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PREFACE 

T h i s  p a p e r  i s  one of  a series embodying t h e  outcome of 
2 y e a r s  of IIASA's c o l l a b o r a t i v e  r e s e a r c h  on t e c h n i q u e s  f o r  t h e  
i d e n t i f i c a t i o n  of s t r u c t u r a l  changes.  T h i s  t y p e  of r e s e a r c h  i s  
r e q u i r e d  by economis t s  d e a l i n g  w i t h  economet r i c  modeling i n  view 
of  t h e  well-known changes  i n  t h e  world economy i n  t h e  p r e v i o u s  
decades .  I t  i s  f u r t h e r m o r e  a t o p i c  o f  t h e  IIASA/Bonn Research 
P r o j e c t  on World Economic Modeling l e d  by P r o f .  W. K r e l l e .  

I n  a few months IIASA w i l l  h o l d  f i n a l  mee t ings  on t h i s  
t o p i c ,  and P. H a c k l ' s  p a p e r  c o n t r i b u t e s  t o  a b e t t e r  under-  
s t a n d i n g  o f  t h e  problem, which i s  o u t l i n e d  a s  f o l l o w s :  

I n  a number o f  economet r i c  problems d a t a  a r e  g e n e r a t e d  by 
d i f f e r e n t  p r o c e s s e s  f o r  n e i g h b o r i n g  t ime i n t e r v a l s .  The p a p e r  
concerns  t h e  s i m p l e s t  c a s e ,  where on e v e r y  i n t e r v a l  a r e s p o n s e  
f u n c t i o n  i s  a l i n e a r  f u n c t i o n ,  b u t  t h e  p o i n t  of s w i t c h i n g  i s  
unknown. T h e r e f o r e  it i s  n e c e s s a r y  t o  e s t i m a t e  r e g r e s s i o n  
p a r a m e t e r s  and t o  i d e n t i f y  t h e  l o c a t i o n  of  t h i s  p o i n t .  Two 
t e s t  s t a t i s t i c s  a r e  compared: t h e  cumula t ive  sum s t a t i s t i c s  
proposed by Brown, Durbin and Evans ( 1 9 7 5 )  and i t s  m o d i f i c a t i o n  
developed by t h e  a u t h o r .  Using t h e  Monte-Carlo approach,  t h e  
a u t h o r  h a s  shown t h a t  t h e  second s t a t i s t i c s  i s  more powerful  
when t h e  number o f  o b s e r v a t i o n s  i s  modest ( s a y ,  2 0  p e r  one 
unknown p a r a m e t e r )  and f o r  t h e  l a r g e r  number of o b s e r v a t i o n s  
t h e  f i r s t  s t a t i s t i c s  g a i n s  i t s  a s y m p t o t i c a l  o p t i m a l i t y .  

A n a t o l i  Smyshlyaev 



Peter Hack1 

A NOTE ON THE CRITICAL LIMITS OF THE CUSUM TEST 

1. Consider the regression model yt = xtgnt+ut, t=-k+l,...,T, 

where yt is the observation of the dependent variable at time t, 

xt is a k-vector of observations of the independent variables 

(which are assumed non-stochastic) , fit is a k-vector of unknown 

regression coefficients, and ut are independently and normally 

distributed disturbances with mean zero and variance a 2. Brown, 

Durbin and Evans (1975), in the following BDE, suggest to test 

the null-hypothesis Ho: fit=fi, t=-k+l, ..., T, against a non-speci- 
fic alternative by means of the cusum test: Reject Ho if 

Here, Ct = ( C  j5 tWj)/~, t=1,. . . ,T, are the cumulative sum statis- 
tics, and s is an estimate of the standard deviation a; the re- 

cursive residuals are defined to be Wt = rt(yt-xt1bt,l), 

t=l,. .. ,T: here, rt = ( l + ~ ~ ( X ~ - l ' X ~ - ~ ) - l x ~ ' ) - ~ / ~ ,  Xt-1 is a 

(k+t-1)xk-matrix (of full rank for t>l) with rows xj', 

j=-k+l, ..., t-1, and bt-1 is the OLS-estimator of fi, based on 
observations prior to t. {ST2a ) is equivalent to the event that a 

the path of the cumulative sums Ct leaves the space between the 

straight lines between the points (l,Ca,d~) and (T,? 3a,dT) , i .e., 

crosses one of the straight lines ?aadT(1+2t/T). These critical 



lines are determined by a, which has to fulfill P(ST2a )<a under 
a 

Ho. Brown, Durbin and Evans derive a from P(S>aa)<a where S is 
a 

analogous to ST with Ct substituted by a standard Wiener process. 

A result from the theory of the Wiener processes (Durbin, 1971) 

allows to calculate the probability that a sample path crosses 

the straight line a JT(1+2t/T); in the opposite way, values for 
a 

a, can be obtained for a given a if the probability of crossing 

both the qper and the lower critical line is neglected. 

2. The way how the critical limits of the cusum test are derived 

is justified by the fact that ST converges in distribution to S. 

In this sense, the cusum test is an asymptotic test. The effect 

of this approximation to the situation of finite sample sizes can 

hardly be assessed. Simulation studies generally indicate a re- 

duction of the error (I) probability as compared to the nominal 

significance level, this reduction being decreased with increa- 

sing sample size T (Garbade, 1977; Hackl, 1980). In addition, it 

must be expected that the power of the test depends on the onset 

of the violation of the null-hypothesis. 

3. An exact test based on a finite number of cumulative sum sta- 

tistics can be performed by simultaneously testing each of the 

Ctqs for significant deviations from its expectation under Ho. 

The Ct8s are approximately normally distributed with E(Ct)=O and 

Cov(Ct,Ctc) = min(t,t8). As BDE mention, if it is wished to have 

critical limits such that under Ho the probability that the 

sample path crosses the curves at any point between t=l and t=T 

is constant, the curves must have the form tcaJt where ca is a 



suitably chosen real number. The derivation of c, must be based 

on the joint distribution of the Ctts. The application of Bon- 

ferronits inequality implies that the dependence of the CtVs is 

neglected; this would - due to large correlations of the Ctts - 
result in a strongly conservative test. By use of Hunter's 

(1976) inequality, much less conservative critical limits can be 

derived on the basis of bivariate distributions of the respective 

statistics. 

4. For any set of events A1, ..., AT, Hunter's inequality states 

The set M of pairs of indices (i,j) has a particular form: 

Interpreting the events Ai as knots in a simple graph with the 

pairs of indices (i,j) representing the edges, then M is that 

connected subgraph without cycles, or tree, consisting of not 

more than k-1 edges, which has maximal length, the lengths of the 

edges being measured by the joint probabilities P(AiAj). The set 

M can be found by initially searching for the largest of the 

joint probabilities and then subsequently adding from the 

remaining pairs that one which has maximal joint probability and 

does not create a cycle with pairs already included in the tree. 

If the tree of maximal length is not unique, any of these trees 

can be used. A detailed discussion of the application of 

Hunter's inequality in simultaneous testing situations is given 

by Bauer & Hack1 (1985). 



5. In the following, modified cusum statistics Ctf = ct/Jt, 

t=1, ..., T, will be basis of the test. They are standardized sta- 

tistics with Cov(Ctf,Cttf) = J(min(t,t')/max(t,tV)). Hunter's 

inequality can be used to derive from P (maxlct5T1~t* 1 'c,' / Ho) = a 

the critical limits c;: If the right-hand-side of P ( u ~ / c ~ * / ~ c ~ )  5 

LtP(Ct*2c;)-L (t,tt)e~P(I~t*12~;,/~t~*12c;) is set equal to a, 

conservative Hunter-type critical limits ctH are obtained for c;. 

As P ( ( C ~ * ~ ~ C ; , ( C ~ I * ~ C ; )  is a monotonic function of pttll, ptt' 

being the correlation coefficient between Ct* and Ctc*, the set M 

contains the index-pairs (T-1,T) , . . . , (T-CT/21 ,T-CT/21+1) and 
(T-2i-2,T-2i) , (T-CT/.2.1-i-1,T-CT/21-i) , (T-2i-3,T-2i-l) , i=O,l, . . . , 
so that the number of pairs is T-1; here, [.I is the ceiling 

function. The gain in power as compared to the use of 

Bonferroni's inequality must be expected to be considerable as 

the cusum statistics are highly correlated: For T=20, 40, and 80, 

the mean of the correlation coefficients in M is 0.952, 0.976, 

and 0.988, respectively. In Tab.1 Hunter-type critical values 

cgH and the corresponding probabilities P ( 1 ct* / 2 ~ ; ~ )  =pTH for the 

overall significance levels a=0.05 and 0.01 and for values of T 

in the range between 5 and 100 are given. The integration of the 

bivariate normal distribution has been performed by means of the 

Routine DOlDAF of the NAG Programme Library. The accuracy level 

has been chosen so that the results given in Tab.1 are correct to 

the digits given. 



Tab.1: Hunter-type Critical Value caH and Probability PTH (in 
Percent) , for Various Values of a and T. 

6. Tab.2 shows the results of a Monte Carlo simulation experi- 

ment performed in order to compare the BDE cusum test and its 

modification. The power of the tests against a sudden shift of 

the expectation between t=t* and t=t*+l was investigated: The 

tests were applied to data obtained from Yt = p+ut if t<t* and Yt 

= p+6a+ut if t> t*; the disturbance terms ut are pseudo random 

numbers with means zero and variances a2 for all t, generated by 

means of the function RUNNOR of the Statistical Analysis System 

(SAS). The parameters used were p=0, a2=1, T=20, 40, and 80, and 

6=0, 1, and 2. 

In the case of non-constancy (6fO) the estimate s2 = ztwt2/(~-1) 

overestimates 02, so that the power of the test is reduced by the 

fact that the estimated standard deviation is denominator in each 

of the test statistics (Hackl, 1980). To reduce this effect the 

variance a2 was estimated as so2 = c ~ ( w ~ - ~ ) ~ / ( T - ~ )  where w is the 
sample mean of the recursive residuals. 



Each rejection probability reported was estimated from a sample 

of size 2000 except for the null-hypothesis case (6=0) where the 

sample size was 10000. The standard deviations of the estimates 

for probabilities 0.05, 0.2, and 0.5 are 0.0049, 0.0089, and 

0.011, respectively, if the sample size is 2000 and less than 

half of these values for sample size 10000. 

Tab.2: Estimated Power (in Percent) in Rejecting the Null-Hypo- 
thesis of Constancy When the True Model Contains a Shift 6 of the 
Intercept, for Various Values of a, 6, T, and t*/T. 

BDE-cusum 
mod .cusum 
BDE-cusum 
mod. cusum 
BDE-cusum 
mod. cusum 

BDE-cusum 
mod. cusum 
BDE-cusum 
mod. cusum 
BDE-cusum 
mod .cusum 

BDE-cusum 
mod .cusum 
BDE-cusum 
mod .cusum 
BDE-cusum 
mod .cusum 

7. The conclusions drawn from the Table can be summarized as 

follows: Both tests are conservative, the difference between a 

and the estimated actual significance level decreasing and in- 

creasing for the BDE cusum test and the modified version, respec- 

tively. For both tests the estimated power increases with in- 



creasing shift size 8 and number of cusum statistics T, but de- 

creases with increasing ratio t*/T. For T=20, the modified cusum 

test is more powerful than the BDE test, this superiority being 

increased with decreasing a. For T=40, the tests are of about 

equal power and for large values of T, the estimated power of the 

BDE cusum test exceeds that of the modified test in nearly all 

cases considered. For T-80, however, the estimated actual 

significance level of the modified cusum test lies considerably 

below that of the BDE cusum test. 

From these results follows that the modified cusum test should be 

preferred to the BDE test in cases of small number T. 
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