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The paper  i s  devoted t o  the  development of i terative non-monotine optimiza- 

tion algorithms f o r  problems of convex stochastic optimization with and without 

constraints. Most problems under discussion fea ture  t he  lack of complete informa- 

tion about objective and constraint functions and the i r  derivatives as well as non- 

smooth nature of these functions. The central  idea of the  discussed numerical 

methods, called the  stochastic quasi-gradient methods, consists in the  use of ran- 

dom directions instead of precise  values of gradients. The random directions a r e  

statistical estimates of gradients (stochastic quasi-gradients). The definition of a 

stochastic quasi-gradient w a s  introduced in t he  work by Ju. M. Ermoliev, Z.V. Nek- 

rylova [I] and then this concept w a s  developed in works by Ju. M. Ermoliev (see, 

e.g., [21, C3l). 

Stochastic approximation algorithms (which stem from the  work by H. Robbins 

and S. Monro [4]) and many random search algorithms which are represented in the  

work by L.A. Rastrigin [5] and o thers  a r e  special cases of stochastic quasi- 

gradient algorithms. 

Adaptive procedures a r e  offered and studied through the use of which the  

parameters of the  algorithms discussed in this paper  a r e  controlled and practical 

character is t ics  of these algorithms a r e  improved. By the  adaptivity is he re  meant 

the  dependence of these parameters upon the  process t ra jectory in distinction t o  

program procedures where parameters depend upon the  number of iteration only. 

In particular,  s tep  size control and stopping cr i te r ia  a r e  suggested fo r  the  sto- 

chastic algorithms. I t  should be emphasized tha t  i t  is  just the  aspects which a r e  

most difficult and problematic in the numerical implementation of these methods. 



The main point of t he  suggested approach consists in the  following. Almost 

each iteration algorithm has  some parameters  t o  be controlled. Usually t h e r e  a r e  

also c r i t e r i a  which define the  quality of the  chosen controls.  But i t  i s  difficult t o  

satisfy these c r i t e r i a  in pract ice  (to find optimal control) because these quality 

c r i t e r i a  are difficult t o  compute. Nevertheless i t  is possible t o  vary these c r i t e r i a  

by parameters  and t o  calculate t he i r  gradients o r  stochastic quasi-gradients. The 

obtained gradients (quasi-gradients) may be  used in construction of recur rence  

procedures  t o  modify these parameters.  In such approach severa l  gradient pro- 

cedures  opera te  in t he  algorithm - in the  main space and with respec t  t o  t he  algo- 

rithm parameters.  1.e.. t h e  adaptation of t he  algorithm parameters  occurs.  

The following designations will be  used: 

Rn is  a n  n-dimensional Euclidean space; 

<-;>is a n  inner  product in Rn ; 

JI.JI is  a norm in Rn ; 

af ( z  )is a subdiff e ren t ia l  of the  convex function J' :Rn --, R at point z , i. e. 

(Q .  7,  P) i s  a probability space on which all random values are defined; 

w is an  elementary event belonging t o  t h e  set Q; 

a.s. means "almost surely "; 

E [ is  a mathematical expectation f o r  the  random value [; 

E C [ / ~ ~  I o r  

Es [ is a conditional mathematical expectation with respec t  t o  t he  &field 9"; 
l7, (.)is a projection on a convex closed set X c Rn . 

1. QUASI-GRADIENT ALGOBITHM WITH ADAPTIVE PARAMETER CONTROL. 

NON-FORMAL DESCRIPTION AND A BRKEF REYIEW OF RESULTS 

Here w e  shall  consider t h e  problem of minimizing a convex (possibly non- 

smooth) function Y ( z  ) 

J' ( z  ) -4 min 
z EX 

where X is a convex compact subset of Rn. In the  considered class of problems in- 



stead of exact  values of gradients o r  generalized gradients of the  function j ' ( z ) ,  

the  vectors are known which are statistical estimates of these quantities while the  

exact  values of t he  function and i ts  gradients are very difficult t o  compute. Such 

problems present  themselves, fo r  example, in the  minimization of functions of t he  

form 

Considering tha t  under the  most general assumptions the  generalized differential 

of the  convex function j' ( z  ) is calculated by the  formula [6] 

a, q ( z ,  w )  is  then a set of vectors  being the  statistical estimates of gradients of 

the  function j' ( z  ). 

EXAMPLE A Random Location Equil ibrium Problem. 

The classic formulation of Weber problem is as follows: given are n points wf , 

i = 1, . . . . n in two-dimensional Euclidean space R2,  i t  is required t o  find a point 

z  E R2 such that  a sum of distances t o  all points wf E R2,  i = 1, . . . , n is minimal. 

In the  generalized statement [7]  each point wf i = 1, . . . , n is  assumed t o  be a 

random value specified by some probability measure Of ( w )  on R2.  The problem 

consists in finding the  point z  E R2 which minimizes the sum of mathematical expec- 

tations f o r  distances from the point z  to  points wf , i = 1. . . . , n 

where Bf > 0 ,  i = 1, . . . , n .  

The random function 

I 0 f o r  z = w ,  

where the random value w is  specified by the probability measure Q may be taken 

as statistical estimate of generalized gradients i.e. 



J J  .$ (z , w)  0 (dw) E B j '  ( z )  is satisfied. 
R'= 

1.1. Description of the Algorithm and Various Approaches to Step Size 

Control 

An unknown point of the  minimum of t he  convex function j '(z) on the  set X is 

estimated by the  r ecu r ren t  sequence [2] 

where X is a convex closed set in R" ; tS is  a stochastic quasi-gradient, i.e. a con- 

ditional mathematical expectation f o r  this vector  satisfies t he  relation 

o-field P", is specified by random vectors  (zO. to, z l ,  t l ,  . . . , zS ); p, , s = 0, 1. .. . is  

some sequence of random values o r  random matrices n X n . 

The algorithm suggested by H. Robbins and S. Monro 141 f o r  estimation of the  

root  of a regression function (for X = R') is a special case of the  algorithm (1). 

The algorithm suggested f o r  optimization problems in [8] by H. Kiefer and J. Wol- 

fowitz is also a special case  of t he  algorithm (1). In his work the  gradient estimate 

is taken as f inite-difference approximations with random estimates of the  objective 

function. Further  this  approach w a s  developed in works of many authors  (see, e.g., 

19-111) with the  assumption of smoothness of the  objective function and the  ab- 

sence of t he  dependence of parameters p, , s = 0,l . .  . . on the  process t ra jectory.  

Such parameter controls w e  will call program controls, i.e., the s tep  size i s  equal 

t o  the  constant o r  decreases  monotonically by a pre-specified ru le  depending upon 

the  number of i teration s. 

Algorithms of the  type (1) f o r  optimization of different classes of non-smooth 

functions are described in 121, [12], 1131. Various approaches t o  estimating the  

rate of convergence of schemes of type (1) with program s tep  size controls are 

presented fairly completely in [lo], [ I l l ,  114-171. In pract ice i t  may occur  tha t  

the  initial s tep size i s  chosen small and t o  increase the  rate of convergence i t  

should be enlarged. The program step size control, naturally, does not take into 

account such situation though from the  viewpoint of t he  asymptotic rate of conver- 

gence this  control may be  ideal. That is why adaptive s tep  size controls taking into 

account the behavior of the  objective function a r e  necessary which would enlarge 



the  s tep size f a r  from the  extremum if i t  is  s m a l l  and decrease i t  nea r  the point of 

the minimum. R.J.-B. Wets proposed the  stochastic quasi-Newton method [25], then 

these resul ts  were developed by A. Gaivoronski. Below we consider the  different 

approach. 

The f i r s t  s tep  in this  direction w a s  made by H. Kesten [18] who suggested the  

program-adaptive control. He suggested t o  choose in scheme (I) ,  as s tep  sizes p,, 

a prespecified sequence !ak which satisfies conditions 

but the  s tep  should be  changed not at each iteration but only in t he  case when 

< t S ,  tS -I> < 0. 

In theoretical studies on substantiation of stochastic quasi-gradient methods 

conducted at V.M. Glushkov Institute of Cybernetics (see, e.g., the  generalizing 

work [Z]) s tep sizes p, a r e  assumed t o  be dependent upon the  process t ra jectory 

(zO, . . . , zS). In application studies beginning in 1967 heuristic adaptive pro- 

cedures were used t o  control s tep sizes in the algorithm (1). A t  each iteration the  

unbiased estimate zs of t he  objective function j' ( z S )  is assumed t o  be known; 

denote 

The value Ts may be used f o r  dialogue o r  program s tep  size control [Z] (see also 

[19]). For example, t he  s tep  size may be  chosen according t o  t he  ru le  

- ps/2 1 if lTs-k-Ts lsd*  
Ps + 1 - p, otherwise 

A. M. Gupal and F. Mirzoahkmedov [ZO] suggested t o  change the  s tep  size ps 

according t o  the  norm of vectors  vS 

which a r e  convex combinations of previous stochastic quasi-gradients 

t i ,  i = 0,1,  . . . , s . For stochastic problems of quadratic programming the s tep 

size controls which are the  development of H. Kesten scheme were suggested and 

justified by G. Pflug [Zl ] .  



The failing of t h e  above-listed s tep  size controls, except  f o r  dialogue ones, 

consists in a high dependence of the  efficiency of algorithm operation upon the  

value of t he  initial s t ep  size po since the  s tep  size can only decrease during the  

i teration process.  In t he  scheme suggested and substantiated by t h e  author  in 

[22], [23] the  s tep  size not only can decrease but also increase.  In t h e  next section 

i t  i s  shown tha t  this ru l e  is  a resul t  of using the  stochastic quasi-gradient algo- 

rithm to  control this parameter.  

2. USE OF STOCHASTIC QUASI-GRADIENT ALGORITHMS FOR STOCHASTIC 

ALGORITHM PARAMETER CONTROLS 

Parameter  controls in stochastic algorithms is  usually difficult because of t he  

absence of objective function values since only statist ical  estimates of these 

values are available. This circumstance does not make possible, f o r  example, t h e  

realization of efficient procedure of search  f o r  t he  function minimum along some 

chosen direction. The suggested approach consists in using the  gradient algorithms 

f o r  parameter controls. To use such procedures t h e r e  is no need f o r  additional 

computations of t h e  objective function or its gradients. 

2.1. Step Size C o n t r o l  f o r  Stochastic Quasi-Gradient  Algorithm 1221. 1231 

When constructing adaptive s tep  size control for the  algorithm ( 1 )  w e  assume 

tha t  the  algorithm t ra jec tory  belongs t o  the inter ior  of the  admissible domain and 

b S  = 0, s = 0 ,  1 ,  ... i.e. E, tS E af ( x S ) .  In t he  algorithm ( 1 )  it is  natural  t o  take  

s tep  sizes p, as the  point of minimum of the  function Q, ( p )  with respec t  to p where 

Usually i t  is difficult to calculate t he  values of t h e  function Q, (p ) .  Let us differen- 

t ia te  t he  function f ( x S  - p tS ) with respec t  t o  p at point p, 

Since 

then -Es < tS +I, tS>  E a Q , ( p , ) .  



To modify the  s tep size p, w e  may use the following gradient procedure 

where a x S  +' = z S  +' - z S .  

To facilitate t he  proof of t he  algorithm convergence w e  rewri te  t he  las t  relation in 

t he  form 

the  constant F bounds t he  s tep  size above. 

Note tha t  t h e  exponent i s  supplemented with the  additional t e r m  - bps which 

decreases  t he  s t ep  size p,. Here d is  some sufficiently s m a l l  constant, therefore  

t he  additional decrease  of t he  s tep  size occurs  in t he  case when the  value 

<tS +', tS > is  sufficiently close t o  zero  and is  comparable t o  t he  value 6.  The for- 

mula ( 2 )  may be  in te rpre ted  in t h e  following manner. The value <[, +', AxS +'> 
gives some information about whether t he  minimum of t he  function @,(p) with 

respec t  t o  p w a s  passed through at the  i teration o r  not. If - <tS +I, a x S  > >O then 

with a high probability t he  minimum w a s  not passed through and the  s t ep  size in- 

creases due t o  t he  member <[, +', a x S  +'>, otherwise t he  s tep  size decreases .  In 

[23] the  Cesdro convergence of t he  algorithm ( I ) ,  ( 2 )  was proved, i.e., the  conver- 

gence t o  t he  optimal set with probability 1 of t h e  sequence 

which is a convex combination of t he  t ra jec tory  points [16 ] .  In this  paper  t he  con- 

vergence of the  algorithm ( I ) ,  ( 2 )  with probability 1 is  proved, and the  asymptotic 

estimate of the  rate of t he  algorithm convergence f o r  t h e  case of twice differenti- 

able function f ( z  ) is  obtained. 



2.2. Stochastic Quasi-Gradient Algorithm wi th  Var iab le  Metric  

Algorithms of the  type ( 1 )  in the case when the  function i s  ill-conditioned have 

the  low practical r a t e  of convergence. This forces  t o  use more complex variants 

of the algorithms. In non-linear programming a wide spectrum of algorithms i s  

developed, called the  algorithms of variable metric [24] which successfully 

opera te  in such situations. In the  given case, however, t he  d i rec t  use of these al- 

gorithms is impossible because only statistical estimates of values of the  objective 

function and of i t s  gradients a r e  known. 

Let i t  be required t o  minimize a convex possibly non-smooth function f ( x )  

specified on the  space R". Stochastic quasi-gradients of the  function are known. 

Approximations of the  extremum point a r e  considered by the  rule  

where H S ,  s = 0. 1 ,  ... i s  a sequence of n x n random square matrices; 

CS . s = 0, 1 ,  ... i s  a sequence of stochastic quasi-gradients, i.e. Es C S  E a f  ( x S ) ,  he re  

6-field i s  specified by random values ( x  O .  to, HO, x i ,  t i ,  Hi, . . . , x S  ). The matrix 

HS is  modified at each s tep  in t he  following manner 

where Q S ,  s = 0 ,  1, ... i s  a sequence of square matrices. 

Denote Q ,  ( 9 )  =f  ( x  - QHS C S ) .  The matrix QS at the  iteration s can be  

chosen from the condition of the  minimum of the following function of n X n vari- 

ables 

However this problem by complexity is equivalent t o  the  source problem. 

We calculate the stochastic quasi-gradient of the  function a s ( Q )  at point I 

where I is  a unitary matrix. 

We differentiate the  function Q , ( Q )  in a generalized sense with respec t  t o  Q  

at the point I 

Here is, denote the  transposed matrix HS and the  vector  column C S  . 



Since 

then 

A s  a matrix QS we may take the matrix which is formed when executing one 

s tep  from the point I in the direction of the stochastic quasi-gradient tS +l?iS, 
i.e. 

where y,  is a positive scalar .  

Then we may rewrite the formula f o r  the matrix modification in the following 

manner 

Note tha t  the  last  formula is close to  the method with dilatation of the space along 

the generalized gradient suggested by N. Z. Shor  [26, p. 921 with V. A. Skokov 

modification. 

2.3. Algorithm wi th  the Averaging of Stochastic Quasi- G r a d i e n t s  

The algorithm with the  averaging of stochastic quasi-gradients w a s  considered 

by many authors [27], [12], [28-301. The advantage of this algorithm consists in the 

ease of i ts  realization and also in a higher efficiency f o r  t he  ill-conditioned func- 

tions as compared t o  the  stochastic quasi-gradient algorithm (1). The drawback of 

this  algorithm consists in i ts "inertial motion", i.e., the  direction of movement 

changes weakly from iteration t o  iteration, therefore  the  algorithm fo r  simple 

functions may be less efficient than the  algorithm (1). 

Using the  suggested approach the authors  of 1301 developed the recur rence  

schemes f o r  modification of two parameters of the  algorithm: s tep  size and aggre- 

gation coefficient. This made i t  possible t o  increase the  practical r a t e  of the  algo- 

rithm convergence f a r  from the extremum, leaving without changes the  local r a t e  

of convergence of classical methods. The algorithm convergence w a s  proved and 

the asymptotic r a t e  of convergence w a s  given. 



Let us consider the  minimization problem of convex possibly non-smooth func- 

tion j' ( z )  on the convex compact subset X of the  space Rn. Stochastic gradients of 

the  function j' ( z )  are known. 

The algorithm generates sequences of random directions d S  and points 

z E Rn , s = 0 . 1 , .  . . according t o  formulas 

Here ts is a stochastic quasi-gradient, i.e., E , t S  E B j ' ( z S )  where 6-field 9", is  

generated by random values ( z O ,  #O, . . . , zS z S ) ;  p, i s  a positive s tep  size; y ,  

is  a positive aggregation coefficient; is E 10, 11 is a r e s e t  coefficient; t E (0 ;  + a )  

is  a constant. 

A t  the initial point z0  EX we assume d - I  = 0 .  From ( 4 )  i t  follows tha t  the  

direction d S  i s  a convex combination of zero  vector  and stochastic subgradients 

C i , i  = o ,  . . .  , s .  

The r e se t  coefficient i s  defined in the  following manner: 

where 6 i s  some fixed threshold. 

To construct recur rence  relations of modification of parameters p, , y,  w e  as- 

sume tha t  the  algorithm opera tes  in the inter ior  of t he  admissible domain X and 

t =+ a. For the  given z S  d S  and X 2 0  w e  consider regularized function 

which character izes  t he  quality of th  chosen parameters p  and y  

where 

is defined by relations ( 4 ) ,  ( 5 ) .  Values p, and y, may be chosen from the  con- 

dition of t he  minimum of the function @, ( p ,  y )  = E ,  - l tps  ( p ,  y ) .  However, t he  pro- 

gram realization of such search  at each iteration is difficult. W e  differentiate in 

the  generalized sense the  function tp, ( p ,  y )  at the  point p, y, After simple 



transformations we obtain 

where A x S  = xS - xS Taking into account the  designations 

we have 

Thus the vector  (Us, v , )  may be interpreted as a stochastic quasi-gradient of the 

function cP, at the  point (p ,  y, with the  accuracy up t o  positive multipliers. 

Similarly t o  relation (2) the  vector  (u s ,  v,) w a s  used in [31] f o r  construction 

of the rule  f o r  calculation of the  s tep  size 

P o > O  * 

Ps = minip, P, - lex~[min(q,  - du,  - j, bps 1 , 

where > 0, q > 0, a > 0, X r 0 are fixed parameters,  the coefficient j, in the  

last  relation is calculated by the  formula 

hi,, is  a small positive value. 

The formula f o r  calculation of aggregation coefficients y, is written similarly 



In relations (6), (7) t he  additional members j ,  b p, j ,  A7 ,  increase t he  rate 

of t he  decrease  of coefficients p,, 7, in t he  case when t h e  values us and v ,  are 

close to  zero. 

The considered approach may b e  applied t o  o the r  algorithms, stochastic and 

non-stochastic, in which t h e  parameters  control is  required. The au thor  suggested 

and theoretically substantiated adaptive s tep  size controls f o r  the  stochastic 

Arrow-Hurwicz algorithm of search  f o r  saddle points of convex-concave functions 

[32] and f o r  t he  gradient algorithm of search  f o r  Nash equilibrium in non- 

cooperative many-person games [33]. 

3. CONVERGENCE AND BATE OF CONVERGENCE OF STOCHASTIC 

QUASI-GRADIENT ALGORITHM 

W e  will prove the  convergence with probability 1 of t he  stochastic quasi- 

gradient algorithm (1) with s tep  size control (2) to t h e  extremal set of the  convex 

function and estimate i t s  asymptotic rate of convergence f o r  twice differentiable 

functions. 

W e  show tha t  t h e  sequence of s tep  sizes chosen according to (2) satisfies t h e  

classical conditions 

Note tha t  classical theorems about convergence for the  algorithm (1) with 

s tep  size control (2) cannot b e  used (see, e.g., 123) because i t  i s  usually assumed 

tha t  t he  s tep  size p, depends only on random vec tors  (zO, . . . , zS), in t h e  given 

case this  condition is  broken since t he  s t ep  size p, depends also on 4'.  

Let us consider t he  problem of minimization of t he  convex function f (z) on a 

convex compact subset X E Rn . W e  use t he  stochastic quasi-gradient algorithm (1) 

with s tep  size control (2) and a, = a > 1, s = 0, 1, ... f o r  t he  search  f o r  t he  op- 

timum of t h e  function p (z), i.e., 



where &field 7 i s  specified by random values ( z O ,  t o ,  . . . , z S  tS , z S ) .  

Denote cpS = tS -p(zs),  w h e r e L ( z s )  E i 3 f ( z S ) ,  E, tS  = L(zs) + b S .  

3.1. The Algorithm convergence 

W e  will prove t h e  convergence with probability 1 of t h e  process  (8 ) ,  ( 9 )  t o  t h e  

extremal set of t h e  function f ( z )  on t h e  admissible set X. 

THEOREM 1 Let f ( z )  be a convez  bos s ib l e  non-smooth) f u n c t i o n  s p e w e d  

o n  t he  convez  compact subse t  X of t he  space Rn, t h e  f u n c t i o n  f ( z  ) sa t i s f i e s  t h e  

L ipsc i t z  cond i t i on  o n  X .  U 

l r a I ~ q  6 2 21n, [E, a a.s..s =0.1, ... , (13) 

t h e n  w i t h  probabi l i ty  1 all accumu la t i on  po in t s  of t h e  sequence { x S  4 s p e w e d  

b y  re la t ion  (81, (9) belong to  t h e  se t  

PROOF P r i o r  to proving t h e  principal assertion of t h e  theorem let us set 

severa l  propert ies  of s tep  sizes p,, s = 0,1, .... 
LEMMA 1 [a]. 

PROOF Suppose t h e  opposite, i.e.. t ha t  t h e r e  exis ts  such constant K f o r  which 

t h e  probability of event 

is  more than ze ro  P ( A )  > 0. From relations ( 9 ) ,  (11) i t  i s  easy to obtain 



where Cg = (c: C 6) > 0. 

For elementary events w E A from the  last estimate we have 

The obtained lower bound f o r  t he  s tep size ps + l  i s  inconsistent with the  rela- 
DD 

tion z p, 2 K .  The lemma is proved. 
0 

LEMMA 2 

PROOF Taking into account (8) .  (9). (11). the definition of t he  gradient of the  

convex function and propert ies  of the projection operation w e  obtain 

Hence 

Since according t o  (13) 

from the  last inequality we obtain 



6 
- 7 P s  

Since 0 s p, s p then f o r  a = (1  - a  > 0 the  relation 

6 
- ~ P s  

1 - up, r a is  fulfilled. 

By substituting this estimate into t h e  previous inequality and by introducing 

the  designation p, = p, a w e  have 

By taking t h e  mathematical expectation from both sides of t h e  inequality w e  

obtain 

where C4 = inf af (=). Since E ~ 1 ,  - E k 2 const then the  last estimate resul ts  
z EX 

in t he  assertion of t h e  lemma. 

COROLLARY [23]. 

LEMMA 3 [23]. 

PROOF Since p, --, 0 a s .  then 

From the  relation (9) i t  follows tha t  f o r  almost each elementary event w E Q t h e r e  

may be  found the  number s (w ) such tha t  for s > S ( w  ) 

Since p, --, 0 a s . ,  then 

- <ts +I, +l> - ap ,  -, o a.s. 

and the  assertion of t he  lemma resul ts  f r o m  the  relation (15).  



To prove the  main assertion of the theorem w e  use t he  conditions of conver- 

gence of stochastic programming algorithms [I31 with insignificant modifications. 

THEOREM 2  Let the random process l xS  (w  ) and a set of soLutions XY ERn 

be such that: 

C 1 .  Almos t  f o r  all subsequences l xnk (w) ]  such tha t  lim x n k ( w )  E Xu t he  rela- 
k - r w  

tion 

holds. 

C2. There exis ts  a compact set X such tha t  

C3. If t h e r e  exis ts  such event B c Cl t ha t  P ( B )  > 0  and f o r  all w E B t h e r e  ex- 

ists a subsequence l xSk(w ) {, xSk(w ) -, x l ( w )  'E XY then f o r  almost all  w E B t h e r e  

exis ts  such cO(w)  > 0  t ha t  f o r  all k and 0  < c  5 cO(w)  

m k ( w )  = inf lm :l lxm(w) -xl(w)ll  > E {  <O . 
m >sk 

C4. There exis ts  a continuous function W ( x )  such tha t  f o r  w E B 

lim w(xmk(w) )  < W ( x l ( w ) )  . 
k - r w  

C5. The function W ( x )  t akes  on X* at m o s t  countable number of values. 

Then t h e  limit of any convergent subsequence belongs to the  set X* almost f o r  

all w . 
W e  assume 

W ( x )  = min llx - y1I2, U , (x )  = l y  E Rn :IJy -xll s c {  , 
y EX' 

* 
f *  = m i n f ( x ) ,  xs =arg  min llxS -yll, qs  = Cs - f z ( x s )  - b S  

z  E X  y EX' 

W e  test the  satisfiability of conditions C1-C5. 

The condition C 1  is satisfied obviously, since by vir tue of t he  corollary of t he  

l emma 2  



The condition C 2  is satisfied by virtue of theorem 1.  

The condition C5 is  satisfied since the  function W ( z )  is  a constant on the  s e t  

XY.  

We tes t  the  condition C3. Let t he  probability of event B is more than zero, 

w E B  and z S k ( w ) - z ' ( w )  ZXY. 

For the  brevity we will omit the  argument w .  If the condition (16) f o r  the 

given w is  not satisfied then t h e r e  may be found arb i t ra r i ly  small E and number sk 

such tha t  f o r  s > sk valid i s  z S  E U,(z ' ) .  

For s > sk 

where 

* 
By virtue of conditions (10, (11) the  sca la r  product <qs ,  z ,  - z S  > is bound- 

ed, therefore,  taking into account (12) and l e m m a  3, we have 

S * 
From lemma 2  it follows tha t  the  martingale ser ies  z pL <qL ,  zL - zL  > is con- 

L = S k  

vergent a s . ,  therefore  



t he  constant C h e r e  depends upon w .  Consequently, f o r  sufficiently la rge  numbers 

s and small E 

Taking into account lemma 1  w e  obtain tha t  beginning with some number Sk f o r  suf- 

ficiently la rge  numbers s the  estimate 

holds. 

Passing to  t h e  limit s --, w w e  obtain t he  contradiction with boundedness W ( z )  

on the  closed bounded set U , ( z ' ) .  The contradiction proves C3. 

W e  will prove C4. Since IIPrS((--, 0 a.s. then by constructing index mk begin- 

rnk - 1  
ning with some number k valid i s  )I pl ['(I > e / 2 .  By vir tue of condition (11) w e  

Sk 

obtain 

Substituting the  last estimate in (17) f o r  s = mk - 1  w e  have 

Since w ( zSk)-  w (z  ') then  for sufficiently la rge  k 

The last inequality proves C4. 

3.2. Asymptotic Properties of Step Sizes 

W e  now study adymptotic proper t ies  of a sequence of s tep  sizes p, , s = 0 , 1 , .  . . 
for the  case of twice continuously-differentiable function. These resul ts  will b e  

used fo r  obtaining asymptotic rate of convergence of the  algorithm (8)-(9). 



LEMMA 4 Let for  the sequence IzS I s p e m e d  by reLations (8)-(9) vaLid be 

aLL condit ions of theorem 1 a n d  bS = 0; s = 0 ,1 ,  ... the func t ion  f (z  ) be twice 

continuousLy-diPQerentiabLe o n  the open se t  con ta in ing  X, t hen  

1 
Ps = ( s  + 1)b  l n a  

PROOF Denote rs = In, [(s + l )ps  1, s = 0,1, .  . . . According t o  t he  corollary of 

lemma 2 f o r  sufficiently large numbers s from relation (8) w e  obtain 

Consequently 

1 1 1 (1  - ln(a ) 6 a  + In, (1  + -) - - 
s In a s s l n a  

00 1 1 is convergent. From I t  is obvious t h a t  t he  ser ies  C [ln,(l + -) - - 
s = l  s s l n a  

00 

lemma 2 the  convergence of the  martingale ser ies  x <qS , PzS > follows a.a. Since 
s = l  

the function f ( z )  is twice continuously differentiable, then <Vf (zS) .  PzS > = 

f ( z  ) - f (z  + qs I I &  11' where 9, is uniformly bounded f o r  all  s . The equality 

is satisfied. The function f ( z )  is bounded on the  compact set X, the  ser ies  

2 qsll&s112 is convergent a s .  by virtue of lemma 2, therefore  t he  ser ies  
s = l  

00 x <Vf (zS) ,  hS > is  also convergent. The relation (18) then may be  rewritten as 
s = l  

follows 

1 
sS = rs + -(I - 61n(a)ar8-l) + ts 

s l n a  

OD 

where the  ser ies  C ts is convergent a.s. The last  formula is the  Robbins-Monro 
s = l  



algorithm f o r  solution of equation 1 - d ln (a )az  = 0.  Using standard resul ts  about 

convergence of stochastic approximation algorithms (see, e.g. [ I l l ) ,  w e  obtain 

Q.E.D. 

3.3. Rate of Algorithm Convergence 

For t he  case of twice continuously-differentiable function w e  estimate t he  

asymptotic rate of convergence of t he  algorithm (8)-(9)  in non-stochastic case. 

i.e., f o r  CS = V f ( x S ) ,  s = 0 , 1 ,  .... 
THEOREM 3 Let a l l  condi t ions  of theorem 1 hold,  C S  = V f ( x S ) ,  s = 0 ,  1 ,  ..., 

t h e  f u n c t i o n  f  ( x )  be twice  c o n t i n u o u s l y  d w e r e n t i a b l e  a n d  

where  x* i s  a u n i q u e  po in t  of m i n i m u m  of t he  f u n c t i o n  f  ( x )  o n  t he  set  X ,  

l n ( a ) ( ~ i  + 6 ) / 2 B  < 1. m e n  

PROOF W e  use t he  following lemma to prove t h e  theorem. 

LEMMA 5 [14]. Let there  be a sequence v, ,  s = 0 , 1 ,  ..., a n d  

- 
= 0 , 1 .  ...; lim 6 ,  s 6  < 1  

s -- 
Ps then v ,  s - -6 + o ( ~ s ) .  

From t h e  estimate (16 ' )  and condition (19)  w e  have 

w(xS + I )  s w ( x S )  + 2p,(p* - f ( x S ) )  + c;p: s 



Denote V, = 2p,B, v ,  = W ( z S ) ,  pS = C: pS / 2B. The condition (20)  of lemma 

5 is  satisfied obviously. W e  test the  condition (21) .  According t o  t he  corollary of 

lemma 2 from the  relation ( 9 )  we have for  sufficiently la rge  numbers 

where Ih, 1 5 C: . 
Consequently 

and lim @, 5 l n ( a )  (c: + d)/ (ZB)  as. by t h e  condition of the  theorem. 
s -- 
Conditions of l e m m a  5 are tested, therefore  

1 
since p, = 0 (-). 

S 

4. ON PROGRAM REALIZATION OF STOCHASTIC QUASI-GEADIENT ALGORITHM 

Program realization of algorithms in pract ice  usually requires  t h e  introduc- 

tion of some heurit ic elements improving the  algorithm operation. 

Theorem 1 is  proved provided tha t  in s tep  size controls (2) 

a, = const, s = 0 , 1 ,  ... 

This may resul t  in very  speedy change of th s tep  size p, at each iteration. In pro- 

gram realization of t he  algorithm i t  is  desirable t o  normalize t he  exponent in rela- 

tion ( 9 )  t o  some value z, which is  t h e  averaging of t he  value I<FS + l ,  A z S  + l>1. The 

averaging is  made by the  following r ecu r r en t  formula 

I t  is  desirable t o  s e t  some threshold coefficients which limit t he  maximal change of 

t he  s tep  size p,. In numerical experiments t h e  author  used the  following step size 



rule  [23] 

if ?s + l / ~ s  > 3  . 
if ?s + l / p s  < 1 / 4  * 

(Ps + 1  otherwise 

The recommended values of parameters  are 

In relation (23) t h e  additional reduction of the  s tep  size occurs  only if t he  

value Ts is  negative. Results of computation experiments show tha t  t he  scheme (B), 

(22), (23), (24) rapidly leads t o  t he  point of the  extremum if t he  objective function 

i s  ot ill-conditioned, i.e., for non-"ravine" functions. In case when the  function 

j '(x) is  very "ravine" t he  algorithm gets  stack "at t he  bottom of the  ravine". This 

difficulty may be  overcome by using more complex algorithms which employ ma- 

t r i c e s  of space dilatation (3). In pract ice ,  t he  scaling procedure suggested by 

Saridis [34] for stochastic approximation algorithms proved to be efficient for 

such functions. 

This procedure contains changes taking into account t h e  projection operation 

and adaptive s tep  size control. 

where k ( s  + I ) ,  0 5 k ( s  + I )  5 n i s  t he  quantity of numbers i for which 

#f " ( z f  - xf > 0; n i s  the  dimension of the  space to which the  set X belongs; 



For this scheme the  s tep  size control is t he  same as in the  previous case,  i.e., (23), 

(24). 

The recommended values of parameters a r e  

Note tha t  the  considered schemes have the  natural cr i ter ion of the  break of 

iteration process. In t he  neighborhood of extremum the  value I ( A z S  +I(( becomes 

small and tends t o  zero. Therefore f o r  the break w e  may use the  following aver- 

aged value Q, obtained as follows: 

If 9, = E B ,  the  process  is broken. Here EB is  some positive constant which charac- 

ter izes  the  required precision of solution. 

We give the  resul ts  of computation experiments f o r  scheme (8). (22). (23), 

(24). 

EXAMPLE 1 The following problem statement a r i ses  in solving multi-list inven- 

tory  problem [23]. 

Let us  consider the  problem 

Here Oi are random values uniformly distributed on intervals [Ai ,  Bi], 

i = I , .  . . , 5. Vectors a = (al,. . . ,a5), B = (B1,. . . , B5), A = (A1,. . . , A5). 
B = (B1, . . . , B5) are defined as follows: 

Analytical form of t he  function is as follows: 



Analytical form of the  function j ' ( z )  is used only f o r  obtaining explicit solution by 

one of the  methods of quadratic programming 

f' ( z *  ) = 98.10089, z* = (41.88057, 7.00000, 2.48092, 41.27456, 22.33456) , 

The stochastic quasi-gradient is computed by the formula 

To solve this problem the  scheme (8 ) ,  (22) ,  (23) ,  (24)  w a s  used with parameters 

a = 1.5. U = 0.0, D = 0.25, po = 1.  Initial approximation is z0 = (0 ,  0 ,  0 ,  0 ,  O ) ,  

j' ( zO)  = 278.5. A t  t he  91st iteration the  s tep  size pgl = 0.15. The resul ts  of aver-  

aged values of coordinates and of the  functions at 91st t o  100th i teration a r e  as 

follows: 

Note tha t  t o  obtain the  final result  i t  is  desirable t o  average solution approxi- 

mations with respec t  t o  last iterations. 

EXAMPLE 2 Random Location equilibrium probLem [7].  The calculations are 

performed by the  author  together  with N. Roenko. This problem has been con- 

sidered in section 1.  I t  consists in minimization of the  function 

n 
f ( z )  = B ~ S S I ~  - w ( l @ , ( d w )  -+ min 

~2 z E R ~  

The number of points t o  be located in n = 30, probability measures El i ,  

i = 1, . . . , n a r e  bivariate normal density function whose means and standard de- 

viations a r e  generated randomly in t he  range 0-20. The weights pi a r e  also gen- 

e ra ted  randomly in t he  range 0-10. Data are given in t he  Table. 



To solve the  problem the scheme (8), (22), (23), (24) with parameters a = 2, 

I/ = 0.8, D = 0.2, po = 1 w a s  used. The exact  value of the point of extremum is  z* = 

(8.36, 9.36). The initial approximation is z0 = (41. 87). The resul ts  of averaging 

of approximations zS from the 51st t o  60th iteration are 

from the  191st t o  200th iteration 

With initial approximation z = (54, 30) the  following solution approximations 

a r e  obtained. 

The results of numerical experiments show tha t  approximations of solutions 

sufficiently quickly fall into the  neighborhood of solution and after this the accu- 

racy of approximation i s  not practically improved. 

I t  should be  noted tha t  this  effect i s  connected with asymetry of generators  of 

random numbers r a t h e r  than with the  choice of s tep  size control. 

The suggested approach has some advantages as compared t o  [7] because t o  

realize t he  computation process i t  is  not necessary t o  integrate complex functions. 

Table 1 

z l m e a n s a r e  3.02 6.07 9.77 16.26 6.12 14.80 7.24 7.52 15.91 13.57 
2.08 12.70 0.16 15.78 3.95 11.89 4.68 6 .  9.19 11.56 
12.43 19.98 15.33 18.20 7.84 1.16 4.54 17.48 10.78 1.45 

z2 means are 7.63 6.62 15.40 10.83 4.85 17.14 2.20 9.30 17.30 14.60 
5.68 4.77 19.10 17.17 0.80 10.82 11.48 18.99 0.36 2.52 
10.00 1.93 11.39 16.41 16.21 2.09 16.69 8.70 12.04 2.93 

Z devs. are 18.65 18.95 0.45 13.50 17.55 1.12 18.42 1.59 15.65 9.49 
19.13 18.19 19.56 19.14 11.93 7.26 1.72 11.37 7.09 16.05 
15.62 4.31 15.44 1.40 5.82 8.56 16.72 5.29 10.36 12.49 

Weightsare 8.50 9.48 6.03 8.16 9.05 1.80 8.17 7.57 3.43 9.62 
2.87 3.77 4.34 4.88 0.11 2.13 7.75 1.64 5.74 6.12 
4.57 4.45 2.95 0.17 7.53 9.39 7.38 1.15 2.09 7.20 
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