  environmental and technical  re- 

quirements f o r  maintaining t h e  minimum r e s e r v o i r  pool. There fo re  af = 0.9, i = 1, 

2 ,  3, 4 w a s  chosen.  

The choice  of t h e  values 7*  w a s  r a t h e r  difficult.  They r e f e r  to t h e  important  

const ra in ts  imposed on  t h e  r e s e r v o i r  V opera t ion  t h a t  a r i s e  from flood con t ro l  re- 

quirements tha t  s t ipu la te  t h a t  a c e r t a i n  s p a c e  - flood control  s to rage ,  b e  held 

empty. This requirement  cannot  b e  easi ly expressed  in  t h e  model due to i t s  aggre-  

gated c h a r a c t e r .  The probabi l i ty  t h a t  t h e  f r e e b o a r d  s t o r a g e  i s  empty means a lso  

tha t  t h e r e  i s  no  spil l  during th i s  per iod.  If t h e  per iod i s  s h o r t ,  e.g. one  day,  t h e  

probabil i ty 7 may cor respond  to t h e  requ i red  rel iabil i ty.  F o r  longer  per iods  e.g.  

one  month, t w o  months, half a y e a r ,  extremely l a r g e  s t o r a g e  capaci t ies  will b e  

necessary  if no spil l  shal l  t a k e  place  during th is  per iod with probabil i ty equal  

0.75. (This value h a s  been used in t h e  previous  section and t h e  total  r e s e r v o i r  

capaci ty  zo as high as approx .  500 mil. m3 w a s  necessary.)  There fo re  t h e  flood 

control  problems are often t r e a t e d  in a s e p a r a t e  model and t h e  requ i red  probabil i-  



t i e s  7 a r e  adapted to t h e  result ing values of th is  s e p a r a t e  model. I t  i s  necessa ry  t o  

i n t e r p r e t  p roper ly  t h e  meaning of these  probabil i t ies.  For  ins tance  t h e  probabil i ty 

7 = 0.4 of maintaining t h e  f r e e b o a r d  s to rage  does not  say  t h a t  t h e  flood control  i s  

on a low level but  t h a t  t h e  f r e e b o a r d  s p a c e  will be  filled (and possibly some spill 

may o c c u r )  with th is  probabil i ty during the  period chosen.  With th is  f a c t  in mind 

and according to t h e  resu l t s  of t h e  s e p a r a t e  flood con t ro l  model t h e  value yi = 0.4 

i = 1, 2 ,  3, 4 w a s  chosen in th i s  section.  

6.2. R e s u l t s  

In t h e  f i r s t  result ing a l t e rna t ive  A of t h e  r e s e r v o i r  V design and opera t ion 

t h e  input pa ramete r s  were: 

mk = 5 7  mil. m3, k = 1, 2,  3, 4 - minimum r e s e r v o i r  s t o r a g e ,  

vk = 70 mil. m3, k = 1, 2 ,  3, 4 - flood control  s t o r a g e  ( f reeboard  

s to rage) ,  

which gave  

x o  = 291.6 mil. m3 - t h e  to ta l  r e s e r v o i r  capaci ty  

x I  = 107.9 mil. m3 - the  to ta l  r e l e a s e  in t h e  1-st per iod 

x 2  = 69.6 mil. m3 - the  to ta l  r e l ease  in t h e  2-nd per iod 

x 3  = 69.8 mil. m3 - t h e  to ta l  r e l e a s e  in the  3-rd per iod 

x 4  = 35.7 mil. m3 - t h e  total  r e l e a s e  in t h e  4-th period.  

S t a r t e d  at so = m 4  = 57  mil. m3, using t h e  computed optimal r e l e a s e s  and t h e  

cumulated monthly inflows equal  to t h e  quanti les zk (1 - 0.9) and zk (0.4) we c a n  

compute t h e  corresponding s t o r a g e s  si (in mil. m3): 

Per iod i I 1 2 3 

The underlined values are c r i t i ca l ,  i .e . ,  t h e  corresponding inequalities in (9) and 

(10) a r e  fulfilled as equations.  A s  t h e  existing to ta l  r e s e r v o i r  capaci ty  i s  304 mil. 

m3, we obse rve  from t h e  ac t ive  const ra in ts  

I 
min s t o r a g e s i  

m a x s t o r a g e s i  

57  95.9 84.5 62.6 57.0 

57  221.6 221.6 206.8 219.9 



t h a t  t h e  f reeboard  s t o r a g e  could be  increased from 70 mil. m3 t o  82.4 mil m3. The 

computed joint rel iabil i ty of water supply is a r 0.979. 

In th is  a l ternat ive  A t h e  requirements f o r  maintaining t h e  r e s e r v o i r  pool dur-  

ing t h e  th i rd  per iod w e r e  not  met with probabil i ty high enough. The acceptable  r e -  

c rea t ion  s t o r a g e  in t h e  th i rd  period is  s3 = 194 mil. m3. Using t h e  relat ion 

t h e  corresponding value of t3 can be obtained: 

For  values t3 2 384.3, t h e  condition on rec rea t ion  s t o r a g e  will be  fulfilled. Using 

the  pa ramete rs  of t h e  marginal normal distr ibution of t3 we g e t  t h e  corresponding 

reliabil i ty G3: 

where #I denotes t h e  distr ibution function of t h e  N(0, I )  distr ibution.  The resulting 

reliabil i ty of rec rea t ion  pool i s  not acceptable .  

In t h e  second result ing a l ternat ive  B of the  r e s e r v o i r  V design and operat ion,  

the  input pa ramete rs  w e r e  changed t o  m4 = 131 mil. m3 - t h e  minimum r e s e r v o i r  

s to rage  including t h e  environmental and rec rea t ion  goals (mk = I31 f o r  k = 1, 2, 

3, 4)  vk = 10 ,  k = 1, 2, 3, 4 t h e  f reeboard  s to rage .  The resulting solution (in mil. 

m 3> 

does not d i f fer  substantial ly from tha t  in a l ternat ive  A .  The minimum and maximum 



r e s e r v o i r  s t o r a g e  volumes (in mil. m3) were 

Period i I 1 2 3 

where t h e  c r i t i ca l  values are underlined again. The computed joint rel iabil i ty of 

water supply is a 2 0.987. 

For  values t3 2 194 - 131 + 244.1 = 307.1, t h e  condition on acceptable  re- 

creat ion s t o r a g e  will be  fulfilled; t h e  corresponding reliabil i ty 

of rec rea t ion  pool i s  high enough. 

In t h e  l a s t  a l t e rna t ive  C which i s  a sl ight modification of t h e  a l ternat ive  A t h e  

input pa ramete rs  were: 

The result ing solution (in mil. m3) 

di f fers  substantially from t h e  previous ones. The minimum and maximum s t o r a g e  

volumes (in mil. m3) were 



Per iod i 

where t h e  c r i t i ca l  values are underlined again. Observe t h a t  t h e  u p p e r  bound of 

t h e  r e s e r v o i r  capaci ty  h a s  been reached  (so t h a t  t h e  existing r e s e r v o i r  capaci ty  

h a s  been surpassed) .  A t  t h e  same time, t h e  computed joint rel iabil i ty of water sup- 

ply i s  only a 2 0.412, which i s  not acceptable .  

For  values t3 2 194 - 57 + 172.9 = 309.9, t h e  condition on accep tab le  recrea- 

t ion s t o r a g e  will b e  fulfilled. The corresponding rel iabil i ty 

m i n s t o r a g e s i  

max s t o r a g e  .Fi 

i s  sufficiently high again.  

The comparison of r e s u l t s  i s  given in  Table 8. 

57 136.2 126.9 137.0 57.0 

57 261 264.0 281.2 220.1 

7. DISCUSSION 

The comparison of t h e  goals of t h e  water r e s o u r c e s  system with t h e  resu l t s  

obtained shows t h a t  a l l  t h e  t a r g e t  values cannot b e  achieved by t h e  opera t ion of 

t h e  to ta l  r e s e r v o i r  s t o r a g e  334 mil. m3 of t h e  r e s e r v o i r  V. The relat ionships 

between t h e  goals and possibilities of t h e  r e s e r v o i r  V were as follows: 

1 The goal  of maintaining t h e  minimum r e s e r v o i r  s t o r a g e  f o r  environmental con- 

servat ion and technological  purposes  i s  met in a l l  a l ternat ives .  

2 The flood con t ro l  goal  i s  met in t h e  f i r s t  a l t e rna t ive  in cooperat ion with t h e  

levels along t h e  r i v e r  and i t  i s  mostly met in t h e  th i rd  a l t e rna t ive  too. In t h e  

second a l t e rna t ive  t h e  flood control  s t o r a g e  is  too small and cannot  b e  ac -  

cep ted  by t h e  decision makers.  

3 The minimum s t o r a g e  requirement  in case of r e c r e a t i o n  pool cannot  b e  m e t  

fully as t h e  substantial ly increased values of m3 give a n  empty solution set. 

This f a c t  c a n  b e  easi ly i n t e r p r e t e d  in water r e s o u r c e s  system analysis as too 

much water i s  r e l eased  in the  f i r s t  and second per iod and t h e  inflow during 

the  th i rd  per iod i s  not sufficient .  An e x  post  analysis shows t h a t  t h e  solution 

of the  second and th i rd  a l t e rna t ive  gives t h e  des i red  r e c r e a t i o n  pool with 

probabil i ty g r e a t e r  than 0.8 which may be  accep tab le .  



TABLE 8 

Alternative A B C D E 

Parameters mk = 57 V k  mk = 131 V k  mk = 57, k  = 1, 2, 4, m3 = 1.37 mk = 57 V k  mk = 57 V k  
vk = 70 V k  vk = 10 V k  vk = 70, k  = 1, 2, 4, v 3  = 10 vk = 70 V k  vk = 70 V k  
uo = 334 uo = 334 U, = 334 uo = 500 uo = 500 

Rellabi lltles 
a (releases) 0.979 0.987 
G 3  (recreation) 0.633 0.814 
7 (freeboard) 0.4 0.4 

Goals (met) 
mln storage YES (0.9) YES (0.9) 
recreation pool NO YES (0.8) 
freeboard volume YES NO 
water supply YES YES 

YES (0.9) YES (0.9) YES (0.9) 
YES (0.8) YES (0.8) YES (0.79) 

YES YES YES 
NO YES YES 



4 The joint probabil i ty const ra in t  f o r  water supply w a s  fulfilled in t h e  f i r s t  t w o  

a l t e rna t ives  on a surprisingly high level. To satisfy t h e  f ixed demand require-  

ments, determinist ic const ra in ts  (25) were added. In t h e  a l t e rna t ive  C ,  t h e  

joint probabi!l?y cons t ra in t  w a s  not fulfilled because  of t h e  low r e l e a s e  in t h e  

th i rd  period.  

5 The comparison of t h e  t h r e e  a l t e rna t ives  A ,  B, C shows t h a t  the  requirements  

f o r  flood con t ro l ,  maintaining t h e  r e c r e a t i o n  pool and t h e  water supply are 

antagonist ic and cannot  be  met in t h e  water r e s o u r c e  system by t h e  r e s e r v o i r  

V only with t h e  rea l i s t i c  to ta l  r e s e r v o i r  s t o r a g e  334 mil. m3. 

6 Alternatives D ,  E t h a t  have used t h e  h igher  rel iabil i ty of t h e  f reeboard  

s t o r a g e  f o r  long per iods ,  y = 0.75, r equ i red  t h e  non-realistic to ta l  r e s e r v o i r  

capaci ty  approx .  500 mil. m3. A s  th is  to ta l  r e s e r v o i r  capac i ty  cannot b e  

reached ,  t h e  const ruct ion of t h e  r e s e r v o i r  K will be  necessary .  

8. CONCLUSION 

Stochast ic  programming models were used f o r  identification of those  manage- 

ment plans of water r e s o u r c e s  system development which b e s t  meet t h e  requ i red  

objectives.  For  th is  purpose  t h e  economic objective and physical  environmental 

and economic probabil i ty const ra in ts  were expressed  mathematically. These 

management plans involved t h e  choice  of t h e  design and opera t ion var iables ,  i .e. 

t h e  to ta l  r e s e r v o i r  capaci ty  and t h e  re leases  in t h e  investigated per iods .  The 

analysis  of t h e  design a l t e rna t ives  shows t h e  con t rad ic to ry  c h a r a c t e r  of t h e  main 

goals of t h e  water r e s o u r c e s  system - water supply f o r  indust ry  and i r r igat ion 

flood control ,  environmental conservation and rec rea t ion .  A s  t h e  optimum al terna-  

t ives d o  not meet a l l  these  goals,  t h e  water r e s o u r c e s  system h a s  to b e  enlarged by 

t h e  r e s e r v o i r  K .  A s  a n  sc reen ing  aggrega te  model w a s  used and t h e  multidimension- 

a l  distr ibution and marginal distr ibutions were approximated by t h e  multinormal 

and normal distr ibutions respect ively ,  t h e  optimum design and opera t ion var iables  

derived by this  model are rough approximations. However, t h e  more p rec i se  values 

t h a t  could b e  der ived using a more sophist icated model cannot d i f fe r  to such de- 

g r e e  t h a t  t h e  main r e s u l t  (i.e. t h e  necessi ty to plan a new r e s e r v o i r )  b e  a l t e red .  

The comparison of t h e  d i f ferent  models of s tochast ic  programming h a s  proved 

a good agreement of t h e  technological resul ts .  The method of multi modelling (i.e. 

t h e  use of severa l  models and programs f o r  solution of the  same problem) proved 

t o  be  of use in planning of water r e s o u r c e s  systems development. 
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