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1. - Introduction and Motivation

The theory of production refers bas ically to the problem of optimal

allocation of resources or factors of production' such that the total cost

of producing a certain output is minimized. If y is an aggregate measure

of output that can be produced from a given set of inputs (xl' ••• , xn ) in

certain amounts specified by the technical characteristics of the production

function y = F(Xl , ••. , xn ), and Pl' •.• , Pn are the prices of the inputs,

the problem is mathematically formulated by rl, p. 60]

I'
min

X

n
C =A+'" px} . i i

i=l
(1.1)

subject to F(Xl , ••• , xn ) = y (constant)

If the production possibility set allows an output to be produced by

an infinity of combinations of productive factors, it would be impossible,

without any other considerations, to determine the total cost uniquely for

each output. However, the minimization problem in (1.1) eliminates indeter-

minacy, so that by soll/ing (1.1), an optimum value for each factor can be

obtained as a function of input prices and output.

(1.2)

This gives

C*(y, p) = A + f p.x.* = A + f p.g.*(y, Pl' ••• , Pn)
i=l 1 1 i=l 1 1

[1, p. 59J

The cost minimization problem gives a total cost function. At the same

time, it has pointed out the existence of a dual problem which would allow

for determination of production structures from cost curves (2, p. 159].

Extensions of the dual relationship are given by Uzawa [3] and Diewert [4].



The solution of the cost minimization problem is conditioned by the

form of the production function representing the underlying technology.

The first form of the production function was thAt of Cobb-Douglas r5]. In

1961, Arrow et. ale [61 introduced the Constant Elasticity of SUbstitution

(CES) production function. More recently, Christensen et'. ale [7J, [8] pro-

posed a form for the production function based on a second order Taylor's

expansion, evaluated at xi = 1, of~ arbitrary explicit production :func­

tion. For example, the two inputs one output formulation would be

2
log Y = log So + 61 log xl + 62 log x2 + B

3
(log xl - log x2 ) (1.4)

The rationale for the Transcendental Logarithmic Frontier, a.s it is ca.lled,

is based on the argument of generality and absence of assumptions that were

included in previous representations of production fUnctions. This absence

allows the assumptions made in previous forms to be subjected to statistical

tests. The hypotheses which have been tested are those derived from the

theory of production (hanogeneity, symmetry, and narmalization), and others

incl.uded implicitly in tbe Cobb-Douglas and CES farms (additivity and separa­

bility of inputs and outputs) [81.

Two main problems arise from the use of the Transcendental Logarithmic

form:

1. - For practical and estimation PJ,r poses, the authors take the approxi-

mating :function as the true function and include any possible source of

error in the error term of the regression equation. This implies that

there is no way of telling whether the results are affected by stochastic or

approximation error.

2. - The Cobb-Douglas and the CES production :function have the property

of "self duality", i.e., both the production and the cost forms are members



of the same family of functional forms. This makes irrelevant the choice

of representation of the technology by the production or cost functions.

The Transcendental Logarithmic Form when taken as the true form for the pri-,

mal (dual) problem and then taken again as the true form of the dual (priJna.l) ,

makes one of the selections arbitrary since the form is not self-dual. This

point is treated by Burgess r9] who shows with empirical results the conse-

quences of choosing the cost or the production Transcendental Logarithmic

form as a representation of the underlying technology.

This paper is addressed to the possible solution of these two problems

while still being able to work with more general production functions. We

propose for the consideration of the economists interested in the Theory of

Production, the Geometric Programming (GP) method of solving cost minimization

problems which is extensively used in engineering. The similarities observed

in both fields also indicate the possible benefits of closer communication

among them. In the coming sections, we give an introduction to GP and illus-

trate with examples using the Cobb-Douglas, CES, and a more general explicit

production function.

2. - Introduction to Geometric Programming

The field of Geometric PrOGI'amniDt; ca:1 be considered initiated with the

work of Duffin, Peterson, and Zener, which is sUDlIIlBrized in their book, "Geo-

metric Programming" (13J. Another valuable reference is Wilde and Beightler

r14, especially Chapter 4J, and more recent discussions can be fOWld in (15].

As is pointed out in [13, Chapter 1): GP "has developed with problems

of engineering design ••• (as) an attempt to develop a rapid systematic

method of designing for minimum costs ••• The basis of the method is a relent-

less exploitation of the properties of inequalities."



•

The method of GP is particularly suitable for cost functions having

polynomial form, with each term of the polynomial being the joint product

of a set of variables raised to arbitrary powers. For example, in engi-

neering design, the total cost c is a sum of component cost ui ; i.e.,

c = f u. (2.1)
. 1 ~
~= -

where each ui is a positive function of the design variables tl' ••• , tn'

ot the form

a ..
u; = c. H t. ~J

... ~j=l J

The c. and a .. are specified parameters. Generalized polynomial inequality
~ ~J

constraints of either sense can also be handled [14, Chapter Jr.].

The problem of minimizing a polynomial c subject to polynomial constraints

is termed a primal program. If a solution to the primal problem exists, there

exists a related maximization problem which is called a dual program.

The relation between the primal and dual programs is precisely the resuJ.t

of the geometric inequality [13, pp. 4 and 51

m m 6 ir: 5. u. ~ n U.
i=l ~ ~ i=l ~

where U. are arbitrary non negative numbers and 6. are positive weights
~ ~

satisf'ying

If 6. =1
i=l ~

If we let ui = 5i U
i

, then (2.3) converts to

~

(~~i.) i~ u. ~ ¥t u
i=l ~ i=l

(2.4)



(2.6)

and if u. is of the form given in (2.2), the right side of (2.5) can be
~

written as
~m(c.) i Rn 2. t

i=l 5i j=l j

If the 5i are chosen so that f fl .a.. = 0, for all j. then the function
i=l ~ ~J

obta.ined is independent of t. and is called the dual function, V(6):
J

- c. 6i
v(~) = W (2.) (2.7)

i=l 5i

For any set of 6 i satisfying the nornality (
.L

m _, O~~ +~_ ~~~_r 1\ i - 1, ......"" "uc VJ.' IIUU-

i=l

gonality ( f 5 .a .. == 0) conditions, the value of v(5) is a lower bound of
i=l ~ ~J . ' '

the total cost c, and for the 5i values resulting from maximizing (2.7) sub­

ject to normality and orthogonality conditions, the values of the primal and

dual objectives are the same (see [131, [14] for the proofs).

It is of interest for the subsequent development to summarize the dual

GP problem of a primal minimization problem with constraints:

Suppose a cost function gO(t) is to be minimized subject to a set of

1
constraints ~(t) ~ 1, k = 1, ••• , p, t j > 0 where the ~(t) are of the form

~ (t) = r. c. R t. aij
-K iErkl ~ j=l J • If ~ (k = 0, ••• , p) is the number of terms

in :function k and if all c. are positive
~

as [13, p. 78]

p
a.ndm= r ~

k=O

6., k = 1,
~

••• , p

(2.8)



subject to ~ ~i =1
iEr 01

f a .. Fi
i

= 0, j = 1, ••• , n
i=l l.J

The relationship between primal and dual variables at their respective opti-

mum values is given by [13, p. 81'

D t &.:c. n . l.J
l. . 1 J =J= fJ •*l.

i e [OJ

i e [k'

mathematical artifice but has engineering interpretations.

where 5* means evaluated at optimum.

Note that the logarithm of v(5) is a concave functicn. Hence, the GP

duality theory allows the use of a linearly constraint concave dual maximi-

zation problem to solve the nonlinear nonconvex primal. Therein resides

the real power of the method. The effort required to solve the dual is

related to a parameter called degree of difficulty of such a program, which

is given by the number m - n - 1, where m is the total number of terms and n

the rank of the exponent matrix. This degree of difficulty is in fact the

difference between the number of variabJ.e.s and constraints in the dual program.

When the degree of difficulty is zero, the solution is directly obtained by

solving the system of constraints of the dual program. For higher degrees

of difficulty, the optimal solution is not as straight-forward, but formalized

procedures have been developed to either approximate upper and lower bounds

to the cost function [13, pp. 81, 101] or else to iteratively search for the

maximum.

As pointed out in [13, p. 13J, the dual problem is not just a

The weights 6.
l.

have a one to one corre spondence with the polynomial terms of the prima.1 prob-



lem, and the optimal F.. * provides the relative size of these terms. The dual
1

problem also has intrinsic features which supply qualitative information about

the primalo

We hope to confirm this in the next sections when we use GP to derive

some results of the Economic Theory of Production.

3. - Application of GP to the problems

of the Economic Theory of Production

3.1 Illustration with the CObb-Douglas Production Function

A Cobb-Douglas Production Function is of the form

n
y =F(X

l
, ••• , x ) = n x.ai

n . 1 11=

where y is considered an aggregate measure of output, x. is the value of the
1

input i, and a i are Parameters satisfying the condition f a. = 1, in order
i=l 1

for the f'unction to be homogeneous of degree one.

If it is assumed that the behavior of a firm is directed to minimize the

input cost to produce a certain level of output, y, the firm's cost minimiza-

t10n problem can be formulated as (primal problem)

n
min I: p.x.

. 1 1 11=

n
subject to: n x.ai:it y, x. :it 0

i=l 1 1

If we transform the constraint to its equivalent form:

n
y IT x. -ai ~ 1

i=l 1

then we can construct the GP dual:
61 6 +1

n (Pi) (y) n /)
max v(6) = n '6 0 /) +1 n+l

i=l i n+l n

subject to:



f 5. = 1
i=l ~

i = 1, ••• , n

5. :it 0
~

Summing over constraints (3.1.5), we have:

f (, i - ~ n+1 ( ~ ex.) = 0
i=l _ i=l ~

which implies that 5 +1 = 1 and (,. * = ex.n ~ ~

and by the property of equality between pri.ma1 and dual objectives at opti­

mality,

E p.x.
i=l ~ ~

where c(p) =

ex.
n ~Pi) ~= y n -

i=l i

n p. exi
.TI (;~) would be the unit cost.
~=l ~

From the correspondence between primal and dual variables, we see that

p.x.
~ ~

6 i* = = ex., and also 5. * = ex. =n ~ ~ ~
l,; p.x.

i=l ~ ~

(\ log Y
o log x.

~

or the optimal cost share is equal to the output elasticity with respect

to the input 1.

3.2 Illustration with the CES Production Function

The primal cost minimization problem for this case will be

n
min I: P.x.

x i=l ~ ~

) [ n -b -lIbsubject to F(x = L a.x
i

'] :it Y
i=l ~

n
where I: a =1.

i=l i



Formulated as a GP primal, the problem becomes

n
min E p.x.
x i=l ~ ~

subject to

b( n b)y r: a.x.
i=l ~ ~

~ 1

And the corresponding GP dual is

6 i b 6n+i

"":' i~l (:~) ~ C~:) (i~l

one,

n
subject to r: 5. = 1

i=l ~

6 i - b6n -ti = 0 i = 1, ••• , n

summing over i in the second constraint and making use
n 1

we have ~ (, +. = -b •
. 1 n ~
~=

of the first

The problem simplifies to

6i 6 i / bn (Pi) n (ai )
maxy n - n -

6 i=l 6i i=l 6i

n
subject to r: (,. = 1 •

i=l ~

n
:; max Y TI

5 i=l

lib 61

(
p.ai )

6~ (l+b )/b
~

The solution to problem (3.2.4), obtained via the generalized arithmetic/

geometric mean inequality as shown in Appendix 1, is,

6 * =i
~ b/l+b l/l+b

'L, p. a
ii=l ~

For this optimal value, as shown in Appendix 1, the minimum of the primal

problem is given by

c(y,p) = y ( ~ (p.a.l/b)b/l+b)l+b/b
i=l ~ ~



and hence

n 1 _ ( n lib b/l+b)l+b/b
~ p.X. - ~ (p.a. )

. 1 1 1 . 1 1 11= 1=

n 1 1
where .1: Pixi is now the normalized unit cost (Xi = Xi/Y).

1=1

Note that the results above can be generalized to any homogeneous pro-

duction function of the form

F( ) = [ n -b/V]-W/bx ~ a,xi. 1 11=

where v and W are positive parameters.

3.3. More general results on primal dual relationships

In the previous sections, we have illustrated the use of GP in solving

cost minirn.1zati()n .l?roblcms under the differen.t production technologies long

used in the study of the theory of production. The effectiveness of the

method is particularly clear in the Cobb-Douglas form. In that case, the

dual problem has zero degrees of difficulty which allows the dual cost func-

tion to be obtained merely :£'rom the solution of the constraints of the inter-

mediate GP dual. The GP formulation also illustrates that the optimal cost

shares are independent of the input prices and pro-portional to the elasticity

of output to input, O'i. The price independence is generalizable to all the

cases of zero degrees of difficulty as is also shown in (16).

For the CES form of the production function, the dual. problem does n~

have zero degrees of difficulty, but we can still solve for the optimal 6i *
by making use of one of the commonly used GP relationships. The optimal

5 .* may also be considered a form of writing the demand equation for factor
1

i which in this case is dependent on the inputs prices.



The previous results also suggest more general relationships between

the primal and dual problems and fUrther extensions of the role of the inter-

mediate GP dual in solving for the input demand ~quations.

If we write the Kuhn-Tucker necessary conditions far optimality for the

dual GP problem as stated in (2.8) but with v( 5) replaced by log v( a ), we

obtain

o log v(.~ )_ A nq(~) ~ 0
00 0&

(
0 log v(~) _ ~ aq(~)\5 = 0

00 00 ")

q(~) =0

o :t 0

where q(6) represents the set of normality and orthogonality constraints;

and A is the associated vector of multipliers. Now, since log v(~) is a

concave function, the problem of maximizing log v(o) subject to the linear

dual constraints is a concave program. Consequently, the Kuhn-Tucker condi-

tions are also sufficient for optimality, and the solution of equations

(303.1) will be a global maximizing point. In fact, providing that the dual

constraints are linearly independent, it will be the unique global maximizing

point ••• Next, since it is easily shown that v(a) and log v(a) have the

same set of maximizing points, [13, Theorem 3.2J, it follows that the solu­

tion to equations (303.1) will be the global maximizing point of the dual GP

problem (2.8) 0 Finally, from the duality theory of GP, such a solution will

exist providing that the primal constraints possess an interior point and

that a feasible minimiZing solution to the primal exists. Moreover, at

their respective optimia, the primal cost dual objective function values will

be the same and the respective variables will be related via equations (2.9).



In the case of our cost minimization problem, the objective function is

always linear and positive, and the problem always involves only a single

posynomial constraint. Hence, an interior point .can always be found, and a

minimizing solution will exist providing the problem is bounded. Hence,

under reasonable conditions, a solution to e~uations (3.3.1) can always be

found. In general, that solution, 5*, will be a function of p, although

only in special situations will it be possible to solve (3.3.1) to obtain
,

an e..'q>licit functional form b* = f(p). If such a functional farm can be

determined, then when 1)* is substituted into the GP dual objective function,

the dual cost function in the Shephard sense, C(y,p) will be obtained. From

the GP duality theory, we have assurance that this dual objective function

value will lJe exactly e~t1.al to the priLlal objective value evaluated at its

rrdnim.lzint; point, ;.e~;

n
~ p.x. = v(S*) = C(y,p) •

i=l ].].

Taking the derivatives with respect to p in 3.3.2, we have

oV(5*) d6 = ~C(y,p) =x
06* • dP dP •

2
Dividing both sides by V(5*) and nmltiplying by p, we obtain,

(
0 log v(5*) M.) _ *

P 08* • op - °0

where 5~ is the subvector consisting of the first n components of 6*. From

the e~uivalence between the primal and dual solutions, 6~ will be the same

as the first n canponents of the Ii* obtained by so1.ving (3.3.1.).3

As an illustration, we can take the CES case. Equation (3.3.2) for

that case is written as

n Y( n 1./b b /1.+b)~
~ p:xi = E (p.a.) b

i=1.]. i=1.]. ]. •



','

Taking derivatives with respect to p., we have
J.

n I / l+b / b 1_ ( ( 1 b)b l+b)-- 1 ( 1 b)- - 1 -x. - ! p.a. b p.a. l+b a. b
J. '1 J.J. J.J., J.J.=

or

=
1/b-E-(p.a. )l+b

J. J.

n lib ....E..­
I: (p.a. )l+b

i=l J. J.

which is the same as (3.2.5).

The results above show how the intermediate GP dual can provide the

equivalent demand equations for factor i without having to actual.1¥ write

the explicit cost function and then take the derivative with respect to p.

They can easily be extended to the case when (3.3.1) does not have a solu­

tion for {) in 1#erms of p only, because of non 1inearities in (3.3.1) which

do not permit the elirunation of A. In this case, A will appear in C(y,p,).),

and the composite function may even be difficult to write explicitly. But

since the results (3.3.2) to (3.3.1.1-) still apply, and if we are interested

in the form of the demand equation, as most empirical studies are r8l, r91,

then C(y,p,).) does not have to be computed since we show that the same result

is obtainable by simply using the intermediate GP dual. Note that the

results are independent of the condition of self-duality of Production and

Cost :t'unctiona1 forms which in fact, restricts attention to only a particu-

lar class of functions.

3.3.1 Illustration with a General Production Function

Consider the concave prod~ction function

y = F(x) =[ ~ ~ c. x.-~/2 x.-~/2J-l/~
i=l j=i J.j J. J



where y represents again aggregate output and x. are the input factors
~

(i =1, ••• , n). The cij and 01 are parameters, and the function is homogene­

ous of degree one.

The reasons for selecting the above form are:

1 - It has input interaction terms that will allow for testing sane

assumptions implicit in other production functions (like separability

on inputs of the Cobb-Douglas and CES).

2 - It has the property of approaching in the limit a Cobb-Douglas form

when 01 -. o.

From (3.3.1), the elasticity of output to input x. would be
~

Ji f c -01/2 -01/2)a log y = Xi oY = 2\j=i ijxi x j

n ~ -01/2 -01/2
~ log Xi Y OXi i~l j~ cijxi x j

The cost minimization problem under (3.3.1.1) would actual.l¥ be

min
x

n
~ PiX.

i=l ~

subject to [ ~ ~ cijx. -01/2 x. -ot/2J-1/0I a y
i=l j=i ~ J

x. a 0 i =1, ••• , n
~

where Pi are the input prices (Pi> 0 for all i). The competitive equili­

brium conditions would be, using (3.3.1.2)

f -01/2 -01/2p.x. j.c ..x. x.
~ ~ _ =1 ~J ~ J

---- - n -01/2 -01/2
Pk~ !: c._.:~ x.

j=k A.J J

Equation (3.3.1.4) couJ.d be used in estimating the parameters c
ij

and tJI

and in testing certain assumptions on them. However, this would require the

use of non-linear estimat:l.on procedures.



.~

The GP dual of (3.3.1.3) woul.d be written as

6 ex 6 (~ f & )
n (PO) i n (n ( Co 0) i j ) (n n ) 0-1. j-1 ijmax IT.2:. IT 11 y 2:.J.. L r 6 J.- -.

5 i=l ~i i=l j=i 6ij i=l j~l ij

n
subject to r &i = 1

i=l

~ 0 a 0, 60 j :a 0
J. J.

i =1, 000, n

i,j =1, ••• , n and j a i

where J(i) is a subset of the set of subscripts pairs (h,.t) with t a h,

such that either h = i or t = i but not both.

More explicitly, for the three input case of the form

(3.3.1.5) woul.d read

3 Pi 6i 3 3 I'cij 6i ;l, 3 3 (i~l
~ i~l (5) i~l (j~ ( ~ij) ) (i~1 j~i 6ij)

3
subject to L 50 = 1

i=l J.

5i a 0, &ij a 0

(3.301.8)

summing over constraints (303.1.9) to (3.3.1.11) and using (3.3.1 .8), we

have the result



333
I: 0 i - 0'( J. r ~..) = °

i=l i=l j=i J.J

3 3
and I: I: ~tj

i=l j=1 J.

1
= -

Considering the equivalence between primal and dual variables:

3
Pix. =6~ I: P.x.) i =1, 2, 3

J. {\i=l J. J.

-0'/2 -0'/2 _ ~tj
cijxi x j - -3",.----:;;;~3--

L r.
i=l j=i

i =1, 2, 3

i, j = 1, 2, 3 ,

j :l i

(3.3.1.16)

we can show that constraints (3.3.1.9) to (3.3.1.11) are in fact the com­

petitive equilibrium conditions as expressed by (3.301.4).

Note fron the e<;i.uiv~lt:;nce relations, (3.3.1.15 - .17), that xi > 0,

i = 1, 2, 3 if and only if 0i' 0ij > 0, i,j = 1, 2, 3, j :l i. Consequent~, for

xi > 0, the Kuhn-Tucker conditions (3.3.1) collapse to the conventional

Lagrangian necessary conditions. For the case of problem (3.3.1.7), these

~e,

i
log c' i - log A.. - Q'A2 - 1 =0 i =1,2,3

J. J.J.

log C. - log ~ .. - 9: (L l~) - 1 = 0 i,j =1,.2, 3
J.j J.J 2 hEH(i,j i"

j :l i
together with equations,

(303.1.21)



i
where Xl and A2 are the La.grange multipliers and where H(1,j) is the set

of all h such that (i,j) is in J(h).

If we solve (3.3.1.18) to (3.3.1.21) in terms of 0., i = 1,2, 3 and. ~

ucc the results hi cq ...l..1.tions (].3.1.:;) to (3.3.1.11), \ve obtain tt.e foUol'l-

ing system of equatioas in ~i' i = 1, 2, 3 and Pi' i = 1, 2, 3. (See Appen­

dix 3 for the derivation.)

(pO22) (&3)Bll + ~12Pl + 813 + 814 P
3

- 0

f3 21 + 62~1 + 623 ~1) + 624 (:3) = 0
1 3

S31 + ~32P3 + 633 (;1) + ~34 (;2) = 0
1 2

with the restrictions

812 = f3 22 = a32

613 - f3 23 = 0

1=314 - 833 = 0

~24 - f334 = 0

where

1 = ~, 2, 3

/6 i 4 = -OleA1

6 = c e-«(:I/2
ij ij

i = ~, 2, 3

h
1)( ~ A2 ) + Xl + ~ i ~ , 2 3 __A ~ 1

hEH(1,j) ,~ =., , ~ ~ >

The systen of €~~tions (3.3. 1 .22) allows us to solve tar 81 , 1 =.1, 2, 3

in terms of Pi' i = 1, 2, 3, Al and A~' i = 1, 2, 3. The final system is,

however, non-linear in Al and A~' and these variables can not be elimina­

ted in such a wa~- that (). becomes a function of p. alone. If we a.ssume
~ ~

the economy is operating at optimum, by takinr; data on 5., cost share,
~



and Pi' factor prices, and treating Al and A~ as par~neters, we can use sys­

tem (3.3.1.22) with the restrictions (3.3.1.23) to estimate B.. by statisti­
J.J

cal procedures using other functional forms [8J~ [9]. Likewise, statistical

tests on assumptions about production technology could be performed. For

example, to test the assumption on input separability, we would test for

4. - Conclusion

In this paper, we have studied the problems of finding the dual cost

function associated with a particular production technology and the deriva-

tion of the demand function of a factor i with the methodology of GP.

We used some results from GP to illustrate the prima.l dual relationships

and to show how the intermediate GP dual can replace the' so-called

Shephard f s dual cost function C(y,p) for empirical. studies concerned with

the demand equation for factor i. An explicit production function with

interaction terms among the factors has been used to illustrate same of the

results and to show how an explicit general form can be used to test same

of the assumptions of' the theory that before had been tested with appraxi-

mated and, in some way, arbitrary forms.

It is also important to point out that if we start with the cost tunc-

tion explicitly and write the dual problem (2)

(4.1)

the GP method that in the paper has been used to solve the primal problem

to (4.1), would still be applicable to the solution of the above problem.

As a corollary, the paper supports an idea introduced already in [171

of the utility of using some of t~e concepts developed in the engineering

field to model the Economic system, since a closer look reveals that both

fields are looking at similar problems.



5. - Footnote s

1. i E [k] indicates the range of values for i in the kth constraint; that
k-l k

is, i going from 1: ~ + 1 till 1: ~, whE;re ~ is the number of
k=O k=O

terms of the kth constraint.

2. The multiplication by p is in the form of Kroeneker product ® ; that

is, we multiply by p., i = 1, ••• , n, the respective ith element of the
1.

vectors at both sides of equation (3.3.3).

3. The remaining components of 6 are the dual variables associated with the

constraint terms. In the C-D and CES cases, these could be eliminated

by means of the dual constraints. In general, they are of course sJ:ways

available as part of the optimal dual solution.
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7. - Appendix 1

Solution of the problem (3.2.4) in section 3.2 using the Generalized

ArithmeticJgeametric mean inequal'ity

Given xi > 0 and ~i :It 0, i = 1, ••• , n, ~ O'i = 1, for any r > 0

(Al.l)

(Al.2)•

with equality if and only if all x. are equal. For a.rry s > 0, defin­
J.

ing Yi = XiU'i
S

' i = 1, ••• , n (Al.I) convert.s to

()i

[~ Q'il-rs yirj/r :l ~ (Yi S)
J. J. ~i

Since I: ct. = 1, (Alo2) is satisfied as equality if and only if for
• J.
J.

i =1, ••• , n,

l/s
Yi

~i = ---=-l/""s-­
'E y.
i J.

for any s. (Al.3)

SUbstituting this value of ex. into the left side of (Al.2),
J.

l-rs
- r(I: y. s Y.)

i J. J.

( l/s)l-rs
~ Yi
J.

l/r

=

(Al.4)

l+b l/b
In problem (3.2.4), s = b and Yi = Piai ,which when sub-

stituted into (AI.3) and (Al.4), just!fies the resul.ts shown in the

main text, respectively, (3.2.5) and (3.2.6).



Appendix 2

Limit results for function (3.3.1)

We have the funct ion:

y = F(x) = [~ ~ c ..x. -ex/2 x -a/2J-l /0/
i=l j=i ~J ~ j

(A2.1)

c..x. -ex/2J
~J ~

n
l:

j=i
ex

Taking logaritmns ,
n

log [ L
log Y = - i=l----........._----

°If a ~ 0, lim (log y) = 0' if
a-+O

n n
l: l: cij = 1.

i=l j=i

For resolving the indeterminacy, we use 1 'Repital's rule

n n
lin (log y) 5 lin (_%a (log [.t .t

~=l J=i
ctJA) ~ -----::rOcx~7~0ct-------

Taking the derivatives:

~
~( ~ ~ ~ ..x. -ex/2 x. -0//2 log (x .• x.»)

i=l '=i ~J ~ J ~ Jlog Y = lim ---:;....;;;....:J~. _

_.•n n n /2 /2
~ ~ ~ c .x.-O/ x.~

i=l j=i iJ ~ J

(A2.4)

which is equal to

n n
log y = ~ t cij log (xi· x

J
.)

i=l j=i
(A2.5)

which can always be written as a Cobb-Douglas by choosing cij such that

n n
~ r c

iJ
' = 1.

i=l j=i



Appendix 3

Solving 0i in terms of A1 , A~' and Pi in (3.3. 1 .9) to (3.3.1.11)

i =1, 2, 3

i = 1, 2, 3

which implies that

i =1, 2, 3

Also, from (3.3.1.19) and (3.3.1.20), .

and

i,j = 1, 2, 3

j ;a i

(A3.4)

or, using (A3.2) above,

i,j = 1, 2, 3 •
j a i

With these results, the system (3.3.1.9) to (3.3.1.11) becomes,

(A3.6)



whichcarresponds to (3.3.1.22) with (3.3.1.23) and (30301.24) in the

main text after dividing each equation in A306 by 5iiote Alo


