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FOREWORD

One of the theoretical probiems in stochastic optimization which can have im-
portant consequences for praclical implementation consists in investigating pro-
grams whose coefficients are observable in time as time series. Some conclusions
derived in this paper for linear programs under relatively simple statistical as-
sumptions on the random right-hand sides stimulale further research in this direc-
tion.

The work was carried out within the Adaptalion and Optimization Project of
the Syslem and Decision Sciences Program during the stay of the author as a guest
scholar at ITASA.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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ABSTRACT

Linear programs such that the right-hand sides of their restrictions have the
form of multivariate time series may be useful in practical applications. Behavior
of the processes formed by the optimal values of the corresponding objective func-
tions is investigated in the following cases: the right-hand side process is (i) a
normal white noise; (ii) a normal white noise with a linear trend; {iii) a normal
random walk. Some basic probability characteristics of such processes are calcu-
lated explicitly.
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TIME SERIES IN LINEAR PROGRAMS WITH RANDOM RIGHT-HAND SIDES

Tomd& Cipra

1. INTRODUCTION

Let us consider linear programs of the form
fminc'z 14z =84,z 20},t = ---, -1,0,1,... , 1.1)

where the matrix 4(m, n) and the vector c(n, 1) are deterministic and |5, is a
m -dimensional process. Such general model may be applicable in varioys practical
situations. The optimal values @(&;) of (1.1) (if they exist) form obvicusly a scalar

process the behavior of which we shall investigate.

Let us denote
S = {b €« R™: @(b) is finite | . (1.2)

Then according to [6] or [7] the function ¢(&) is convex, continuous and piecewise
linear on S. Moreover, S can be decomposed to a finite number of convex po-
lyhedral cones S; (1 =1, ..., k) with the vertices in the origin such that the inte-

riors of S; are mutually disjunct and (&) is linear on each 5;. One can wrile

S, =tb €eR™:H'b 20),i=1,...,k (1.3)
and

ety =g'b, b €3;,1 =1,...,k , (1.4)

where H! are regular (m, m) matrices and g! are (m, 1) vectors (the vectors g?

need not be mutually different). One can also write

pb) = max t{g"bi,b €5 . (1.5)

The explicit form of H' and g! can be found by means of various algorithmic pro-

cedures (see e.g. [4], [, p.276G], [B], [B1).
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EXAMPLE 1 (see [5]). In the program

min|z, + T4+ 3z, T1 72Xt T3 Tg 4z =by
2x, +3x, —x4 + 2 + z =b
1 Z 3 4 & 2 (15)
zl,...,x.,z()l

one can lake

100] 1 o0y cCo -1
H1=01D,H‘-’=l-—2101,ﬁ3=101
¢ 0 1) 1 01l 01 2
0 1 01 . f~1 ¢ 0) 0 -1 0}
Hi=1{2 —10f, #°=11 01] H5=110J,
o 1 2] 13 20 c 3 1
[-10 —1! [—1 0 —1) ~1 =2
Hl=123 0—1[,Hﬂ=l~30 11 Fi=1lpo 3 2
(11 1 138 1 1 ~1 -1
f (~1/2 0
g’=92=g3=g“'10.95=l 0 },gs= -1},
3] ] 0
~3/4 -9/8) [ o )
97=[ 0 ,ga'—-{ 0 ].gg=1-—3/41.
~-3/4 ~5/8 {~3/4

The process [(b,)] originates as a piecewise linear (i.e. nonlinear in gen-
eral) transformation of the process [b,}{. If one investigales stationarity of
fo(s,}1 in dependence on stationarity of §b,{ then it is obvious that {@(b,)] need
not be weakly staliocnary when !bti has this property (i.e. when E&, and

cov(by, &; _;} do not depend on 1),

EXAMPLE 2 lel m =1, @b) =b% ~2b" for & € R (where b* = maxi0, &1,

b~ = min {0, &{) and &, be independent random variables such that
1
Plogr sy =1 s Plbgy py =— 1D =3,
1 3
P(bg, =2) = Plby, ==2) =5, P(by, =0) =

for arbitrary integer r. Then
Eby =0, var b, =1, cov{b;, b, ;) =0fors #0

forall { (i.e. 1b,{ is weakly stationary)} but

L

3
E@®y ) =5 Felby,) =
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If ibti is strongly stationary (i.e. the joint probability distribution of
(btl, C.. »bti) is egual to that of (bt1+s' A bt.;+s) for all i, {y,..., %, s) then
{@(b;){ shouid have the same property but one must bear in mind that (b;) is not
finite for &, € S. Moreover, the explicit calculation of basic probability charac-
teristics of {@(b,){ (e.g. the mean value and autocovariances) may be very difficult
even in simple situations. In order to demonstrate it the case with a two-
dimensional normal white noise Ebii is studied in section 2. The derived formulas
for E ¢(b,) and var @(b,;) are so complicated that it turns up reasonable to recom-
mend the simulation approach of Dedk [3] for a more general case. The case of a
staltionary process }bti with a constant mean value seems to be not very useful in
practical situations. Therefore a m-dimensional normal process Ebti with a linear
trend is considered in seclion 3. Finally, in order to provide potential generaliza-
tion to the nonstationary integrated processes of Box and Jenkins which are capa-
ble to model trends in a stochastic way (see [1]) we deal with a one-dimensional

normal random walk {b, | in section 4.

The following denotation will be used in the paper: a' and A' for the transpose

of a vector @ and a matrix 4; Jlafl = Ya' a for & € R™; det 4 for the determinant
of a square matrix 4; sgn (zY=1for z >0, =0 for £ =0 and =—1 for x <0;
zt =max {0, x|, x~ =min {0, z|.

2. NORMAL WHITE NOISE

Let {b; { be a two-dimensional normal white noise, i.e.
b, ~iid N,(0, T) , (2.1)

where I is a positive definite variance matrix. Let T be a lower triangular matrix

with positive elements on the main diagonal such that
T =TT (2.2)
{Cholesky decomposition) and let us denote

Qt =HiT | (2.3)

where the matrix Qi has the elements denoted as qfw and the row vectors of the

type (2,1) denoted as qi (uw, v =1,2).



LEMMA 1 It holds

k e ¢}
P, €5)=@mn) 1) arccos |- ———
t i i
1=1 e a3l

PROOF If using the method of substitution we have

k
P, €5)= Y ff (2m) "lexp |— (2% + y*) /2| dz dy
t =1z, y:Q%z, v) =0|

k
> ff 2m) " 1r exp (- r¢/2)dr dv
i =1f‘r, s:r =0, Oi(r cos %, r 8in ¥) =0}

k
(em~1 Y f dw
1=1{9:Q%cos ¥, sin 8)" = 0}

- q% so that (2.4) is obvious now.

(2.4)

The last integrals are equal to the values of the convex angies between qi and

We can proceed Lo the calculation of E ¢(b;) and var ¢(b,). Since the proba-

and var (g(b;)|b; €.5) have sense only.

THEOREM 1 Under the previous assumptions it holds

1

E (b)), €S) = P, <5y
t i =1

where P(b, €5) is given in (2.4).

PROOF We can write

k
P(b, € S)E(p(b)|b, €5)= Y S gtb@emldet )~1/?
i=l|6:H% =0

exp (—b'E b /2)db

E
=) g!'r S (z, y)y@mlexp {~ (z* + y*)/2{dz dy
i=1 fz,v:Q', y) =0
k ’
=Y gt'T f (cos ¥, sin®)'(27) ~1r2
t=1 fr,B:7 20, Q(r cos ¥, T3in B) = 0|

exp (—r2/2)drd ¥

k
=@VEm Tt Y ot'T [ (cos, sin ¥)'d .
i=1 i8: Q% (cos @, sin B)" = 0}

bility (2.4) can be less than one in general the conditional values E(cp(bt)lbt €5)

a k :r
@vVZm™t Y gV T(etsllell + ¢/ llgllh . (2.5)
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The variable ¥ is bounded by the angles corresponding to the couples of vectiors
(¢%2. —9¢%1) and (—qiz. ¢l1) (if det @' = ¢y ¢}; - ¢z 0}y > 0) or (efz, —qly)
and (——q%z. q%l)’ (if det @' <0). Since fcos ¥d¥ = sin?® and
f sin ¥d ¥ =— cosY we have

P(b, €S)E(e(b,)lb; €5)

= (2V2m)~ 2 gt T(gn/”qlﬂ + in/l92“ ‘112/"91” + ‘122/“Q i’
i=1

which is equivaient to (2.5).

REMARK 1 The formulas (2.4) and (2.5) can be rewritten to the form

P(b; €8) = (2m)larccos {— h} Zh}/ [n*’Zhi hi'zh‘}“z{ : (2.8)
- 1 -1

E(@b)lby €5) = Pl £5) (2V2T) (.7)

Z‘ gt tind lh"):h*‘ [h‘ zh” YE

i1=1
where hi(u =1, 2) are the row vectors of the type (2,1) of At.

It is obvigus that random variables qp(bt) are mutually independent; the follow-

ing theorem evaluales their (conditional) variance.

THEOREM 2 Under the previous assumpiions it holds
var (e(by)lo; €S) = E(p(by)40, €5) — {E (@b, € S)H? , (2.8)

where

[

k
L (m)~1 % gt Tlsgn (det Hi)lq

E(@(b,)*by € 5) = (2.9)

FP(by €5) i=1 glql

1 r
gipt | £ 1
g1 9
fztr+ar‘c _—11 21 |T'i \
729 21 (CH N J

E(g(d)lb, €5) is given in (25), [ is the (2,2) unit matriz and

Pfi = (_‘7112. 911)'1 pfz' = (Q;igz: _Qél)’-
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PROOF One can write analogously as in the proof of Theorem 1

P(b, € S)E(p(by)%b; €8)

ot'T If (. y)(z, ¥)@EM™?
1 iz, y:Q%x, y) =0

1] M?r

i

exp {— (2% + y®)/2{dz dy T'g?

k
=(m~1 2 git'r f (cos ¥, sin ¥) (cos ¥, sin V)d ¥ T'g?!
1=1 {B:q%cos o, sln B)" = 0]

Since

fcosz'd‘d'ﬂ=-!2'—(sin ¥ cos ¥ + 1), fsinzﬂd'lﬂ =—;—(—sin1ﬁcos 9+ %)
1 1 1 (2.10)
. 1 . 2.1 1 2
fsm'ﬂcos vdv = 5 sin “19 > 2cL‘Js ]

and sgn (et @') = sgn (det Ht del. T) = sgn (det H!) we shall get (2.9) similarly as in

the proof of Theorem 1.

3. PROCESS WITH LINEAR TREND

Let {b,{ be a m-dimensional process of the form
b, =b +at +&,t =0,1,.. , (3.1)

where a and & are (m, 1) fixed vectors (n # 0) and {g,;{ is a m -dimensional normal

white noise, i.e.
g, ~itd N, (0, Z), T>0 . (3.2)

The linear model (3.1) is the usual model of multivariate time series used frequent-
ly in practice.

It is obvious that in this situation the behavior of the process {@(b;){ depends
substantially on the position of the vector a with respect to the sets S;. If it is
a £ S then obviously after certain time the process }¢(b;){ will not be finite with

a large probability. We shall exclude this case from further considerations.

Now let us investigate the situation when o is an interior point of a set S,.
Then due to the properties of the convex polyhedral cone S; when time { proceeds

the process {¢(b;)| will have the form }g"bti with a probability which grows in
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time and it enablies to draw some conclusions on the behavior of this process. The
following theorem evaluates the time period after which it is guaranteed with a

given probability that t¢(b;)!| lies in S;. Let the denotation (2.2) and (2.3) be

preserved.

THECREM 3 Let 0 < a <1 be a given number, let a be an interior point of
5; and let x,i(a) be the critical value of the chi-squared distribution with m

degrees of freedom on the level a (i.e. P()(f.,g1 = xrﬁ(a)) = a). Then for t fulfilling

t= max ms(\/x,im)uq;u—hi’b)/(hﬂa.); (3.3)

u=1,...,

the values b, lie in S5; (i.e. w(bt) =gy bt) with the probdability at least 1 — «a
(one can also use Hq;ll = \/-('a Zlh..ui 3

PROCF It holds for all &

Pi(b, -0 —a.t)’}:_l(bt -6 —a.t)Sx,ﬁ(a){=1-—a . (3.4)
According to [2, Theorem 1] the (1 — a) 100 per cent confidence region

P(a) = fb, : (b, —b — a.t)’E_l(bt -4 —at)=s xi(a)i {3.5)

lies in 5; if and only if

REGG +at) = VxE(olekll =0, w =1,...,m . (3.6)
Since a is the interior point of 5; it is h.t'a. »>0for uw =1,...,m and (3.6) is

equivalent to
ta (Vi@ —-rl'e)y/ (ala)u=1...,m

so that the thecrem is proved.

REMARK 2 Theorem 3 can be formulated for more general types of processes
for which one is capable t.o calculate the confidence region in the form of an elip-
s0id as in (3.9) and the trend of which stays in a convex cone with the vertex in the
origin contained (with except of the vertex) in the interior of §;. Specially such
natural generalization may be derived for the processes the trend of which has

been estimated by means of Lhe regression technique (see {21).

If ais very small then for { fulfilling (3.3) one can approximate the probabili-

ty characteristics of the process |¢(b;){ by the ones of the process {g*'bt {, e.g.

E(p(b, )b, €S) ~Egl'b, =g'' (b +at) , (3.7)
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var (g(by)|b, €S) ~vargl's, =gt’ Y gt . (3.8)

In some situations one can also desire the evaluation of the accuracy of such ap-
proximations. In the following theorem such evaluation is derived for the approxi-

mation (3.7) of Lthe mean value.
THEOREM 4 Leif under the assumplions of Theorem 3 t fulfill (3.3). Let us
denote ¢ = x,i(a). ¢ the distribution function of the standard normal distribu-

tion N(O, 1) and

v = max \’-gj'Zgj . (3.9
i=1...,k

Then it holds

(1 —a)g*' (b +at) < E(e(d)p, €5) s g (b +at) ,

5
Toa %, kig (b +at)} + vl (c) (3.10)

where
Vo(c) =[1 —218(Vo) —1/24] + Ve exp (—¢/2) ,

(m —1)(m —3) ---1
(m —2¥m —4)---2

V() = (r/2)Y/ 2 [1—~{e(vVc) —1/2{)

1 _ -
+ {m —-2),2 + _ (m -4/ 2
o = 2)( _4)__.2Vcic {(m —1)

+(m —1)m —3)c™ 6/ 2 4. ..
+(m —1¥m —3)--- 3lexp (—c/2) for even m =4 ,

1
(m —2Ym —4)---1

{m —1)/2 {m -3)/2

= (r/2)/*2 fc +(m - 1)

+(m —1)(m —3)c'™m B4 .

+(m —1(m —3) 2lexp(—c/2)forodd m 23 .

PROOF Let us denote f, the probability density of the distribution

Np{b + at, £). As the lower bound in (3.10) is concerned it is abviously

1

E(p(b)iby €5) = 7, €5)

.gfp(bt)ft (by)db, = .Sfa"bt S (b,)db,

2 [ Vb, f1(6)38, = (1 —a)gt'(® +at) .
P(a)



-9

The upper bound in (3.10) can be derived in the foliowing way:

L [ w(o) 5,06,

Rm

E(@(b)lb, €S) =7

1 . , 3
T—a | J g¥b i b)ab + S _max  {g?'b,{r,(b;)db,
Pla) Rm) peayd Sl ik

s—{(l -a)gt & +at) + f max ig? (& + at)if,(b,)db,
a i=1,...,k
L R™/ P(a)

+ f _max {g?' (6 —b —at){rf,(b,)ab,
Rm/ Py d =Lk

=gl (b +at) + 1 [a max igd (& +at)i
l—al| 5=1,...,%
+ S max g7 Py {(2m) "™/ 2exp {—y 'y /R{dy
fy eRMiyry >cf Tl k

<ot (b +at) + T 1 max k{gj'(b + at)

—al| f=1,...,
+ fr vr(@m)™/?
(T B e e B iT2VE, 0S8, <21 ,—M/2EBpE /2. .., — /288, _, S N/2|
_ .2 m -1 2 m -2 g, - -- g
exp (—rc/2)r cos ¥, cos® ¥y cas Vg ~1drddy ad, 4| .

where the last inequality holds due to the fact that outside the elipsoid
jv € R™:vy 'y = c| the graph of the function max ig/ Ty ! can be dominated by the

surface of the cone C in #™ *1 with the vertex in the origin of the form

C={y €erR™ z erl:z =, _fax BRI H A
where max {IT"g7|}} = max \/gf'z g7 = v (the description of the mentioned surface

in the polar coordinates is used with the Jacobian pm 1
cos ¥, - - cos™ _z'ﬂm _1). The final form of the upper bound can be derived using
the formulas

cos V, cos? Vg

06, <20 —/2E¥p=nrs2, ..., — /2%, _127/2]

T (3.11)
ceos™ TEY, _1dUy AU, o =2™ Tlrmaga, gy Ly s

where



-10 -

n/2
f cost zdz |,
0

ay

le.a; =1l a,=7n/4 and

@ =G —1)(E —3)---2/1i(i —2)- - 1{foroddi =3 ,

=(m/2)[{ —1)(¢ —=3)--- 1/70i(t =2)-- - 2lforeveni 24 ;
[ r™exp (- r?/2)dr (3.12)
Ve

= e -1/2 4 (m — 1™ =3/2 4 (g —1)(m —3)c™-NM2Z 4 ...
+(m —1)(m —3)- - 2{exp(—c/2)forodd m =1 ,

=(m —1)(m =3)- -+ Lm/2)/ %1 ~2{®(Ve ) ~1/2{]

+ Ve fe™m 22 4 (m = 1) W2 4 (m —1)(m —3)c™m B2 4 ..

+(m —1)(m —3)--- 3lexp(—c/2)forevenm =2 .

REMARK 3 For m =1 one can calculate E(qa(bt)lbt €.5) exactly. If e.g.
S =r!(ie. S; = (-, 0] and 5, =0, «)), ¢(b) =g~ + gzb" for b € R (where
g1. 92 e kY, by ~N(u, %) (where w=0b +at) and Pla) = [c4, €] (where

~ @ <cy <, < =)then
E(p(b,) b, €5) = E(b;)
= g4[ul®(Cy) — ®(C)Y + o(@m) " 2jexp (~CE/2) —exp (- CE/2){]forc, <0,
= g30uil/2 — ®(C )} + a(@m) " 2exp (- CF/2) —exp (- (u/ 0)2/21]
+ g [ui(Cy) —1/72) +
o(2m Y %exp (- (u/ 0¥/ 2 —exp (- C2/2){Jforc, <0 <c, ,
= g [ui®(Cy) — #(Cyy) + a(27) "V 2lexp(— CE/2) —exp (- Cf/2){lforc; 20,

where C; =(¢c; — W)/ 0,1 =1, 2,

In Table 1 there are given ¥, (c) for some valves m if a =0.05 and a =0.01
{(c = x,ﬁ(a)). For larger even m the first term in the corresponding formula for
the calculation of ¥,(c) can be omitted since then q>(\/E) ~ 1 (eg form=4if

a = 0.05),
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Table 1 Values V| (c)ifa) a =0.05and b} a =0.01.

a) a =0.05: b) a = 0.01:

m c Vi (C) m c Vn(c)
2 5.99 0.141 2 9.21 0.033
3 7.81 0.157 3 11.34 0.037
4 9.49 0.167 4 13.28 0.039
5 11.07 0.183 ) 15.09 0.042

10 18.31 0.230 10 23.21 0.051

25 37.65 0.323 25 44.31 0.069

50 67.50 0.427 50 76.15 0.090

80 113.15 0.547 90 124.12 0.114

Now let us consider the case when a is a relative interior point of a {m —1)-
dimensional face in which two cones S; =z € £™ Hiz = 0{ and Sy =
tzx € R™ Hlz = 0{ adjoin. One can assume {(renumbering the rows of H* and A7 1f

it is necessary) that this face has the form
fz cR™:hlz =0, hlz 20, Rlz20,u=2...,m}, (3.13)

where h.{ = )\h{ for some negative scalar A.

EXAMPLE 3 In the situation described in Example 1 e.g. the vector a = (0, 2,
5) is the relative interior point of the two-dimensional face |z eR3: z, =0,
z, 20, z3 2 0} in which the cones S, and S adjoin. In this case it is A{ =—h{ =
{1, 0,0) so that it is not necessary Lo renumber the rows of the matrices Hland H.

The following theorem can be proved quite analogously as Theorem 3.

THEOREM 5 lLet 0 < a <1 be a given number and let a be a relative interior
point of the (m — 1)-dimensional face (3.15) in which two cones S; and Sj ad-

join. Then for t fulfilling

t = max max {[\/xmE (a)lig Al -—hJ'b]/h.lf'a.} (3.14)
m

v=il,ju=1,...,

the values ¢(b,) lie in 5; or Sj with the probabilitiy at leasti 1 — a.

This theorem enables again Lo approximate the probability characteristics of
the process {g(b;)] for ¢ fulfilling (3.14) if a is small. E.g. we can write for the
mean value

E(gp(by)le, €85) ~ S o', £y (b, )db,
{0 e R™: niv, 2 0]
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+ . g7 b, (byydb, |
1o, c R™: nio; = 0§

where f,(b,) is the density function of Np (u, ) with =& +at. Lel £ be a
(m ., m) matrix such that = = RR’ and the first row of £ "1 has the same direction as
the vector hil (such matrix £ can be always construected). Then hi'}P has the same

direction as the vector (1, 0, ..., 0). Let us denote
v=R "1y ot =1i"gt . (3.15)
Then it holds e.g.

S ot by ri(y)db,
o, €« R™ :hi'b, = 0§

= fdt'(z + VY@M ™ Cexp (- z'z /2)dz
fz €eR™ 1z, == v,
=at } z1(21r)_“2exp (—zf/2)dz, + ot u } (2m) "1 Zexp (—zf/z)dzl
- -V
=(2m 1V 2qt exp (mvis2) + gV ull — 8(— v} .
Altogether we shall obtain
E(@b;) b, €5) ~@m Y %dt —df)exp (—vE/2) (3.16)
+ 11— e(—v)lgt + e(—vellu
and similarly
var (¢(b)lb, €5) ~ 2/ MY *(dig! —d{g?)yuexp (-vi/2) (3.17)
+ 1= o(—v)let w® + gV Lot + e(— vl WP + g7 g7

+ (2m) 7 21(at)? — (@] )¥lv lexp (= vE/R) — 1E(e(blb; € S)HF .
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4. RANDOM WALK

Random walk is the simplest case of the integrated processes ARIMA of Box
and Jenkins. These processes are nonstationary but this nonstationarity can be re-
moved easily by differencing the original process. Since these processes are very
useful for practical purposes it is important to investigate whether this type of
nonstationarity is preserved aiso for the processes Erp(b!)l. We shall confine our-

selves to the one-dimensional case with a normal random walk jbt | of the form

t
by = ) gt =1,2,..., (4.1)
t=1

where ¢, ! is a normal white noise, i.e.

g, ~iid N(0,0%) . (4.2)
Let the function ¢(b) be finite for all b € R! so that it has the form

@) =g,b +gt, b eR (4.3)

where g, and g, are given real numbers. We shall investigale the behavior of the

process [¢(b; . 1) — #(b;)] (the process {b; .4 — &, | = t& .41} is stalionary).

THEOREM 6 Under the previous assumptions it holds
Efe(dy 1) — 9(d)) = a@m) ™Y g, +gp)|VE +1 = Vi|—0 (4.4)

whent — oo,

PROOF It is

t

Y g ~N(D, td) (4.5)
1=1

so that
t + t -
E|Y g| =E| Y | =a@m)~1/21/2
lt=1 1=1

Hence the assertion of the theorem follows.

THEOREM 7 Under the previous assumptions it holds for arbitrary k 20
cov fﬁﬂ(bt +k+1) — @y, +t)- (b, +1) - ‘P(bt)} (4.6)

=@? +gf)MC(t +k +1, £ +1)+ C(t +k,t)
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—C{t+k +1,t)—C{t +k,t +1)}
+2010,D( +k +1, ¢t +1)+D(t +k, t)

—D{t +k +1,t)—-D{ +k,t +1))

—a%/@m(g +9 ) (VT ¥k +1 - VI +ENVE +1 ~-V1I) ,

where
2 2 Y4
gt a“k vkt g“t | vkt . k
+ = + + - N/ , 7
Cl+k )= v v k)  on |l +g 2TCS T + & (4.7
ok V&L 2t | VR . /&
D +k. =" k) T en [t+ic T aresim T + & (4.8)

and C{i,t +k)=C{ +k,¢t), DU, t +k)=D( +k,1t). Moreover, it is when

t — oo

cov [@(by 4 +1) — Bby 1), 9By 1) — (b))} — (%7 2)(gF + gZ) for k =0 , (4.9)

-0 Jor k >0 .
REMARK 4 Specially it holds
var f@(by 1) — @by} (4.10)
=(IJ'12 +g§){%z - ﬂ(tjf:-/?l) + cr:t [arcsin \/t il - t\f_l ]
+291g2{ Vi + o’t aresin \/T - VE }
i + 1) t+1 t +1

2
— o2/ @9, + gz)Z[\/t +1 - \/t'] .

PROOF Let us denote
C{t +k,t)=EY*tz+ ,
where

t +k 4
Y=Y &.Z2=3 g .
i=1 it =1

The joint density f(v, z) of Y and Z has the form
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fy.z)y=gl2)n(z) .
where

gylz) = @mko?) 1 %exp (- (y - 2)?/ (2k 7°)]
is the conditional density of ¥ for fixed Z and

h(z) = (2rto®) 1/ 2 exp {— 2%/ (2t )]

is the marginal density of Z. Hence it is

C(t +k,t)=@na?) Yet) V2 [yz
00

exp |— (y —2)%/ (2kc?) — 22/ (2t c®){dy dz

[

= (@rd®) " Hkt) Vi [ [yz exp [~ (1/2)(y.2)E Xy, 2)'}dy dz .
00

where
t -t
-1 _ 2y-1
0= (ko) l—c t ok
We can write
2t+kt )
=g tt—T’F.
where
VITE © ]
T=9/,Vi+x VEt/ (L + %))

If using the method of substitution and the formulas (2.10) and (3.12) we can furth-

er write
C({t +k,t)

= 0°/(27) fr ‘
ju, v:(VI + k)u =0, [t/v't +i:]u + Vit +k)v =0l

(VE + k& )u{[t/vt + k}u+ (Yt /(t + k))vlexp }—(u2 + vz)/Zidu dv
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=a2t/(2'.rr) ff uzexp l—(u2+v2)/2{du dv
fu, v:iuazo, v z-(‘/t_/T)ui

+

o<Vkt / 2w ff uv exp - (e + vz)/zidu dv
fu, viu a0, va- (VIZk)ul

wn ns/2
azt/(Z'n')er exp (—rZ/Z)dr f cos® 9d ¥
0 —arctg vt/ k

ot VEL /7 (27) fu exp (—u?/2)} f v exp (— ve/2)dv {du
0 -(¥Vt/7k)u

+

ot / @mim —aresin VE /(£ + k) + VEL /(¢ + k)] + ¢k Vkt /120t + &)} ,

which coincides with (4.7). It can be shown similarly that D(t + &£, t) defined as

+

t+k t
2;151 E: £y

i=1

D(t +k.1) =E[
l1

coincides with (4.8). If we notice that

t+e |- [ ¢ ]‘ R T L *
5] (L] =g Ful (£a]
i=1 i=1 i=1 i=1

frae V[ * tre *F (&t )
“Ee] (L] k] i

i=1 =1 t=1 i=1

then after some algebraic manipulation the formula (4.6) follows. Finally, it is pos-

sible to show (e.g. by means of I'Hospital rule) that
Lim [C(t +k,t) ~cct/2) = Jim D(¢ + &, t) =0

so that (4.9) follows.

One can summarize that the process {¢(b, , 1) — «(b,)| where |b,{ is the ran-
dom walk (4.1) is not (weakly) stationary but approximately for large t one can

take it as the (stationary) white noise with the variance (a%/2) (912 + gzz),
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