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ABSTRACT 

Linear programs such t h a t  t h e  right-hand s ides  of the i r  r es t r i c t ions  have t h e  
form of multivariate time s e r i e s  may be useful in p rac t i ca l  applications. Behavior 
of the  processes  formed by the  optimal values of t h e  corresponding objective func- 
tions i s  investigated in t h e  following cases: the  right-hand side p rocess  i s  (i) a 
normal white noise; (ii) a normal white noise with a l inear  t r end ;  (iii) a normal 
random walk. Some basic probability charac te r i s t i c s  of such p rocesses  a r e  calcu- 
la ted explicitly. 
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TIME SERIES IN LINEAR PROGRAMS WITH WITHOM RIGHT-HAND SIDES 

Tombs Cipra 

1. LNTRODUCTION 

Let us consider l inear  programs of the  form 

where the  matrix A ( m ,  n) and the  vec to r  c ( n ,  1 )  a r e  deterministic and fb, { is  a 

m-dimensional process .  Such general  model may be applicable in variops p rac t i ca l  

situations. The optimal values q (b t )  of (1.1) (if they exis t )  form obviously a s c a l a r  

p rocess  the  behavior of which we shall  investigate. 

Let us denote 

S = Ib t Rm : q(b)  i s  finite . (1.2) 

Then according t o  [6] or [7] the  function q(b)  is  convex, continuous and piecewise 

Linear on S .  Moreover, S can be  decomposed t o  a finite number of convex po- 

lyhedral  cones Sf (i = l ,  . . . , k )  with the  ve r t i ces  in the  origin such tha t  the  inte- 

r i o r s  of Sf are mutually disjunct and q(b)  is  l inear  on each S f .  One can write 

and 

where H' are regu la r  ( m ,  m )  matrices and g i  are (m.  1 )  vec to rs  ( the  vec to rs  g f  

need not b e  mutually different) .  One can a lso  write 

q(b)  = max I g i ' b  \. b E S  . 
i - 1 .  . . . ,  k 

(1.5) 

T'ne explicit form of & and g i  can b e  found by means of various algorithmic pro- 

cedures  (see e.g.  [4], [5 ,  p.2761, [8], [91). 



EXAMPLE 1 (see [5]). In t h e  program 

one can  Lake 

The p rocess  [ q ( b , ) j  or ig inates  as a piecewise l inea r  (i.e. nonlinear in gen- 

e r a l )  t ransformat ion of t h e  p r o c e s s  fb i{ .  If one  investigates s ta t ionar i ty  of 

f q ( b , ) j  in dependence on s ta t ionar i ty  of  f b t  I t hen  i t  is obvious t h a t  frp(bt){ need 

not b e  weakly s t a t ionary  when f b l j  h a s  th is  p r o p e r t y  (i.e. when Eb l  and 

cov(bt ,  b, -,) d o  not depend on 2). 

EXAMPLE 2 Let m = 1, ~ ( b )  = b' - 2 b -  f o r  b E R' (where b c  = maxj0, b 1 ,  
b -  = min 10, b I )  and bt b e  independent random var iab les  such t h a t  

for a r b i t r a r y  in teger  r .  Then 

Eb, = 0,  v a r  bt = 1, cov(bt ,  b, -,) = 0 for s + 0 

for a l l  t ( i .e .  )b t  { i s  weakly s ta t ionary)  but 



If jbl j is strongiy s ta t ionary (i.e. t h e  joint probabil i ty distribution of 

(btl, . . . . bti) is  equal to t h a t  of ( b t l + , ,  . . . , bti +,) f o r  al l  i ,  t i ,  . . . , t i ,  s) then 

[rp(bl)j shouid nave t h e  same proper ty  but one must b e a r  in mind t h a t  rp(bl) i s  not 

finite f o r  bt < S. Moreover, t h e  explici t  calculation of basic probability charac -  

t e r i s t i c s  of rp(bl ) { (e.g. t h e  mean value and autocovariances) may be very  difficult 

even in simpie si tuations.  In o r d e r  t o  demonstrate i t  t h e  case  with a two- 

dimensional normal white noise [bt  { is  studied in section 2. The der ived formulas 

f o r  E rp(bl) and v a r  rp(bt) are s o  complicated t h a t  i t  t u r n s  up reasonable  t o  recom- 

mend t h e  simulation approach  of Dedk 131 f o r  a more general  case. The case of a 

s ta t ionary p rocess  lbt { with a constant mean value seems t o  be  not very  useful in 

pract ica l  situations. There fore  a m-dimensional normal p rocess  [b, with a I inear  

t r end  is  considered in section 3. Finally, in o r d e r  t o  provide potential generaliza- 

tion t o  t h e  nonstationary in tegrated processes  of Box and Jenkins which are capa- 

ble to model t r e n d s  in a s tochast ic  way (see [I]) w e  deal  with a one-dimensional 

normal random walk [bl { in sect ion 4. 

The following denotation will be  used in t h e  p a p e r :  a'  and A'  f o r  t h e  t r anspose  

of a v e c t o r  a and a matrix A ; Ila(l = f o r  a E Rm ; d e t  A f o r  t h e  determinant 

of a square  matrix A ;  s g n  ( z )  = 1 f o r  z > 0 ,  = 0 f o r  z = 0 and =-1 f o r  z < 0: 

z t  = max 10, z { ,  z- = min [O, z{. 

2. NOMAL WHITE NOISE 

Let [bt j be a two-dimensional normal white noise, i.e 

where C is  a positive definite var iance matrix. Let T  be a lower t r i angu la r  matrix 

with positive elements on t h e  main diagonal such t h a t  

(Cholesky decomposition) and l e t  us denote 

= H < T  , 

where t h e  matrix Q' h a s  t h e  elements denoted as q:, and t h e  row vec tors  of t h e  

type ( 2 , l )  denoted as q: (u , v = 1.2). 



LEMMA 1 It h o l d s  

PROOF If using t h e  method of substitution we have 

k 

= C JJ ( 2 n ) - l r  e x p  (- r 2 / 2 ) d r  dl9 
i = I  IT, a:r r 0, ~ ' ( r  cos 6, r sin 6)' r 0 1  

k 
= (2n) C J dl9 

i =l  ~ ~ : Q ' ( c o s  19, sin d), > 0 1  

The las t  integrals a r e  equal t o  t h e  values of t h e  convex angles between and 

- s o  tha t  (2.4) is  obvious now. 

W e  can p roceed  t o  t h e  caiculation of Erp(bt) and v a r  rp(bi). Since t h e  proba- 

bility (2.4) can b e  l ess  than one in general  t h e  conditional values E(rp(bl)(bi E S )  

and v a r  (rp(bi)Jbt E S )  have sense only. 

THEOREM 1 Under  t h e  p r e v i o u s  a s s u m p t i o n s  i t  h o l d s  

where  P ( b i  E S )  is g i v e n  in (2.4) 

PROOF W e  can write 

k 
p ( b i ~ S ) E ( r p ( b l ) l b l t S ) = C  r g " b ( ~ n ) - l ( d e t C ) - ~ ' ~  

i = l l b : $ b  > O {  

e x p  (- b'C-lb / 2)db 

k 
= C gi 'T J (COS 19, sinl9)'(2r) - l r2 

i =l  Ir, d:r s 0, ~ ' ( r  cos d, rsln d), r o j  

e x p  (- r 2 / 2 ) d r  d 19 

k 
= ( 2 6 ) - '  C g i ' T  J (cosl9, sin 19)'d 19 

i = l  16: Q'(cos 6, sln d)' s O! 



The var iable  6 is bounded by t he  aneies  corresponding t o  t he  couples of vectors  

(Q:~,  - q i l ) ' a n d  ( - q t 2 .  q :~) '  (if de t  Q( = q t 1 q i 2  - Q : ~ Q ~ ~  > O ) o r  (Q:~ .  - Q : ~ ) '  

and - q q (if de t  gi < 0). Since J c o s  6 d  6 = s in6  and 

J sin 6 d  6 =- c o s 6  w e  have 

which is  equivalent t o  (2.5). 

REMARK 1 The formulas (2.4) and (2.5) can be rewrit ten t o  t h e  form 

where h:(u = 1. 2)  a r e  t he  row vec tors  of t he  type (2.1) of H'. 

I t  is  obvious tha t  random variables rp(bt) a r e  mutually independent; t he  follow- 

ing theorem evaluates t he i r  (conditional) var iance.  

THEOREM 2 Under  t he  p r e v i o u s  a s s u m p t i o n s  i t  ho lds  

where  

E(rp(b,)lbt E S )  is g iven  in (2,5), I is the  (2.2) u n i t  m a t r i z  and 

1 i i P: = (-q1Zs qil) '- P: = (422s - ~ 2 1 ) ' .  



PROOF One can write analogously as in t h e  proof of  Theorem 1 

k 
= (T;)-' 2 g t ' ~  J (cos 19, sin 19)'(cos 19, s in  19)d I9 T~~~ . 

t =I  [ ~ : P ' ( c o s  3, sin u ) ,  > 01 

Since 

J s in  I 9 c o s r ~ d r ~  = 1 s i n 2 I 9  = L  -Lcos2$  
2 2 2 

and s g n  (det Q' ) = s g n  (det  Hi d e t  T) = s g n  (detHi ) we shall  get  (2.9) similarly as in 

the  proof of Theorem 1. 

3. PROCESS WITH LINEAR TREND 

Let Ibt I be  a m -dimensional p rocess  of the  form 

where a and b a r e  (m . 1 )  fixed vec to rs  (a + 0)  and Ict I is  a m -dimensional normal 

white noise, i.e. 

- i i d  N,,, (0, C), C z o . (3.2) 

The l inear  model (3.1) i s  the  usual model of multivariate time s e r i e s  used frequent-  

ly in p rac t i ce .  

I t  i s  obvious t h a t  in th is  situation the  behavior of the  p rocess  Iq(b,)l depends 

substantially on t h e  position of the  vec to r  a with r e s p e c t  t o  the  sets Sf. If i t  i s  

a f S then obviously a f t e r  ce r ta in  time the  p rocess  ) q ( b t ) j  will not  be finite with 

a i a rge  probabil i ty.  W e  shall  exclude this case  from f u r t h e r  considerations. 

Now Let us  investigate the  situation when a is a n  in te r io r  point of a s e t  Sf. 

Then due t o  the  p roper t i e s  of the  convex polyhedral cone St when time t proceeds  

the  process  ]lp(bt) 1 will have the  form [gi 'bt  1 with a probability which grows in 



time and i t  enabies  to draw some conclusions on t h e  behavior  of this process.  The 

following theorem evaluates t h e  time per iod a f t e r  which i t  is  guaranteed with a 

given probability t h a t  lrp(bt)l l ies in St. Let t h e  denotation (2.2) and (2.3) be  

preserved.  

THEOREM 3 Let 0 < a < 1 be a given number ,  let  a be an i n t e r i o r  p o i n t  of 

St a n d  let  & ( a )  be t h e  c r i t i c a l  v a l u e  of the  ch i - squared  d i s t r i b u t i o n  w i t h  m 

degrees offreedom o n  t h e  level a (i.e. P ( ~ :  r x:(a)) = a ) .  Then fo r  t fulfi l l ing 

the  v a l u e s  bt l i e  i n  St (i.e. v(bt )  = g i  bt) w i t h  the  p r o b a b i l i t y  a t  l eas t  1 - a 

17 (one c a n  a l so  u s e  l/q:(l = d ( h ,  Zh,)). 

PROOF I t  holds f o r  a l l  t 

According t o  [2,  Theorem 11 t h e  ( 1  - a )  100 p e r  cen t  confidence region 

lies in St if and only if 

Since a is t h e  in te r io r  point of St i t  i s  hza > 0 f o r  u = 1, . . . , m and (3.6) i s  

equivalent t o  

so  t h a t  the  theorem is proved 

REMARK 2 Theorem 3 can be  formulated f o r  more general  types  of p rocesses  

f o r  which one i s  capable  t o  calculate the  confidence region in the  form of a n  elip- 

soid as in (3.5) anci t h e  t r e n d  of which s tays  in a convex cone with t h e  ve r tex  in t h e  

origin contained (with excep t  of t h e  ver tex)  in t h e  in te r io r  of St. Specially such 

natural  generalization may be der ived f o r  the  p rocesses  t h e  t r e n d  of which h a s  

been estimated by means of t h e  regress ion technique (see 123). 

If a is very  small then f o r  t fulfilling (3.3) one can  approximate t h e  probabili- 

ty charac te r i s t i c s  of t h e  p rocess  Iv(b,)j  by t h e  ones  of t h e  p rocess  fgi 'b t  j ,  e.g. 

E(rp(bt)(bt E S )  - ~ g l ' b *  = gt ' (b  + a t )  , (3.7) 



v a r  (p(b , ) lb ,  E S )  - vargi 'b,  = gi' g i  (3 .8 )  

In some situations one can a lso  des i re  the  evaluation of t h e  accuracy  of such ap- 

proximations. In t h e  following theorem such evaluation is  der ived f o r  the  approxi-  

mation ( 3 . 7 )  of t h e  mean value. 

THEOREM 4 Let u n d e r  t h e  a s s u m p t i o n s  of Theorem 3 t f u l f i l l  (3.3). Let  us 

deno te  c  = & ( a ) ,  Q t h e  d i s t r i b u t i o n f i n c t i o n  o f t h e  s t a n d a r d  n o r m a l  d i s t r i b u -  

t i o n  N ( 0 ,  1 )  a n d  

.- 
v =  max d g j ' Z g j  

j=1 ,  . . . ,  k 

T h e n  i t  h o l d s  

( 1  - a ) g i ' ( b  + a t )  5 E ( p ( b t ) J b t  E S )  S gi ' (b  + a t )  , 

+ L [ a  max f g j ' ( b  + a t ) !  + vVm(c )  
1 - a  j = ~ ,  . . . ,  k I 

w h e r e  

v z ( c )  = [ I  - 2 1 4 ( 6 )  - 1 / 2 j ]  + 6 exp ( - c / 2 )  , 

. . .  + m  - l ) ( m  -3)...2(exp ( - c / 2 ) f o r  odd m  ~ 3  

PROOF Let us denote  f t  t h e  probability density of t h e  distr ibution 

Nm(b + a t ,  Z ) .  A s  the  lower bound in (3.10) is  concerned it is  obviously 



The upper bound in (3.10) can be derived in the following way: 

1 
E(9(br  )lbt 6s) 5 - l - a -  r q ( b t ) ~ t  (bl )dbl 

R" 

- 1 i --. J g f ' b t f l ( b l ) d b t  + f max ~ ~ j ~ b ~  l f t  ( e l  )dbt j 
[ ~ ( a )  R m ; P ( a ) j  . . . I k 

= g f ' ( b  + a t )  + - [a  max lg jr (b  + a t ) !  
1 - a  j = 1 ,  . . . ,  k 

5 g f ' ( b  + a t )  + - [a  max igj ' (b + a t ) {  
1 - a  j = 1 .  . . . ,  k 

exp ( -  r Z / 2 ) r m  -'cos 1 9 ~  cosZ 1 9 ~  . . . cosm -' 19, - ldr  d 1 9 ~ .  . . dI9, , I 
where the last inequality holds due to  the fact that outside the elipsoid 

i y  E Rm : y 'y 5 c I the graph o f  the function max [gj 'Ty  I can be dominated by the 

surface o f  the cone C in Rm with the vertex in the origin o f  the form 

where max [llT'gjlIl = max J g j ' ~  g j  = v (the description o f  the mentioned surface 

in the polar coordinates is used with the Jacobian r m  

cos 1 9 ~  . . . cosm , , ,  ) The final form of  the upper bound can be derived using 

the formulas 

J cos lJ z  cos2 193 
[ o r d l  <2n, - n / 2 r d z r n / 2 , .  . . , - n / z  Sdm- lSn /2 j  

. . . cosm -2 19 . . dlJm -1 - - -1 T;alaz ' ' ' a,,, -2 , 



n/ 2 

at = J cost z d z  , 
0 

i.e. a l  = 1, a 2  = X /  4 and 

a, = ( i  - 1  - 3 )  2 - 2 ) . . .  l j f o r o d d i  2 3  , 

= ( 2  - 1  - 3 ) .  . . 1/ l i ( i  - 2 ) .  . . 21 f o r  even i r 4 ; 

- 
j rm exp (- r 2 / 2 ) d r  
7; 

REMARK 3 For m = 1 one can calculate E(rp(bt)lbt E S )  exactly. If e.g. 

S = R1 (i.e. S1 = ( -  -, 01 and S2 = 10, -)), rp(b) = g lb -  + g 2 b t  f o r  b E R1 (where 

g l ,  g z  ER1), b1 - N ( &  c?) (where w = b  + a t )  and P ( a )  = [cl, c2] (where 

- -  < c l  < c Z  < - ) t hen  

E(rp(bl)lbt E S )  = Erp(bt) 

= B I [ W I @ ( C ~ )  - @(C1)j + u ( ~ T T ) - ~ / ~ ~ B x P  ( - ~ : / 2 )  - e x p  (- ~ $ / 2 ) j ]  f o r  c2  5 0 , 

= g l i w l l / 2  - a (c l ) i  + 0 ( 2 x ) - ~ / ~ l e x ~  (- c:/z) - exp  (-  (w/ 0 ) ~ / 2 1 ]  

+ g Z I ~ l Q ( C 2 )  - 1 / 2 l  + 

c r ( ~ r ) - l / ~ [ e x p  (- (w/ u12/ 2 - exp (- C: /2)1] for c l  < 0 < c 2  , 

= g2[wf@(C2) - @(C1)j + c r ( ~ r ) - ~ / ~ ~ e x p  (- c f / 2 )  - exp  (- ~ $ / 2 ) ] 1  for c l  2 0 , 

where Ct = (c, - w)/ a, i = 1 ,  2. 

In Table 1 t h e r e  a r e  given Vm (c )  for some values m if a = 0.05 and a = 0.01 

2 (C = ,ym(a)). For l a r g e r  even m the  f i r s t  term in t he  corresponding formula fo r  

t he  calculation of Vm(c) can be omitted since then @(&) - 1 (e.g. fo r  m 2 4 if 

a = 0.05). 



Table 1 Values Vm ( c )  i f  a )  a = 0.05 and b )  a = 0.01. 

Now let us consider the case when a is a relative interior point o f  a ( m  - 1)- 

dimensional face in which two cones St = lz E R m  : H i z  5 O {  and S j  = 

fz c Rm : H j z  5 01 adjoin. One can assume (renumbering the  rows o f  Hi and H j  I f  

i t  is necessary) that this face has the form 

where h: = A h {  for  some negative scalar X 

EXAMPLE 3 In the situation described in Example 1 e.g. the vector a = (0 ,  2. 

5)' is the relative interior point o f  the two-dimensional face fz E : z l  = 0 ,  

z 2  5 3 ,  z 3  5 O {  in which the cones S 1  a n d S 5  adjoin. In this case it is h: =- h: = 

(1 ,  0,O)' so that it is not necessary t o  renumber the rows o f  the matrices H1  and H5 .  

The following theorem can be proved quite analogously as Theorem 3. 

THEOREM 5 Let 0 < a < 1 be a given number and let a be a relative interior 

point of the ( m  - 1)-dimensional face (3.13) in which two cones St and S j  ad- 

join. Then for t fulfil l ing 

t 5 max 2 
v = i , j u = l , .  . . , m  

d xm(a)  llquYII - h , ~ ' b ] /  h c ' a  

the values v ( b t )  l ie  in St or S j  w i t h  the probability at least 1 - a 

This theorem enables again t o  approximate the probability characteristics o f  

the process [ v ( b t ) {  f o r  t fulfilling (3.14) i f  a is small. E.g. we can write for  the 

mean value 



where ft (b t )  i s  the  density function of Nm (fi, C) with fi = b + at. Let R be a 

( m ,  m )  matrix such t h a t  C = RR' and the f i r s t  row of R - l  has  the  same direction as 

the  vec to r  h i  (such matrix R can be  always constructed).  Then h : ' ~  has  the  same 

direction as the  v e c t o r  (1 ,  0, . . . , 0). Let us  denote 

Then i t  holds e.g.  

= ( ~ r r ) - ~ / ~ d i  e x p  (- v f / 2 )  + g i ' u ) l  - @(- vl)l 

Altogether we shal l  obtain 

and similarly 

var(rp(bt)lbt E S )  - (2/  rr)1/2(d:gi - d l g j ) ' f i e x ~  (-v:/2) (3.17) 



4. RANDOM WALK 

Random walk i s  t h e  simplest case  of the  integrated p rocesses  ARIMA of Box 

and Jenkins. These p rocesses  a r e  nonstationary but  th is  nonstationari ty can b e  r e -  

moved easily by a i f ferencing the  originai process .  Since these  p rocesses  a r e  ve ry  

useful f o r  p rac t i ca l  purposes  i t  is important t o  investigate whether this type  of 

nonstationarity is  p rese rved  also f o r  the  processes  [ q ( b t ) l .  W e  shall  confine our- 

selves t o  t h e  one-dimensional case with a normal random walk fb t  I of the  form 

where i c t  1 is  a normal white noise, i .e 

Let the  function q (b)  b e  finite f o r  a l l  b E R1 so  tha t  i t  has t h e  form 

where g l  and g Z  are given r e a l  numbers. W e  shal l  investigate t h e  behavior  of t h e  

p rocess  [q(bt  +1) - v(b t ) l  ( the  p r o c e s s  ibt + l  - bl j = ict  +11 i s  stal ionary).  

THEOREM 6 Under the prev ious  assumpt ions  i t  holds 

when t - m. 

PROOF I t  i s  

so  t h a t  

Hence t h e  asser t ion of the  theorem follows. 

THEOREM 7 Under the prev ious  assumpt ions  i t  ho ld s fo r  a r b i t r a r y  k 5 0 

cov Iq(bl +t + l )  - q(bL + t ) .  ~ ( b t  +I) - q(bt) l  (4.6) 



w h e r e  

and C ( t .  t  + k )  = C ( t  + k ,  1 ) .  D ( t ,  t  + k )  = D ( t  + k ,  t ) .  Moreover ,  it is w h e n  

t  -- 
COV ~ ~ ( b ~ + ,  + 1 )  - rp(bt + , I ,  rp(bt + 1 )  - rp(bt)l - ( a 2 / 2 ) ( g :  + g $ ) f o r  k  = o  , ( 4 . 9 )  

- 0  f o r k  > O .  

REMARK 4  Specially it holds 

var Irp(bt + I )  - rp(bt 

P R O O F  Let us denote 

C ( t  + k ,  t )  = E Y + Z +  , 

where 

The joint density f  (y , z )  of Y and Z  has the form 



where  

~ ( ~ 1 2 )  = ( 2 n k ~ ~ ) - ~ / ~ e x p  1- (Y - z ) Z / ( 2 k u 2 ) I  

is t h e  condit ional  dens i ty  of Y for f ixed  Z and  

h ( ~ )  = ( 2 ~ t u ~ ) - ~ / ~  e x p  I -  z 2 /  ( 2 t c 2 ) 1  

is t h e  marginal  dens i ty  of Z. Hence  it i s  

e x p  1-  ( y  - z ) ' / (Zkd? )  - z 2 / ( 2 t u 2 ) j d y  d z  

where  

,-I = ( k t  ,z)-~1[- : ;:I 
We c a n  wr i t e  

whe re  

If using t h e  method of subs t i tu t ion  and t h e  formulas  (2.10) and  (3.12) we c a n  f u r t h -  

er wr i t e  

I 
t  / + ( d k i /  ( t  + k ) ) u  e x p  / -  ( u 2  + u 2 ) / ~ i d u  d v  



+ u Z m /  (7.7;) JJ u v  exp  1-  ( u 2  + v 2 ) / 2 i d u  dv 
lu, v : u  2 0, v 2- ( d l / t ) ~  1 

- n/ 2 

= u2t / ( 2 n ) J r 3  exp  ( -  r 2 / 2 ) d r  J c o s 2 + d +  
0 

- 
-arctg dt / k  

- - 
+ & m / ( ~ n ) J u  exp  ( -  u 2 / 2 ) [  J- v exp  (- v 2 /  2)dv idu  

o -(dl / k )u 

which coincides with (4.7). I t  can be  shown similarly t ha t  D( t  + k ,  t )  defined as 

coincides with (4.8). If w e  notice that  

then a f t e r  some algebraic  manipulation t he  formula (4.6) follows. Finally, i t  i s  pos- 

sible to  show (e.g. by means of 1'Hospital rule) tha t  

lim [ C ( t  + k ,  t )  - ~ % / 2 \  = lim D( t  + k ,  t )  = 0  
t -- t -- 

s o  t ha t  (4.9) follows. 

One can summarize t ha t  t he  p rocess  frp(bt - rp(bt)l where [bt i s  t he  ran-  

dom walk (4.1) i s  not (weakly) s ta t ionary but approximately f o r  l a rge  t one can  

take  i t  as the  (stationary) white noise with t he  var iance (d?/2) (9: + 9:). 
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