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FOREWORD

The paper deals with choosing stepsize and other parameters in stochastic
quasi-gradient methods for solving convex problems of stochastic optimization. The
principal idea of methods consists in using random estimates of gradients of the ob-
jective function to search for the point of extremum. To control algorithm parame-
ters the iterative adaptive procedures are suggested which are quasi-gradient al-
gorithms with respect to parameters. The convergence is proved and the estimates
of the rate of convergence of such algorithms are given. The resuits of computa-
tions for several stochastic optimization problems are considered. The paper is
part of the research on numerical techniques for stochastic optimization conduct-
ed in the Adaptation and Optimization project of the System and Decision Sciences
program.

Alexander B. Kurzhanski
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STOCHASTIC QUASI-GRADIENT ALGORITHMS WITH
ADAPTIVELY CONTROLLED PARAMETERS

S.P. Urjas'ev

Institute of Cybernetics
Academy of Sciences of the Ukr.SSR
252207 Kiev 207, USSR

INTRODUCTION

The paper is devoted to the development of iterative non-monotine optimiza-
tion algorithms for problems of convex stochastic optimization with and without
constraints. Most problems under discussion feature the lack of complete informa-
tion about objective and constraint functions and their derivatives as well as non-
smooth nature of these functions. The central idea of the discussed numerical
methods, called the stochastic quasi-gradient methods, consists in the use of ran-
dom directions instead of precise values of gradients. The random directions are
statistical estimates of gradients (stochastic quasi-gradients). The definition of a
stochastic quasi-gradient was introduced in the work by Ju. M. Ermoliev, Z.V. Nek-
rylova [1] and then this concept was developed in works by Ju. M. Ermoliev (see,
e.g., [21, [3D.

Stochastic approximation algorithms (which stem from the work by H. Robbins
and S. Monro [4]) and many random search algorithms which are represented in the
work by L.A. Rastrigin [5] and others are special cases of stochastic quasi-

gradient algorithms.

Adaptive procedures are offered and studied through the use of which the
parameters of the algorithms discussed in this paper are controlled and practical
characteristics of these algorithms are improved. By the adaptivity is here meant
the dependence of these parameters upon the process trajectory in distinction to
program procedures where parameters depend upon the number of iteration only.
In particular, step size control and stopping criteria are suggested for the sto-
chastic algorithms. It should be emphasized that it is just the aspects which are

most difficult and problematic in the numerical implementation of these methods.
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The main point of the suggested approach consists in the following. Almost
each iteration algorithm has some parameters to be controlled. Usually there are
also criteria which define the quality of the chosen controls. But it is difficult to
satisfy these criteria in practice (to find optimal control) because these quality
criteria are difficult to compute. Nevertheless it is possible to vary these criteria
by parameters and to calculate their gradients or stochastic quasi-gradients. The
obtained gradients (quasi-gradients) may be used in construction of recurrence
procedures to modify these parameters. In such approach several gradient pro-
cedures operate in the algorithm — in the main space and with respect to the algo-

rithm parameters. 1.e., the adaptation of the algorithm parameters occurs.
The following designations will be used:
R™ is an n-dimensional BEuclidean space;
<, >is an inner product in R™;
'l is a2 normin R™;

8 f (z)is a subdifferential of the convex function f:R,, — R at point z, i.e.

df(z)=tlg eR™":f(y)2r(z) +<g.y —z>forally € R"}{ ;

(Q, f , P)is a probability space on which all random values are defined;

w is an elementary event belonging to the set Q;

a.s. means "'almost surely’;

E ¢ isa mathematical expectation for the random value ¢;

E[¢/Fglor

Eg ¢ is a conditional mathematical expectation with respect to the é-field f ;

I, (")is a projection on a convex closed set X c R™,

1. QUASI-GRADIENT ALGORITHM WITH ADAPTIVE PARAMETER CONTROL,
NON-FORMAL DESCRIPTION AND A BRIEF REVIEW OF RESULTS

Here we shall consider the problem of minimizing a convex (possibly non-

smooth) function f (z)
z) — min
7 (@) zeX

where X is a convex compact subset of R™. In the considered class of problems in-
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stead of exact values of gradients or generalized gradients of the function f (z),
the vectors are known which are statistical estimates of these quantities while the
exact values of the function and its gradients are very difficult to compute. Such
problems present themselves, for example, in the minimization of functions of the
form

F@)=E, oz, w)= [ oz, w)Pdw)
wenN

Considering that under the most general assumptions the generalized differential

of the convex function f (z) is calculated by the formula [6]

ar(z)= f 8, ¢(z, w)P(dw) ,

weN

0, ¢(z, w) is then a set of vectors being the statistical estimates of gradients of

the function f (z).
EXAMPLE A Random Location Equilibrium Problem.

The classic formulation of Weber problem is as follows: given are n points w,,
i =1,...,n in two-dimensional Euclidean space R% itis required to find a point
z € R? such that a sum of distances to all points w; € R% i =1,...,n is minimal.
In the generalized statement [7] each point w; 1 =1,..., n is assumed to be a
random value specified by some probability measure @;(w) on R% The problem

consists in finding the point x € R? which minimizes the sum of mathematical expec-

tations for distances from the point z topointsw;, 4 =1,..., n

h 19
@Y= 3 B [[lz —wle @w)= [[lz —wl 3 8,0, (@w) =
{i=1 R® R% {=1

[ Y Bllz —wle@w), =Y 6,0,/ Y 8
{1 =1 1=1

R i=1

where 8, >0,i =1,...,n.
The random function

z-w &
Ez,w) =z —w| iz=:1 B, for z #w,

0 forz =w,

where the random value w is specified by the probability measure @ may be taken

as statistical estimate of generalized gradients i.e.
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ff E(x, w)O(dw) € 8f (x) is satisfied.
RE

1.1. Description of the Algorithm and Various Approaches to Step Size

Control

An unknown point of the minimum of the convex function f(x) on the set X is

estimated by the recurrent sequence [2]
z5 ¥ = [y(z® - pg £5), s =0,1,... 1)

where X is a convex closed set in R™; £° is a stochastic quasi-gradient, i.e. a con-

ditional mathematical expectation for this vector satisfies the relation
Eg £ edf(x) +b6%5

o-field _Fs is specified by random vectors (:r:°. g°, z1, él, N 29F ps,s =0,1,... is

some sequence of random values or random matrices n X n.

The algorithm suggested by H. Robbins and S. Monro [4] for estimation of the
root of a regression function (for X = R1) is a special case of the algorithm (1).
The algorithm suggested for optimization problems in [8] by H. Kiefer and J. Wol-
fowitz is also a special case of the algorithm (1). In his work the gradient estimate
is taken as finite-difference approximations with random estimates of the objective
function. Further this approach was developed in works of many authors (see, e.g.,
[9-11]) with the assumption of smoothness of the objective function and the ab-
sence of the dependence of parameters p;, s =0,1,... on the process trajectory.
Such parameter controls we will call program controls, i.e., the step size is equal
to the constant or decreases monotonically by a pre-specified rule depending upon

the number of iteration s.

Algorithms of the type (1) for optimization of different classes of non-smooth
functions are described in [2], [12], [13]. Various approaches to estimating the
rate of convergence of schemes of type (1) with program step size controls are
presented fairly completely in [10], [11], [14-17]. In practice it may occur that
the initial step size is chosen small and to increase the rate of convergence it
should be enlarged. The program step size control, naturally, does not take into
account such situation though from the viewpoint of the asymptotic rate of conver-
gence this control may be ideal. That is why adaptive step size controls taking into

account the behavior of the objective function are necessary which would enlarge
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the step size far from the extremum if it is small and decrease it near the point of
the minimum. R.J.-B. Wets proposed the stochastic quasi-Newton method [25], then
these results were developed by A. Gaivoronski. Below we consider the different

approach.

The first step in this direction was made by H. Kesten [18] who suggested the
program-adaptive control. He suggested to choose in scheme (1), as step sizes pg,

a prespecified sequence fa,{ which satisfies conditions

f:a.k =o; a, >0,k =0,1,...

0
but the step should be changed not at each iteration but only in the case when
<E, £ 71> <o.

In theoretical studies on substantiation of stochastic quasi-gradient methods
conducted at V.M. Glushkov Institute of Cybernetics (see, a.g., the generalizing
work [2]) step sizes pg; are assumed to be dependent upon the process trajectory
(zo, ...,z In application studies beginning in 1967 heuristic adaptive pro-
cedures were used to control step sizes in the algorithm (1). At each iteration the
unbiased estimate zg; of the objective function f(x5) is assumed to be known;
denote

T, = % Zs: Z4
=5 —k +1
The value T; may be used for dialogue or program step size control [2] (see also

[19]). For example, the step size may be chosen according to the rule

_|Pss2 if ITs ¢ —Tsl= 4,
Ps+1 = pg otherwise

A. M. Gupal and F. Mirzoahkmedov [20] suggested to change the step size pg

according to the norm of vectors v°
+1 _ s s 0 _
v =08 +ag (€ —v5),0<a,=<1,v" =0,

which are convex combinations of previous stochastic quasi-gradients
{". i =0,1,...,s. For stochastic problems of quadratic programming the step
size controls which are the development of H. Kesten scheme were suggested and
justified by G. Pflug [21].
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The failing of the above-listed step size controls, except for dialogue ones,
consists in a high dependence of the efficiency of algorithm operation upon the
value of the initial step size p, since the step size can only decrease during the
iteration process. In the scheme suggested and substantiated by the author in
[R2], [23] the step size not only can decrease but also increase. In the next section
it is shown that this rule is a result of using the stochastic quasi-gradient algo-

rithm to control this parameter.

2. USE OF STOCHASTIC QUASI-GRADIENT ALGORITHMS FOR STOCHASTIC
ALGORITHM PARAMETER CONTROLS

Parameter controls in stochastic algorithms is usually difficult because of the
absence of objective function values since only statistical estimates of these
values are available. This circumstance does not make possible, for exampie, the
realization of efficient procedure of search for the function minimum along some
chosen direction. The suggested approach consists in using the gradient algorithms
for parameter controls. To use such procedures there is no need for additional

computations of the objective function or its gradients.

2.1. Step Size Control for Stochastic Quasi-Gradient Algorithm [22], [23]

When constructing adaptive step size control for the aigorithm (1) we assume
that the algorithm trajectory belongs to the interior of the admissible domain and
6% =0,s =0,1,... i.e. E¢¢ €8r(z®). In the algorithm (1) it is natural to take

step sizes pg as the point of minimum of the function &g (p) with respect to p where

o (p) =Ef (x5 —pé°) .

Usually it is difficult to calculate the values of the function ¢g(p). Let us differen-

tiate the function f (x5 — p £°) with respect to p at point pg

8,r (z° —ps ") == [<y, £>:1y €87 @ T H =05 @@® —p )} .
Since

885(ps) =Eg8f (2% — pst®) ,

then —E, < ¢5%1, £5> € 30 (p,).
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To modify the step size pg; we may use the following gradient procedure

As
Ps+1= Ps + A <E L > =pg =<t Azt S
S

A >0, =0,1,...

+1 s

Stlzgstl g5,

where Az
To facilitate the proof of the algorithm convergence we rewrite the last relation in
the form

_<£J+1’A:'+1>_ GP') o

Ps +1 = min(p, ag s >1.6>0 , 2)

the constant p bounds the step size above.

Note that the exponent is supplemented with the additional term — 6 p¢ which
decreases the step size p;. Here 4§ is some sufficiently small constant, therefore
the additional decrease of the step size occurs in the case when the value
<¢s +1, £ > is sufficiently close to zero and is comparable to the value §. The for-
mula (2) may be interpreted in the following manner. The value <¢5*1, AzS*+1l>
gives some information about whether the minimum of the function @¢(p) with
respect to p was passed through at the iteration or not. If — <¢5 *1, Az > >0 then
with a high probability the minimum was not passed through and the step size in-

creases due to the member <¢5 *1, azS*1>,

otherwise the step size decreases. In
[23] the Cesdro convergence of the algorithm (1), (2) was proved, i.e., the conver-

gence to the optimal set with probability 1 of the sequence
Y S
z5=Y pzt/ Y o .
=0 {=0

which is a convex combination of the trajectory points [16]. In this paper the con-
vergence of the algorithm (1), () with probability 1 is proved, and the asymptotic
estimate of the rate of the algorithm convergence for the case of twice differenti~
able function f (z) is obtained.
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2.2. Stochastic Quasi-Gradient Algorithm with Variable Metric

Algorithms of the type (1) in the case when the function is ill-conditioned have
the low practical rate of convergence. This forces to use more complex variants
of the algorithms. In non-linear programming a wide spectrum of algorithms is
developed, called the algorithms of variable metric [24] which successfully
operate in such situations. In the given case, however, the direct use of these al-
gorithms is impossible because only statistical estimates of values of the objective

function and of its gradients are known.

Let it be required to minimize a convex possibly non-smooth function f(x)
specified on the space R™. Stochastic quasi-gradients of the function are known.

Approximations of the extremum point are considered by the rule
25t =zS —gSES s =0,1,... 3)

where HS,s =0,1,... is a sequence of n Xn random square matrices;
£€,5=0,1,... is a sequence of stochastic quasi-gradients, i.e. Eg € € 3r(xS), here
o-field f is specified by random values (z°, $°. H®, z1, 51. 7, ..., z%). The matrix

HS is modified at each step in the following manner
HS = Qs —1Hs -1

where @%, s =0,1,... is a sequence of square matrices.

Denote ¢ (@)=f(z° — QH°¢’). The matrix @° at the iteration s can be
chosen from the condition of the minimum of the following function of n X n vari-

ables
2. (@) =E (@) .

However this problem by complexity is equivalent to the source problem.

We calculate the stochastic quasi-gradient of the function &¢(@) at point 7

where / is a unitary matrix.

We differentiate the function ¢4 (@) in a generalized sense with respect to @

at the point 7
8g s (@) =— WWE H :y € 8f(z5* )}

Here HS, £5 denote the transposed matrix S and the vector column ¢5.



Since

8 8. (@) = Es 8¢5 (Q) =~ E W& H :y €af(z5*h)]
then

—E S TIEH €00,(Q) .

As a matrix @° we may take the matrix which is formed when executing one
step from the point 7 in the direction of the stochastic quasi-gradient ¢¥ *1¢54S,

i.e.
Qs+1=]+7s ES+1ESI;S ,

where 7 is a positive scalar.

Then we may rewrite the formula for the matrix modification in the following

manner
HS +1 _ (I + vs Es +1zsﬁs)ﬂs

Note that the last formula is close to the method with dilatation of the space along
the generalized gradient suggested by N. Z. Shor [26, p. 92] with V. A. Skokov

modification.

2.3. Algorithm with the Averaging of Stochastic Quasi-Gradients

The algorithm with the averaging of stochastic quasi-gradients was considered
by many authors [27], [12], [28—30]. The advantage of this algorithm consists in the
ease of its realization and also in a higher efficiency for the ill-conditioned func-
tions as compared to the stochastic quasi-gradient algorithm (1). The drawback of
this algorithm consists in its "inertial motion”, i.e., the direction of movement
changes weakly from iteration to iteration, therefore the algorithm for simple

functions may be less efficient than the algorithm (1).

Using the suggested approach the authors of [30] developed the recurrence
schemes for modification of two parameters of the algorithm: step size and aggre-
gation coefficient. This made it possible to increase the practical rate of the algo-
rithm convergence far from the extremum, leaving without changes the local rate
of convergence of classical methods. The algorithm convergence was proved and

the asymptotic rate of convergence was given.
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Let us consider the minimization problem of convex possibly non-smooth func-
tion f(x) on the convex compact subset X of the space R™. Stochastic gradients of
the function f (x) are known.

The algorithm generates sequences of random directions d° and points

zS e R™, s =0,1,... according to formulas
ds = (£ +ig7,dS /(1 + ) . 4)

o5+l o Mz —ps(1 +75)d®), if pg(1 +y)ld5l=st ,

S5
Do (25 —tas /a5l . if pe(1 + sl > ¢ ©

Here ¢° is a stochastic quasi-gradient, i.e., E;¢° € 87 (z®) where &-field fs is

generated by random values (z9, €%, ...,z5 "1

, £5); pg is a positive step size; 74
is a positive aggregation coefficient; iy € {0, 1} is a reset coefficient; t € (0; + =)
is a constant.

At the initial point z° € X we assume d "} = 0. From (4) it follows that the
direction d¥ is a convex combination of zero vector and stochastic subgradients

¢,i=0,...,s.

The reset coefficient is defined in the following manner:
is €00,13 if lEF Y =<5,
ig =0 it llg5 " >q,

where ¢ is some fixed threshold.

To construct recurrence relations of modification of parameters p., 7, we as-

sume that the algorithm operates in the interior of the admissible domain X and
t =+ . For the given z° 71, d* 1 and A 20 we consider regularized function

which characterizes the quality of th chosen parameters p and

05(0. M =2 @ (0. 7, £ 7 = @5 TH + Ao, 7, £ 7H -2 TP
where

z5(p, 7. £ N =2 T —p(8 T+ iy _yydt T

is defined by relations (4), (5). Values pg _; and 7 _; may be chosen from the con-
dition of the minimum of the function &;(p, 7) = Eg _;¢s(p. 7). However, the pro-
gram realization of such search at each iteration is difficult. We differentiate in

the generalized sense the function ¢¢(p, 7) at the point p; _4, 75 _4. After simple
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transformations we obtain

~ o~ o~ 1
B35 (Ps —1. Vs —1) = (&, D): 8 = [<gS, Az > + A azS|4]

Ps -1

Ps —1ts -1
Ps —2(1 +7s —2)

v = [<g®, Az® ~1> + A <AzS, AzS ~1>], g5 € 87 (z%)] .

where AzS =z5 —z5 ~1, Taking into account the designations

ug = <¢5, AzS> + A az|?

vg =i _1(<€5, Az 71> 4 <azS, azS L)
we have
L,
Es 4 22 _—_1 €08:(ps -1 75 -1) -

v
Ps -2(1 + 75 _2) s

Thus the vector (U, vg) may be interpreted as a stochastic quasi-gradient of the

function &¢ at the point (pg _y, 75 _4) with the accuracy up to positive multipliers.

Similarly to relation (2) the vector (ug, vg) was used in [31] for construction

of the rule for calculation of the step size
po > 0 '
ps =minfp, pg _jexplmin(n, —dug —jg épg _1} . (6)

where p >0, 771>0, a >0, A 20 are fixed parameters, the coefficient Js in the

last relation is calculated by the formula
Jjs €10, 14 if lazS| = Ay
Jg =1 if laz®|l <Ay, .

Anin is a small positive value.

The formula for calculation of aggregation coefficients 74 is written similarly
Y%=71>0,
7s =min {%, 74 _; exp (— Bvg —Jgx7s —1)3 4]

Y>0,A>0 .
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In relations (6), (7) the additional members ji d pg _4, JgA7Ys 4 increase the rate
of the decrease of coefficients pg., 75 in the case when the values ug and vg are

close to zero.

The considered approach may be applied to other algorithms, stochastic and
non-stochastic, in which the parameters control is required. The author suggested
and theoretically substantiated adaptive step size controls for the stochastic
Arrow-Hurwicz algorithm of search for saddle points of convex-concave functions
[32]) and for the gradient algorithm of search for Nash equilibrium in non-

cooperative many~person games [33].

3. CONVERGENCE AND RATE OF CONVERGENCE OF STOCHASTIC
QUASI-GRADIENT ALGORITHM

We will prove the convergence with probability 1 of the stochastic quasi-
gradient algorithm (1) with step size control (2) to the extremal set of the convex
function and estimate its asymptotic rate of convergence for twice differentiable

functions.

We show that the sequence of step sizes chosen according to (2) satisfies the

classical conditions

ps >0,s =0,1,... a.s.; 3, ps =@ a.s.; ) Ep?<eas.
0 0

Note that classical theorems about convergence for the algorithm (1) with
step size control (2) cannot be used (see, e.g., [2]) because it is usually assumed

that the step size p; depends only on random vectors (:co, ..., x%), in the given
case this condition is broken since the step size p; depends also on £S5,

Let us consider the problem of minimization of the convex function f(z) on a
convex compact subset X € R™. We use the stochastic quasi-gradient algorithm (1)
with step size control (2) and ag =a >1, s =0, 1,... for the search for the op-

timum of the function f (z), i.e.,
1 _ —
8= (2% —pg ). s =0.1.... , (®)

_<el+1, A:,"'l) _op’) s

Ps +1 = min(p, psa =0,1.... , 9

E & €dr(z®)+b%, s =0,1,... ,
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where 6-field f is specified by random values (z9, {0, cen, TSTL g5 1 gy,

Denote ¢° = £5 — £Z(zS), where fz(zs) €0f(z5), Eg ¢ =fz(:z:$) +bS.

3.1. The Algorithm convergence

We will prove the convergence with probability 1 of the process (8), (9) tothe

extremal set of the function f(z) on the admissible set X.

THEOREM 1 Let f(x) be a convex (possible non-smooth) function specified
on the convex compact subset X of the space R™, the function f (z) satisfies the

Lipscitz condition on X. If

Jmax XIIz -yll=¢4 . (10)
¢S = Cras., 8 =0,1,... , (11)
bS—0as. , (12)
& = 2In, [Esa.l"lcz] as.,s =0,1,... , (13)

then with probability 1 all accumulation points of the sequence {z° | specified

by relation B), (@) belong to the set

X*=fze€eX:f(z)=minf(y)] .
y E€x

PROOF Prior to proving the principal assertion of the theorem let us set

several properties of step sizes pg, s =0,1,....

LEMMA 1 [23].

Y pg = as.
s =0

PROOF Suppose the opposite, i.e., that there exists such constant X for which
the probability of event

A=

w:ips“]

s =0
is more than zero P(4) > 0. From relations (9), (11) it is easy to obtain

= —lg+lazs+y - g
ps +1 Zmin(B, pga F RS
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—c2, - - -
min(p, psa €2Ps Gp') 2 min(p, pga Cap') a.s.
where Cq = (C§ + §) >0.
For elementary events w € A from the last estimate we have

_ ONY _ —CK
Ps +1 = min(p, poa ° )= (p poa )y>0 .

The obtained lower bound for the step size pg ,4 is inconsistent with the rela-

tion ) p; = K. The lemma is proved.
0

LEMMA 2

E E'psz<°° a.s.
s =0

PROOF Taking into account (B), (9), (11), the definition of the gradient of the

convex function and properties of the projection operation we obtain

_ <€’+1,AI’+1> -8pg _
Ps+1 5 Psa '=

- s+l s+l +1 s+ly _
pea <fp(x®*h),Az <¢Th Azt ~tp,

X a,f (1:') -f (It+1) _<<.’+1' Az:""l) —8ps <

GFEn - fash letiliely, -ep, (14)

s

Hence

af &M< Ps af @g des*lice -6, a.s.

Ps +1

Since according to (13)

leetic,-8/72
Es+1"'<‘ C2=8/221 as.

from the last inequality we obtain

s+ f @) ~ps dertlicy -8/ 2)p,

Es +1Ps +1@ s+1

f@&* —_g'pn
psa a.s.
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[}
- —o P __
Since O0=p;,=<p then for a=(1l-a c ’)p 150 the relation

2P .
l-—ap; =a is fulfilled.

By substituting this estimate into the previous inequality and by introducing

the designation ug = pg af =*) we have

]
-2y, .
Eg y1ls 41 S Hga ¢ =pu, —aplaf&D as.

By taking the mathematical expectation from both sides of the inequality we

obtain
2 N2
Epug,1SEu, —aCEpS <Euy —aCqyY Epf |
0

where C4 = iana.f &) Since E Mg +1 — E g = const then the last estimate results
X €

in the assertion of the lemma.

COROLLARY [23].

ps — 0 a.s.

LEMMA 3 [23].
Ps —1/ Ps — 1 a.s.

PROOF Since pg — 0 a.s. then

-< +1,A.‘C'+1>—6
psa ¢ P*— 0 as.

From the relation (8) it follows that for almost each elementary event w € (1 there

may be found the number s (w) such that for s > S(w)

—< +1,AI'+1> -y
Ps +1 = Ps ¢ Ps : (15)

Since pg — O a.s., then
— <5t AzStls - §pg — 0 a.s.

and the assertion of the lemma results from the relation (15).
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To prove the main assertion of the theorem we use the conditions of conver-

gence of stochastic programming algorithms [13] with insignificant modifications.

THEOREM 2 Let the random process {5 (w)]| and a set of solutions X* €r™
be such that:

C1. Almost for all subsequences {z"*(w)] such that lim z *(w) € X* the rela-
k —»w

tion

Jim 2™ ) =™ )l =0

holds.

C2. There exists a compact set X such that

zS(w)] € X a.s.

C3. If there exists such event B € Q that P(B) >0 and for all w € B there ex-

ists a subsequence [z **w)}, z°*(w) — z’(w) € X* then for almost all w € B there

exists such gg(w) > O that for all £k and 0 < & < go(w)

me(w) = inf fm:|lz™(w) —z'(w)|l > &} <0 . (16)
m > Sk

C4. There exists a continuous function W(x) such that forw € B

klim w(z™w)) < W(z'(w)) .

C5S. The function W(z) takes on X* at most countable number of values.

Then the limit of any convergent subsequence belongs to the set X* almost for

all w.

We assume

W(z) = meir);llz -yl Uz) =ly eR™:|ly —z| <&},
y »

f* = minf (z), z, =arg minlzs —yl. 75 = ¢ ~ f (z%) —b°
T y Xt

We test the satisfiability of conditions C1-C5.

The condition C1 is satisfied obviously, since by virtue of the corollary of the

lemma 2

|azs ¥ — 0 a.s.
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The condition C2 is satisfied by virtue of theorem 1.

The condition C5 is satisfied since the function W(z ) is a constant on the set

We test the condition C3. Let the probability of event B is more than zero,
w € B and z ¥ (w)— z’(w) € X*.

For the brevity we will omit the argument w. If the condition (18) for the

given w is not satisfied then there may be found arbitrarily small € and number s,

such that for s > s, valid isz® € Uy (z”).

For s > s,
3
WSty sley —25 + p I = W(zs) +2p5 <5, 25 —z° >+
ps:’-||£s||2 =W(zS) +2p, <f: (%), :c: - z5> + 2p; <b%, :c: —z5> +
s ¥ * 2.2 s s
2p<n®, g —x >+ Crps W) +2p,(f* —f(x°)) +
2pglle=lCy + 2p¢ _1<n*, :c: —-z5> +2(pg — pg —1)<N°, :c: —z5> +

S
Cipf=w(z™) +2 ) p(r* —r@ ) +z) + 7 . (16")
L =sg

where
E 3
Ay =BSIICL + (L —pg 1/ pPg) <S5, 25 —25>

S * S
75 =2 ) pa<ntiz —z!>+CE Y of .
L =5 L =s;

By virtue of conditions (10, (11) the scalar product <n%, z: — z%> is bound-
ed, therefore, taking into account (12) and lemma 3, we have

Ag — 0 a.s.

5
From lemma 2 it follows that the martingale series E P -1 <7;‘. :cl* ~z!> is con-
L =5sg

vergent a.s., therefore

[yl < C  a.s.
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the constant C here depends upon w. Consequently, for sufficiently large numbers

s and small ¢
S ¥ —r@S)+ A, <—6,6>0 .

Taking into account lemma 1 we obtain that beginning with some number S, for suf-

ficiently large numbers s the estimate

S
WSt swz™) -5 Y p amn
L =sg

holds.

Passing to the limit s — o we obtain the contradiction with boundedness W (z)

on the closed bounded set U, (z"). The contradiction proves C3.

We will prove C4. Since ||Az%]|— 0 a.s. then by constructing index m; begin-

my -1
ning with some number k& valid is | )] p, &) > /2. By virtue of condition (11) we
Sk
obtain
mg —1
Y Pz e/ (2Cy) .
Sk

Substituting the last estimate in (17) for s = m, — 1 we have

de

mg Sky _
w( ®)=swz™) 2C,

Since w(z s“)—> w (z’) then for sufficiently large &

(1>
3C,

w(z™) sw(z’) -

The last inequality proves C4.

3.2. Asymptotic Properties of Step Sizes

We now study adymptotic properties of a sequence of step sizes pg, s =0,1,...

for the case of twice continuously-differentiable function. These results will be

used for obtaining asymptotic rate of convergence of the algorithm (8)—(9).
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LEMMA 4 Let for the sequence (x5 specified by relations B)-©) valid be
all conditions of theorem 1 and &% =0; s =0,1,... the function f(z) be twice

continuously-differentiable on the open set containing X, then

= 1
(s +1)61na

0 a.s.
Ps s +1

PROOF Denote 74 =Ing[(s +1)pgl, s =0,1,.... According to the corollary of

lemma 2 for sufficiently large numbers s from relation (8) we obtain

—<f’, Az > —6p,_1

Ps = Pg _1Q@ a.s.
Consequently

Tg =Tg_g +1Ing (1 +%) —-<E,08x5> —6pg; _1=Tg 1 +

. 111 - a- ln(a.)da.‘r"l) +1Ing(1 + %) - s_&'l_a.

—<nS, AxS> — <Vf (z5), AxS> 18)

It is obvious that the series 2 [Ing (1 + %) - ] is convergent. From

s=1 slna

lemma 2 the convergence of the martingale series 2 <n®, Az > follows a.a. Since
s=1

the function f(z) is twice continuously differentiable, then <Vf(z%), Az5> =

@S -rE&@sS H+ ¥ |az 5|2 where ¥, is uniformly bounded for all s. The equality

k k
Y <Vr(S), ax¥>=r@F) —r@® + Y ¥ lazs|?

s=1 s=1
is satisfied. The function f(z) is bounded on the compact set X, the series

Y v lazs | is convergent a.s. by virtue of lemma 2, therefore the series

s =1

2 <Vf(z%), Az > is also convergent. The relation (18) then may be rewritten as
s=1

follows

1
slna

T (1 = éln(a)a™ ) + tg

s = Ts-1%

where the series 2 t; is convergent a.s. The last formula is the Robbins-Monro
s=1
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algorithm for solution of equation 1 — §in(a)a?® = 0. Using standard results about
convergence of stochastic approximation algorithms (see, e.g. [11]), we obtain

1
dlna

Te —1Ing( ) a.s.

Q.E.D.

3.3. Rate of Algorithm Convergence

For the case of twice continuously-differentiable function we estimate the
asymptotic rate of convergence of the algorithm (8)-(9) in non-stochastic case,
i.e., for ¢ =Vr (%), s =0,1,....

THEOREM 3 Let all conditions of theorem 1 hold, ¢ =Vf (%), s =0,1,...,

the function f (x) be twice continuously differentiable and
I (@)= r(z*) +Blz* —z|? B >0 (19)
where * is a unique point of minimum of the funciion f(x) on the set X,

ln(cz.)(Cz2 + §)/2B <1. Then

> — 251 = 0|

—|s =0,1,...
s

PROOF We use the following lemma to prove the theorem.

LEMMA 5 [14]. Lel there be a sequence vy, s =0,1,..., and

Vg 41 S —vgdvg +vgu, 0<sv, <1, 0spu, s u, (20)
If
7 —
By = |—— -1|=—.s =0,1,..; lim 8, =g <1 (21)
HMs +1 s §—=
then vy < 1—35 + o ().

From the estimate (16°) and condition (19) we have
WS+t sw(zS) +2p,(f* —f(z5)) + CEplx

W(zS) —2pBW(xS) + CEp2 = (1 ~2p.B)W(zS) + C£p? .
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Denote vy =2p.B, vg = W(xs), Mg = C%ps/ZB. The condition (20) of lemma
5 is satisfied obviously. We test the condition (21). According to the corollary of

lemma 2 from the relation (3) we have for sufficiently large numbers

ps _ a<£:+1.A:s+1>+6p’

=1 +1n(a)(Ag + 8)pg + 0(pg)
Ps +1

where |Ag| 5'022-

Consequently
Ky 1 Ps 1
Bs = [—— —1|—= -1 = (n(a)(Ag + O)pg +
3 Hs +1 Vs Ps +1 RpsB As 3

0(ps))/ (RpsB) <1n(a)(C% + &)/ (2B) + o (1) a.s.
and lim Bs <In(a) (022 + 8)/ (2B) a.s. by the condition of the theorem.
§ ¥wm
Conditions of lemma 5 are tested, therefore

¢ ps
2B —1In(a)(C$ + &)

vy = W(z®) < +0(p5) = 0(F)

since pg = 0(%).

4. ON PROGRAM REALIZATION OF STOCHASTIC QUASI-GRADIENT ALGORITHM

Program realization of algorithms in practice usually requires the introduc-

tion of some heuritic elements improving the algorithm operation.

Theorem 1 is proved provided that in step size controls (2)

a. =const, s =0,1,...

s

This may result in very speedy change of th step size p; at each iteration. In pro-
gram realization of the algorithm it is desirable to normalize the exponent in rela-
tion (9) to some value zg which is the averaging of the value [<¢5 *1, AzS *1>[. The

averaging is made by the following recurrent formula
zg =2y g + (Tl =25 _)D, zg _; =0, Ty, = <€+, azS+i> | (22)

It is desirable to set some threshold coefficients which limit the maximal change of

the step size pg. In numerical experiments the author used the following step size
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rule [23]
Ty
- ';: 1, if Tg >0,
Pg +1 T AgQ U, if Tg <0 , (23)
ps 3. if Ps +1/Ps >3,
Ps +1 = {Ps /4, if Ps +1/Ps <1/4 . (24)
l'i,‘s PR otherwise .

The recommended values of parameters are

a=2,U=08,D=02 .

In relation (23) the additional reduction of the step size occurs only if the
value T is negative. Resuits of computation experiments show that the scheme (8),
(22), (3), (24) rapidly leads to the point of the extremum if the objective function
is ot ill-conditioned, i.e., for non-"ravine” functions. In case when the function
S (x) is very ''ravine” the algorithm gets stack "at the bottom of the ravine'. This
difficulty may be overcome by using more complex algorithms which employ ma-
trices of space dilatation (3). In practice, the scaling procedure suggested by
Saridis [34] for stochastic approximation algorithms proved to be efficient for

such functions.

This procedure contains changes taking into account the projection operation

and adaptive step size control.

S+l = nX(xs _Psﬂsés) ,

his +1) 0 1/n 0
HS+1= .. ,H0= .
0 " hp(s +1) 0 " 1/n
0 if ¢4 zf-2f* Y =<0, k(s +1) #0
_ 1 : 1 1
)\i(s+l)—m‘ if Ef*‘(xf-xf*‘))O,k(s +1)#0
ES if k(s +1) =0
n

where k(s +1),0<k(s +1)=<n 1is the quantity of numbers i for which

¢f YUx§ —xf *1) > 0; n is the dimension of the space to which the set X belongs;

zg =2y 4 + (Tl —2g _)D, Ts = <HS Y15+ azS*ls o2 =0 .
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For this scheme the step size control is the same as in the previous case, i.e., (23),

(24).

The recommended values of parameters are

a =2,U=08,D=02, a=0.5 .

Note that the considered schemes have the natural criterion of the break of
iteration process. In the neighborhood of extremum the value ||AzS *1|| becomes
small and tends to zero. Therefore for the break we may use the following aver-

aged value @ obtained as follows:
QS = s—1+("Azs+1“_Qs —-1)Dn Q"1=0 .
If @ = &g, the process is broken. Here £p is some positive constant which charac-

terizes the required precision of solution.

We give the results of computation experiments for scheme (8), (22), (23),
(24).

EXAMPLE 1 The following problem statement arises in solving multi-list inven-

tory problem [23].

Let us consider the problem

5
f(z) =E ), maxta;(z; — 0;), b;(8; —z;)} — min

1=1
1

Ty +xy+2xz5+3x,4 + x5 =200,
z, = 50,
zs < 07,
xs < 07,
T, < 08,
zs < 25,

z;, 20,i=1,...,5 .

Here @©; are random values uniformly distributed on intervals [4;, B;],
i=1,...,5 Vectors a =(ay,...,as), B=(By...,Bs), A=(44...,4),

B =(B,,...,Bs) are defined as follows:
ea=(1,031,2), 6=(3,4,1,2,3) ,
4 =(,00,0,0), B =(60, 15, 17, 90, 40) .

Analytical form of the function is as follows:
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1 2.2 2 2 2.1 2.1 2
==zf + =z 4+ 2z2 4+ —z2+—z2 -
G e B TR AT it Al TR

3z, —4z, — x5 —2x4 —3x5 +2785 .

Analytical form of the function f (z) is used only for obtaining explicit solution by

one of the methods of quadratic programming

S (z*) =98.10089, z* = (41.88057, 7.00000, 2.48092, 41.27456, 22.33456) .

The stochastic quasi-gradient is computed by the formula

Q. if xfa@f,

F=2@l 8 =g, g zf <®f, 1=1....5.

To solve this problem the scheme (8), (22), (23), (24) was used with parameters
a =15, U =0.0, D =0.25, p, =1. Initial approximation is z° = (0, 0, 0, 0, 0),
b (zo) = 278.5. At the 91st iteration the step size pg; = 0.15. The results of aver-
aged values of coordinates and of the functions at 91st to 100th iteration are as

follows:

100
zZ, =<5 X zfi=1....5 &) =405485, 5, =6.0981

Zg =2.4381, x4 = 42.2561, 5 = 20.3561 ,

1 100
Y f(z%, @) =97.4185 .
10 s =91

Note that to obtain the final result it is desirable to average solution approxi-
mations with respect to last iterations.

EXAMPLE 2 Random location equilibrium problem [7]. The calculations are
performed by the author together with N. Roenko. This problem has been con-

sidered in section 1. It consists in minimization of the function

f@)= Z Btffll-‘c - w||@, (dw) — min

1 =1 z e R2
The number of points to be located in n =30, probability measures @,,
i =1,...,n are bivariate normal density function whose means and standard de-
viations are generated randomly in the range 0-20. The weights 8; are also gen-

erated randomly in the range 0-10. Data are given in the Table.
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To solve the problem the scheme (8), (22), (23), (24) with parameters a =2,

U =0.8,D =0.2, pp =1 was used. The exact value of the point of extremum is z* =

(8.36, 9.36). The initial approximation is z% = (41, 87). The results of averaging

of approximations £% from the 51st to 60th iteration are
1 sz‘:’ s
— ) z° =(9.1, 10.2) ,
10 &

from the 191st to 200th iteration

200

L Y, z° =(8.9,8.0) .
10 {91

With initial approximation z0 = (54, 30) the following solution approximations

1 2 1 200
101 10 {g3

are obtained.

The results of numerical experiments show that approximations of solutions
sufficiently quickly fall into the neighborhood of solution and after this the accu-

racy of approximation is not practically improved.

It should be noted that this effect is connected with asymetry of generators of

random numbers rather than with the choice of step size control.

The suggested approach has some advantages as compared to [7] because to

realize the computation process it is not necessary to integrate complex functions.
Table 1

Z | means are 3.02 6.07 9.77 16.26 6.12 14.80 7.24 7.52 1591 13.57
2.08 12.70 0.16 15.78 3.85 11.88 4.68 6.11 9.19 11.56
12.43 19.98 15.33 18.20 7.84 1.16 454 17.48 10.78 145

T, means are 7.63 6.62 1540 10.83 4.85 17.14 2.20 9.30 17.30 14.60
5.68 477 19.10 1717 0.80 10.82 11.48 18.99 0.36 2.52
10.00 183 11.39 16.41 16.21 2.09 16.69 8.7 12.04 2.93

Z 4 devs. are 18.65 18.95 0.45 13.50 17.55 1.12 18.42 1.58 15.65 9.49
19.13 18.19 1956 19.14 11.893 7.26 1.72 11.37 7.09 16.05
15.62 431 15.44 1.40 5.82 8.56 16.72 5.29 10.36 12.49

Z, devs. are 3.77 15.79 8.68 6.29 7.97 9.23 5.81 3.17 1791 7.02
16.27 15.08 5.12 6.11 155 19.25 8.24 17.78 13.48 9.80
5.49 15.13 7.07 16.83 15.86 9.90 18.44 16.65 0.37 15.31

Weights are 8.50 9.48 6.03 8.16 9.05 1.80 8.17 7.57 3.43 9.62
2.87 3.7 4.34 4.88 0.11 2.13 .15 1.64 5.74 6.12
4.57 4.45 2.95 0.17 7.53 9.38 7.38 1.15 2.09 7.20
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