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STAB- AND S E N S m M T Y  ANALYSIS LN 
CONVEX VECTOR OPTIMIZATION 

Tetsuzo Tan ino  

1. Introduction 

In th i s  p a p e r  we consider a family of parametr ized vec to r  optimization prob- 

lems: 

Here  z i s  a n  n-dimensional decision var iable ,  u is  a n  m-dimensional pa ramete r  

vector ,  p , ( i  = 1, .... p )  is a r e a l  valued objective function on Rn X R m ,  X is  a set-  

valued map from Rm to R n ,  which specifies a feasible decision s e t  and P  is  a 

nonempty pointed closed convex order ing cone in RP. W e  can define ano ther  set- 

valued map Y from Rm t o  RP by 

Y ( u )  is  t h e  parametr ized feasible s e t  in t h e  objective space.  The cone P induces a 

par t i a l  o r d e r  & on R P ,  t h a t  is ,  we define t h e  re la t ion & by 

y spy' -Y' - Y  E P  f o r  y.y' E R P  . (1.3) 

This re la t ion & is  ref lexive ,  antisymmetric and t ransi t ive .  In t h e  problem (1.1), 

we aim t o  obtain a l l  t h e  minimal points of t h e  feasible set Y ( u )  with r e s p e c t  t o  t h e  

o r d e r  &. In o t h e r  words, t h e  solution s e t  in t h e  objective space  t o  t h e  problem 

(1.1) is  given by 

MinpY(u ) = [y^ E Y ( u )  1 t h e r e  exis ts  no y + y  ̂ such t h a t  y & y^ { 



T h e r e f o r e ,  we c a n  def ine  a n o t h e r  set-valued map W f rom t h e  p a r a m e t e r  s p a c e  Rm 

to t h e  ob jec t ive  s p a c e  RP by 

W i s  o f t en  ca l led  t h e  p e r t u r b a t i o n  map f o r  (1.1). 

In usual  s c a l a r  optimization where  p = 1 and P = R+ ( = t h e  set of nonnega- 

t i ve  r e a l  numbers)  W i s  at most single-valued and  so i t  can  b e  identif ied with t h e  

function 

And t h e  s tab i l i ty  and  sens i t iv i ty  ana lys is  in s c a l a r  optimization i s  mainly a s tudy  o f  

continuity p r o p e r t i e s  and  de r iva t ives  of t h e  funct ion  w .  In c a s e  of v e c t o r  optimi- 

zat ion,  we inves t iga te  t h e  behav io r  of t h e  set-valued map W .  

Some r e s u l t s  f o r  g e n e r a l  v e c t o r  optimization problems f rom t h i s  point  of view 

c a n  b e  s e e n ,  f o r  example ,  in [ Z ] ,  [7] f o r  s tab i l i ty  and  in [6] f o r  sensi t ivi ty.  In t h i s  

p a p e r  w e  cons ide r  t h e  case in which convexi ty  i s  assumed.  I t  i s  shown t h a t  t h e  

convexity assumption cons iderably  simplifies t h e  suf f ic ien t  condit ions f o r  t h e  sem- 

icontinuity of t h e  p e r t u r b a t i o n  map W a n d  also makes  i t  possible to c h a r a c t e r i z e  

t h e  cont ingent  d e r i v a t i v e  of W completely.  

2. Convexity assumption and preliminary results 

Throughout  t h i s  p a p e r  we assume t h e  following convexity on  t h e  feas ib le  deci-  

s ion  set map X and t h e  ob jec t ive  funct ion  p . 

Convexity Assumption (CA) 

(1)  The set-valued map X i s  convex,  i .e . ,  t h e  g r a p h  of X which i s  defined by 

i s  a convex set in Rm X Rn. In o t h e r  words, f o r  a n y  u1.u2 E Rm and a n y  

a , O $ a $ l ,  

a ~ ( u ' )  + ( 1 - a ) x ( u Z )  c ~ ( a u '  + (1-a)u  ') . (2.2) 



( 2 )  The function f is P-convex, i.e. f o r  any ( z l , u l ) ,  ( z2 ,u2)  E Rn X Rmand 

any a ,  0  5 a 5 1 .  

Lemma 2.1. If P is a pointed closed convex cone and f i s  P-convex, then f i s  

continuous. 

(Proof). Since P i s  a pointed closed convex cone,  t h e  in te r io r  of the  negative 

polar  cone Po of  P is not empty.+ I t  is  easy t o  prove t h a t  -< k . f  ( z , u )  > is  con- 

vex as a function of (z , u )  for k E Po. Hence < p,f (.;) > is  continuous ( [ 3 ] ,  Corol- 

a 1 0 1 . 1 )  Take z E int Po and ji + bet E Po f o r  sufficiently small 6 > 0 ,  where 

e i  is  t h e  i t h  unit v e c t o r  in R P .  Then both < F,f (.;) > and < jS + 6 e i v f  (.:) > are 

continuous and hence f i  (.:) is  continuous ( i  = l . . ) .  Namely f is  continuous. 

P r o p o s i t i o n  2.1. U ~ d e r  t h e  convexity assumption (CA), t he  set-valued map Y  

defined by ( 1 . 2 )  i s  P-convex, i.e., f o r  any u1.u2 E Rm and a, 0  $ a  $ 1 ,  

In o t h e r  words, the  graph of t h e  set-valued map Y  + P is convex. Here  Y  + P i s  

defined by 

(Y  + P ) ( u )  := Y ( u )  + P for each u E Rm . ( 2 . 4 )  

(Proof).  This proposition can be  easily proved. m 

Now we introduce concepts of semicontinuity of set-valued maps. Let F  b e  a 

set-valued map from Rm t o  RP h e r e a f t e r  in th is  section.  

Dqfinition 2.1. 1 )  F  i s  said to b e  upper  semicontinuous at C  E Rm if 

uk  + C , y k  E F ( u ~ )  and y k  + y' a l l  imply t h a t  i j  E F ( C ) .  

2 )  F is  said t o  b e  lower semicontinuous at C  E Rm if uk  + C  and y' E F ( C )  

imply t h e  exis tence of an in teger  K and a sequence [ y k i  c RP such t h a t  

y k  E ~ ( u ~ ) f o r k  Z K a n d  y k  + y ^ .  

3 )  F  i s  said t o  b e  continuous at c E Rm if i t  is  both upper  and lower semicon- 

tinuous at ti. 

Remark 2.1. F  i s  upper  semicontinuous on Rm if and only if graph F  i s  a 

closed set in Rm x RP . 

+Po = E RP i < @,d > <= 0  far all d E Pi, where < .; > denotes the  inner product. 



We shall  provide lemmas concerning t h e  semicontinuity of convex set-valued 

maps. Given F  and j E RP, w e  define t h e  function p  from Rm t o  R u I+-] by 

If F ( u )  = $, l e t  p ( u )  = +-. The domain of the  set- valued map F  is  defined and 

denoted by 

Clearly d o m  p  = lu E Rm 1 p ( u )  < +-I = dom F .  

Lemma 2.2. If F  i s  convex, then t h e  function p  defined by (2 .5 )  is  a convex 

function. 

1 2  (Proof) .  Let u , u  E d o m  p, which i s  a convex set, and 0 <= a 2 I .  Since F  is  

convex, 

and hence 

p ( a u l  + ( 1  - a ) u Z )  = i n f  11 y  + 1 1  y  E F ( a u l  + ( I - a ) u 2 )  1 

= a  i n f  f l y 1  j i l y l  E F ( u ~ ) ]  + ( 1 - a ) i n f  ~ b ~ + i k g ~  E F ( u ' ) ~  

Lemma 2.3. If F  i s  convex and 6 E i n t ( d o m  F ) ,  then F  i s  lower semicontinu- 

ous  at ii . 

(Proof).  Let u" & and j E F ( 6 ) .  Define t h e  function p  by (2 .5 ) .  Then, 

from Lemma 2.2 ,  p  i s  a convex function and d o m p  = domF.  Since E i n t ( d o m p )  

and uk -. & ,  t h e r e  ex i s t s  a number K  such t h a t  uk  E d o m p  f o r  any k  >= K. For 

each uk  ( k  2 K ) ,  f rom t h e  definition of p ( u k ) ,  t h e r e  exis ts  y k  E F ( u k )  such t h a t  

Since t h e  convex function p  i s  continuous at 6 E int ( d o m p )  and p ( J )  = 0, by tak- 

ing t h e  limit of t h e  above inequality, h y k  - y' 1 -r 0 as k  -. -. Namely y k  -. j. 



Therefore  F i s  lower semicontinuous a t  6. 

Remark 2.2. Since the  spaces  considered h e r e  a r e  all f in i te  dimensional, the  

assumption in Lemma 2.3 i s  weaker than  in t h e  resu l t  of Aubin and Ekeland ([I], p.  

131),  where F is assumed t o  be  not only convex but a lso  upper  semicontinuous 

Remark 2.3. The following example i l lus t ra tes  tha t  t h e  condition 

6 E int (do#) i s  essent ia l  in Lemma 2.3. Let F : R' 2 R be defined by 

[ y  E R 1 y 2 a{ if ( u l  - a)' + (uZ) '  = aZ for a > 0, u # (0 ,O)  

E R I Y  1 0 1  if u =(O,O) 
otherwise . 

TI ll 
Then, f o r  uk  = ( 1  - c o s ,  sin.;), F ( u ~ )  = l y  1 y 2 l j  f o r  a l l  k = 1 , 2  ,...,. Clearly 

k 
u + ( 0 0 )  However, by taking 0 t F(O,O), w e  can easily see t h a t  F is not lower 

semicontinuous at 6 = (0,O). 

Lemma 2.4. If F i s  convex, 6 € int (do#) and F ( 6 )  is  a closed s e t ,  then F i s  

upper  semicontinuous (and t h e r e f o r e  continuous in view of Lemma 2.3) a t  6 .  

(Proof).  L e t u k  + 6 ,  y k  € ~ ( u ~ ) a n d y '  +j. D e f i n e p a s i n ( 2 . 5 ) .  T h e n p i s  

a convex function from Lemma 2.2. Hence p i s  continuous at 

6 E int (domF) = int (dom p). On the  o t h e r  hand, taking the  limit of the  inequality 

a s  k + -, w e  can p rove  t h a t  p ( 6 )  = 0.  Since F ( 6 )  i s  a closed set, th is  implies 

y  ̂ E F ( 6  ). Hence F i s  u p p e r  semicontinuous at 6. 

Remark 2.4. I t  is  easily understood tha t  the  closedness of F ( 6 )  i s  ve ry  impor- 

tant  in t h e  above lemma. The following example i l lus t ra tes  t h e  inevitability of the  

condition 6 E int (dom F ) .  Let F : R 2 IR b e  defined by 

Then, f o r  uk  =L, y k  = O  E F ( U ~ )  (k = 1 , 2  ,..., ). However, the  limit 0 of { y k j  is  
k 

not contained in F(0) .  



3. Upper semicontinuity of the perturbation map 

In this section we shall consider sufficient conditions for  the upper semicon- 

tinuity o f  the perturbation map W .  First we provide sufficient conditions in terms 

o f  the feasible set map Y .  

Theorem 3.1. I f  the following three conditions are satisfied, then the pertur- 

bation map W is upper semicontinuous at 6 E R m :  

(1) t? E i n t  (dam Y); 

(2) Y is upper semicontinuous at 6 ;  

( 3 )  W ( c )  = w -MinpY(c ) ,  where w -MinpY(c )  is the set o f  all weakly P  - 
minimal points o f  Y ( 6 ) ,  i.e. 

(Proof) .  Let u k  -. 6 ,  y k  € w ( u k )  and y k  + c. Since Y  is upper semicontinu- 

ous at 6 ,  c E Y ( C ) .  Hence, i f  we suppose that y^ E W ( C )  = w - M i n p Y ( c ) ,  then 

there exists E Y ( 6 )  such that y^ -fj E int P. Since 

6 E i n t  (domY) = i n t  (dom (Y  + P ) )  and Y  + P is convex, Y  + P is lower semicon- 

tinuous at c from Lemma 2.3. Namely there exist a sequence 1;' { C RP and a 

number K such that 

yk + 3/ and 3/' E y ( u k )  + P for  k  2 K 

since y  - yk + - 3/ E i n t P ,  y  ' - 3/' E i n t P  for  all k  sufficiently large. How- 

ever,  this contradicts that y k  € w ( u k )  = h f i n p y ( u  ') = ~ i n ~ ( ~ ( u  ') + P ) .  (See 

Proposition 3.1.2 in [ 5 ] ) .  Therefore y^ E W ( 6  ), as was to be proved. rn 

Remark 3.1. We can guarantee the upper semicontinuity of  W under the fol- 

lowing conditions without the convexity assumption (CA)  ([7]): 

( i )  Y  is continuous at ; 

( i i )  W ( 6  ) = w -MinpY(C).  

I f  we compare these conditions with Theorem 3.1,  the following can be ob- 

served: we can replace the lower semicontinuity condition o f  Y  by the weaker con- 

dition C E int (domY) under the convexity assumption. 

Now we shall derive sufficient conditions for  the upper semicontinuity o f  W. 

which are described in terms o f  the feasible decision set map X and the objective 

function p . For the purpose we shall introduce a set-valued map 2 from Rm x RP 

to  Rn as follows: 



The following proposition provides sufficient conditions f o r  t h e  u p p e r  sem- 

icontinuity of Y at 6 .  

Proposition 3.2. If ri E i n t  (domX), if X ( 6 )  is  a closed s e t  and if t h e  map 2 is  

uniformly compact n e a r  (c , y ^ ) +  f o r  any y^ E [ y  1 (6 , y )  E cL(graph Y) I .  then Y is  

upper  semicontinuous at 6 . 

(Proof).  Let uk  -. 6 . y k  E y ( u k )  and y k  . Then t h e r e  exis ts  a sequence 

[ z k  I c Rn such tha t  z k  E F ( u k , y k )  f o r  a l l  k  = 1,2, .... Since .f is  uniformly com- 

p a c t  n e a r  (6,y^), lzk h a s  a convergent subsequence. By taking t h e  subsequence 

if necessary ,  we may assume tha t  [ z k  j converges  t o  some 2 .  From Lemma 2.4, X is  

u p p e r  semicontinuous at 6 and so  2 E X ( 6  ). On t h e  o t h e r  hand, s ince  f  is  continu- 

ous  f rom Lemma 2.1, f  (2 ,6 ) = y^ . There fore  y^ E Y ( 6  ) and Y is  upper  semicontinu- 

ous  at 6 .  I 

Remark 3.2. If X is  uniformly compact n e a r  6 ,  then .f is  c lear ly  uniformly 

compact n e a r  (6 ,y  ) f o r  any y E RP . 

Now we can p rove  the  following theorem. 

Theorem 3.2. If t h e  following f o u r  conditions are satisfied,  then t h e  set- 

valued map W is  u p p e r  semicontinuous at ti : 

(1) 6 E i n t  (domX); 

( 2 )  X ( 6 )  i s  a closed s e t ;  

(3 )  2 is  uniformly compact n e a r  (C,y^) f o r  any y^ E [ y  1 ( 6 , y )  E cl (graphY)];  

( 4 )  W ( 6 )  = w -MinpY(6).  

(Proof).  From ( I ) ,  6 E i n t  ( d o m u .  From (1) - ( 3 ) ,  in view of Proposition 3.1, 

Y is upper  semicontinuous at 6 .  Hence W i s  upper  semicontinuous at 6 by 

Theorem 3.1. m 

Remark 3.3. The following examples i l lus t ra te  t h a t  each condition in t h e  

above theorem i s  essential .  

1 )  Take F in Remark 2.3 as X and l e t  f ( z . u )  = z and P = R,. Then 

6 = (0,O) F! i n t  (domX) and 

A set-valued map F is sald t q  be uniformly compact near 6 l f  there exists a neighborhood N of 
6 such LhaL C L  U F ( u )  1s a compacL seL. 

u €N 

W ( u )  = 
la1 if ( u ~  - a ) 2  + (u2)' = a 2  f o r  a > 0 ,  u f (0.0) 

' f 0 1  if u = (0,O) 
Q otherwise 



which is not upper  semicontinuous at  (0,O). 

Z) L e t m  = p  = n  = l , P = R + , p ( z , u )  = z a n d  

Then W(u ) = 10 I if u # 0 and W(0) = @. Hence W is not upper  semicontinuous at 0. 

3) Let m = n = p = 1.P = R +  and X ( u )  = R f o r  any u ER. Let C be  a con- 

vex s e t  in R x R defined by 

and p be defined by 

p ( z , u )  = d ( ( u . z ) , C )  = inp [R(u,z) - ( u f , z f )  !l(u',rc') E cl 

Then p is P-convex and 

Hence 

which is not upper  semicontinuous a t  0 

4. Lower semicontinuity of the perturbation map 

In this section w e  consider sufficient conditions f o r  the  lower semicontinuity 

of the  map W .  Fi rs t  we should introduce severa l  concepts.  

Definition 4.1. A s e t  S in RP is said to  be P-minicomplete if 

Remark 4.1. Since MinpS c S ,  if S is P-minicomplete, 

S + P = MinpS + P . 

DepLnition 4.2. For a nonempty s e t  S in RP,  i t s  recession cone S+ is defined 

by 



S' = [ y  E RP 1 t h e r e  exis t  sequences [ A k  { c R and [ y  j C RP such t h a t  

Remark 4.2. S' is a closed cone which contains t h e  origin. Moreover, if S is 

a nonempty closed convex set, S'coincides with t h e  set O'S which is  defined by 

and t h e r e f o r e  i t  is  a closed convex cone ([3] Theorem 8.2) 

Lemma 4.1. (Sawaragi et al .  [5], Lemma 3.2.1.) A nonempty set S is bounded if 

and only if S' = lo].  

Lemma 4.2. (Sawaragi et a l .  [5], Lemma 3.2.3.) Let S1 and S2 b e  nonempty 

closed se t s .  If S; (-S;) = [ O j ,  then S1 + S2 is a lso  a nonempty closed s e t .  

In view of t h e  above two lemmas, t h e  following concept  plays a n  important ro le  

in this section.  

Depinit ion 4.3. A nonempty set S in RP is  said t o  b e  P-bounded if 

Lemma 4.3. (Sawaragi et a l .  [5], Theorem 3.2.12.) If S C RP i s  a nonempty 

closed convex s e t ,  the  following statements are equivalent: 

(1) S is P-bounded. 

(2) MinpS # 6. 

(3) S is P-minicomplete. 

Lemma 4.4. Suppose t h a t  F is P-convex, 6 E int (do#), and F ( 6 )  i s  P- 

bounded. Then t h e r e  exis ts  a neighborhood N  of ri such t h a t  F ( u )  i s  P-bounded 

f o r  al l  u E N .  

(Proof).  If t h e  conclusion of t h e  lemma were not t r u e ,  t h e r e  would ex i s t  se-  

q u e n c e s [ u k {  c R m  a n d [ d k j  cRP s u c h t h a t u k  + 6 , d k  # O a n d  

Since [ F ( u k ) ] '  (-P) is  a cone,  w e  may assume tha t  ! dkl = 1 f o r  a l l  k .  By taking 

a subsequence if necessary ,  w e  may assume t h a t  [dk ] converges  to some d .  Since 

P is closed, d E P. Moreover, I d ! = 1 and so  d + 0.  Since -dk E [F(uk)]' ,  t h e r e  

exis t  sequences [ A k L  j C R ,  [dkL ] c - F ( u k )  such tha t  XkL > 0,  



If w e  t a k e  1 sufficiently l a r g e ,  

By choosing those  Akf  and dk '  as xk and dk respectively,  w e  can  cons t ruc t  se- 

quences [xk 1 and idk 1 satisfying 

When k + -,xk + 0 and xkdk + d.  Now Lake a n  a r b i t r a r y  c E F ( 6 ) .  Since 

2u^ - u k  + u  ̂ and F + P i s  lower semicontinuous at 6 by Lemma 2.3, t h e r e  exis t  a 

sequence [ck 1 and a number K such t h a t  

ck + 5 and ck E F ( 2 6  - u k )  + P f o r  k >= K 
Since F i s  P-convex. 

1 
Moreover, 2xk . - (ck  - d k )  + -d. This implies t h a t  -d E [ F ( i )  + PI+  and hence 

2 
[ F ( 6 )  + P I +  n (-P) # 101. In view of Lemma 3.2.4 of [5], this means tha t  F(u^) i s  

not P-bounded, which is  a contradiction.  Hence F ( u )  is  P-bounded f o r  a l l  u in a 

ce r ta in  neighborhood of 6 .  

Now w e  can  obtain sufficient  conditions f o r  t h e  lower semicontinuity of W. 

Theorem 4.1. If t h e  following t h e  conditions are satisfied,  then t h e  p e r t u r b a -  

tion map W is  lower semicontinuous at 6 : 

(1) u  ̂ E i n t  (dom Y). 

(2) Y + P is u p p e r  semicontinuous in a neighborhood of 6 .  

(Proof).  If W(u^) = @, t h e  theorem is tr ivial .  Hence w e  suppose tha t  

W(6)  # @. Let u k  + 6 and y^ E W(6). From Lemma 2.3, Y + P i s  lower semicon- 

tinuous at u  ̂ and hence t h e r e  exist  a sequence [yk j and a number K1 such t h a t  

Since Y ( 6 )  + P i s  a nonempty closed convex set and 

Minp(Y(s)  + P )  = W ( 6 )  # @, Y ( 6 )  + P  is  P-bounded from Lemma 4.3. There fore ,  

in view of Lemma 4.4, Y(u ) + P is P-bounded f o r  a l l  u in a ce r ta in  neighborhood N 



of  6 .  (Note that ii E int (dom Y)). From Lemma 4.3 and Remark 4.1, this implies 

that 

in a neighborhood o f  6 .  Hence there exist a sequence l j k  j and a number K2 2 K1 
such that 

y k  - jk  E P and jk E w(uk) for k 2 K2 

First we will show that fckj is bounded. I f  this were not the case, from Lemma 4.1, 

we can take a subsequence o f  f j k  j . for which there exist a sequence iAk  { of posi- 

tive numbers and a nonzero vector c such that Ak + 0 and i k j k  + c. Since 

Ak(yk  -ck)  E P  and y k  +j, the limit 3- o f  [ A k ( y k  - j k ) l  is contained in P. 

Take an arbitrary y € Y ( 6 )  + P .  Then there exist a sequence 15' { and a number 

K3 2 K2 such that 

since Y + P is lower semicontinuous at 6 .  Then, from the convexity o f  Y + P ,  

Moreover, Ak (ck + ck)  + c .  This implies that c E [ Y ( c )  + PI+ and hence leads to  

a contradiction to the P-boundedness o f  Y ( C )  + P .  Therefore / j k  j must be bound- 

ed. Hence [ck{  has a cluster point, which is denoted by y ' .  Since y k  -ck € P 

and y k  + c ,  y^ - y' E P .  Since Y + P is upper semicontinuous at 

c . y '  E Y ( c )  + P .  Recalling that j E W(c), we can conclude that y' = j .  In other 

words, y^ is the unique cluster point for the bounded sequence f ck{  + c. There- 

fore ck + j , which indicates that W is lower semicontinuous at c . 
Remark 4.3. We can generate the lower semicontinuity of  W under the follow- 

ing conditions without the convexity assumption ( C A )  ( [ 7 ] ) :  

( i )  Y is continuous at ii , 

( i i )  Y is uniformly compact near 6 .  

( i i i )  Y ( u  ) is P-minicomplete for every u near ii. 

Theorem 4.1 considerably simplifies the above result. 

The following proposition shows that Y + P is o f ten  upper semicontinuous 

when W ( c )  is not empty. 



A o p o s i t i o n  4.1. If X ( u )  is  a nonempty closed set f o r  every  u near  

f , W ( f )  + @ and T ( f , c )  i s  bounded f o r  some y' E W ( f  ), then Y ( u )  i s  a P-bounded 

closed set in a neighborhood of f . In this case Y ( u )  + P i s  a lso  a closed set by 

Lemma 4.2 and t h e r e f o r e  t h e  set-valued map Y  i s  upper  semicontinuous in a neigh- 

borhood of f . 

(Proof).  a )  Fi rs t  we shal l  prove t h a t  Y ( u )  i s  a closed set in some neighbor- 

hood of f .  If th i s  were not t r u e ,  we can  consider sequences juk I and l y k  j such 

that  

uk + f and y k  E C L Y ( U ~ ) \ Y ( U ~ )  . 

Corresponding t o  each y k ,  t h e r e  exis ts  a sequence [ zk l  1 c x ( u k )  such t h a t  

f ( z k u k  + y k  as L . Take k sufficiently l a rge  so tha t  x ( u k )  i s  closed. If 

jzkf j l  =1,2,,,, has  a convergent  subsequence, the  limit zk of i t  i s  contained in x ( u k ) .  
Since f i s  continuous, f ( zk  , u k )  = y k  , which contradic ts  t h a t  y k  $! y ( u k ) .  Hence, 

if k is  sufficiently large .  jzkL j 1  .1,2,,,, has  not a convergent subsequence and so 

Lkl!  + + - as L + -. We may assume t h a t  t h e  sequence (c] c o n v e r g e s t o  
kkLI 1 =1,2. ... 

some zk as L + -. Furthermore,  s ince  kkl = 1 f o r  a l l  k ,  w e  may a lso  assume 

without loss of generali ty t h a t  [zk 1 converges t o  a vec to r  5.  In th is  case hi = 1, 

i.e. 1 + 0. From the  assumptions, we can  t a k e  y  ̂ E W ( f )  f o r  which T ( 6 . y ' )  i s  

bounded. Let i E ?(; , y^ ) .  Since X i s  lower semicontinuous at f from L e m m a  2.3, 

t h e r e  exis t  a sequence [ik and a number K such t h a t  

ik + i and ik E x(uk)  f o r  k >= K 

a 
Let k >= K. For  a n  a r b i t r a r y  a >= D, 0 2 - < I f o r  a l l  k sufficiently l a r g e ,  f o r  

L k i '  = 

LklI + + -as L + -. Since X is  convex, 

Taking t h e  limit when L + -, we obtain from the  closedness of x ( u k ) ,  

sk + a z k  E x ( u k ) ,  f o r  a l l  ksufficiently l a rge  

Since f i s  P-convex, 



L e t  1 + . Then, since f  ( z k ' , u k )  -. y * ,  

f  (ik + a E k  .uk)  <= p f ( i k  ,u * )  f o r  k sufficiently l a rge  . (4 .7)  

Take t he  limit of ( 4 . 6 )  and ( 4 . 7 )  a s  k -. -. Then, since X  is upper  semicontinuous a t  

6 from Lemma 2.4 and f  i s  continuous, 2 + a f  E X ( 6 )  and 

f  (i + a f ,  C )  < = p f ( i , 6 )  = y^ . 

Since y^ E W ( 6 ) ,  these  imply t ha t  f ( i  + a f  ,C) = c ,  i.e., 5 + a f  € f ( C , G )  f o r  a l l  

a 2 0. However, th is  contradic ts  the  boundedness of p(ii ,c).  Hence Y ( u )  must be 

a closed set f o r  every  u in a ce r ta in  neighborhood of 6 .  

b)  Next, w e  shall  prove t ha t  Y ( C )  i s  P-bounded. Let y E [ Y ( C ) l c  n (-P).  

There  exis t  sequences [Ak  [ c R and [ z k  1 c X ( 6 )  such t ha t  Ak > 0 .  Ak -. 0 and 

A k f ( z k , C )  + y .  Then, f o r  all k sufficiently l a rge ,  A k z k  + ( 1 - A k ) i  ~ X ( f i )  and 

due t o  t he  P-convexity off  . The right-hand side of t he  inequality (4 .8 )  converges  

to  y  + c .  Fi rs t  w e  assume t ha t  l A k z k  1 has  no convergent subsequence. Then 

zk  xkhkl + + -. We may assume without loss of generality t ha t  1-1 converges t o  a 
Iz* I 

a 
vector  5 with kl = 1. For any a 2 0 ,  0 <= - <= I  f o r  a l l  k sufficiently l a rge  and 

lzkI 

from the  convexity of X ( u ^ ) .  Since X ( C )  i s  a closed s e t ,  the  limit of the  above re la-  

tion implies t ha t  i + as E X ( 6 ) .  Moreover, since f  i s  P-convex. 

f o r  a l l  k sufficiently large.  Thus, a s  t he  limit of t h e  above inequality, w e  have 

Since y^ E W ( C ) ,  f  (i + a 5 , C )  = y ^ .  This implies t ha t  i + az" E f ( 6 , y ^ )  f o r  a l l  

a 2 0,  which contradic ts  t he  boundedness of F ( C  . y ^ ) .  Hence I A ~ z *  1 necessarily 

has  a convergent subsequence whose limit is denoted by z .  W e  may assume tha t  



h k z k  + z  from t h e  f i r s t .  Since X ( 6 )  is  closed, from t h e  limit of 

h k z k  + ( 1 - h k ) i  E X ( t i ) ,  z + ẑ  E X ( t i ) .  Therefore  t h e  limit of t h e  left-hand side 

of ( 4 . 8 ) .  which isp(z + i , t i ) ,  belongs t o  Y ( t i ) .  Since ( 4 . 8 )  leads t o  

when k + -, y E -P and y^ E W ( t i ) ,  y must be  equal t o  the  z e r o  vec to r .  Thus Y ( 6 )  

is  P-bounded. 

c )  Finally, the  resu l t  proved just above and Lemma 4 .4  imply tha t  Y ( u )  i s  P- 

bounded in a neighborhood of t i .  This completes t h e  proof of t h e  proposition. 

Now w e  can immediately obtain the  following resu l t  by combining Theorem 4 . 1  

and Proposit ion 4 .1 .  

Theorem 4.2. If t h e  following conditions are satisfied, then t h e  per turbat ion 

map W  is  lower semicontinuous at 6: 

( 1 )  6 E int ( d o d ) ,  

( 2 )  X ( u )  is  a closed set f o r  every  u n e a r  6 , 

( 3 )  When W ( C )  # $. R(ti , y ^ )  is  bounded f o r  some y^ E W ( t i ) .  

Remark 4.4. The following examples show tha t  each condition in the  above 

theorem i s  essential .  

1 )  Consider t h e  case in Remark 3 .3 .  1 ) .  Then w e  can easily understand t h a t  

t h e  condition 6 E int ( d o d )  is  essential .  

2 )  Let m  = n = p  = 1 . P  = R + ,  

and p (z .u ) = z . Then 

which i s  c lear ly  not lower semicontinuous at ti = 0 

3 )  L e t m  = n = p  = 1 . P  = R + , X ( u )  = R + a n d  

Then 



and so 

I 101 if  u = 0 
W ( u )  = @ i f  u 2 0  ' 

~ ( o , o )  = R+,  which is not bounded, and W is not lower semicontinuous at ; = 0 

5. Contingent derivative of the perturbation map 

In this section we will show some quantitative results concerning the behavior 

o f  the perturbation map by using the concept o f  contingent derivatives o f  set- 

valued maps. The author has already provided an "inner" approximation of  the 

contingent derivative o f  the  perturbation map for general multiobjective optimiza- 

tion problems ( [ 6 ] ) .  In this paper, a complete characterization of  the contingent 

derivative will be obtained under the convexity assumption (CA) and some addition- 

al conditions. 

First we briefly review the concept o f  contingent derivatives for  set- valued 

maps. 

& f i n i t i o n  5.1. Let S be a nonempty subset of  Rq and 6 E R9.  The set TS(v^) 

defined by 

Ts(v^) := Iv E Rvl there exist sequences [hk 1 c it and i vk  1 C Rv 

such that hk + O,vk + v and v̂  + h k v k  E S f o r  all k } (5.1) 

is called the contingent cone to S a t  v^. 

C e f i n i t i o n  5.2. Let F be a set-valued map from Rm t o  RP and y E F ( i i ) .  The 

set-valued map P ( i i , y )  from Rm t o  RP defined by the following is called the con- 

tingent derivative o f  P at (;, y ) :  
- - y ~ ~ ~ ( i i , y ) ( u )  i f f  ( u 3 Y ) E T g r a p ~ ( u ~ y )  (5.2) 

In other words, y E D F ( i i , y )  ( u )  i f  and only i f  there exist sequences 

[hkj cd , ,  jut{ c ~ ~ a n d ~ y ~ j  ~ R p s u c h t h a t h ~  + O , u k  + u ,  y k  + y and 

y + h k y k  E F ( Z  + h k u k )  for  bk , 

where R+ is the set o f  all positive real numbers 



The purpose o f  this section is to  provide a complete characterization o f  the 

contingent derivative o f  the perturbation map. Throughout this section let y^ be a 

P-minimal point o f  Y(u^), i.e. y^ E W(ri). First we can simplify Theorem 3.2 in [6 ]  

under the convexity assumption (CA) as in the following theorem. 

Theorem 5.1. I f  Y(u ) is P-minicomplete for every u near 6 ,  then 

MinpDY(r?,y^) (u) c DW(6 , y ^ )  (u) for W E Rm . (5.3) 

(Proof)  Let y E ~zn~D~(iL,y^) (u). Since y E DY(ri.y^) (u), there exist se- 
k quences ihk j c ;+. [uk { c R~ and [ y k  C RP such that hk + 0 ,  u k  + u ,  y + y 

and 

y^ + hkyk E Y(iL + hkuk) for trk: 

Since Y(u) is P-minicomplete for  every u near C ,  there exists a sequence 

fck 1 c Rp such that 

y^ + hkck E w(; + hkuk) and y k  -ck E P  (5.4) 

for  all k sufficiently large. We may assume (5.4) for all k .  Suppose that fyk has 

no convergent subsequence. Then I I ~ ~ I I  + + m. There exist sequences [zk 1 and 

[z' I in Rn such that 

For any a satisfying 0 5 a 5 1, we have 

from the convexity o f  X .  Moreover, from the P-convexity o f f ,  

And, since f is continuous, 



Since ~~c~ll -. + - and y k  -. y ,  by taking a k  appropriately close to  1, we have 

chk 2 I(C + hk y k  -(y^ + hk y k ( a k ) ) l (  $ hk , for W sufficiently large 

where & is a fixed number such that 0 < & < 1. Taking this y k ( a & a s  c k ,  we see 

that 

c $ llyk - ckll 5 1 for  W sufficiently large 

-1: . Since y k  -. y , the sequence [ y  1 is bounded and so we may assume without loss o f  

generality that [ck 1 converges to  a vector y'. I t  is clear that c €Dl'(&, C )  (u ). 
Since Jlyk - ckII >= E for all k sufficiently large, lly - >= r ,  that is,  y # y". 

Since y k  - ck E P ,  y - y" E P .  However these contradict the assumption that 

y E M i n p ~ Y ( 6  ,y') ( u ) .  Therefore [ y k  1 always has a convergent subsequence. 

Hence we may assume from the f irst  that c k - . y .  Then 

y E D W ( ~ , ~ ^ )  ( u )  c D Y ( & , C )  ( u )  and y k  -ck -.y -3/ E P .  Since 

y E MinpDY(6 , C )  ( u ) ,  y = c.  This implies that y E DW(& , I?) ( u ) ,  and completes 

the proof o f  the theorem. 

Remark 5.1. We can see from the example in Remark 4 .4 ,  3 )  that the P- 

minicompleteness condition is essential for  Theorem 5.1. There, DW(6 .c )  ( u )  = 

for  6 = 0 ,  y^ = 0 and u # 0.  However DY(6 , y ^ )  ( u )  = [ O , u ]  and 

MinpDY(C,y^) (u) = I01 for  u #O. 

Next we consider sufficient conditions for the converse inclusion o f  (5.3) 

Depinition 5.3. Let S be a nonempty set in Rp and ii E RP. The normal cone 

NS(V^) t o  S at ii is the negative polar cone o f  the tangent cone TS(6) ,  i.e. 

When S is a convex set and V^ E S ,  

~ ~ ( i i ) = [ p ~ ~ P I < p . t  > > = < p , v  > for W E S J  . (5.6) 

Lkf ini t ion 5.4. Let S be a nonempty P-convex set in RP. I f  a point 

y^ E MinpS satisfies the condition 

Ns+p(y^)  c int Po u [ O j  . (5.7) 

then y  ̂ is called the normally P-minimal point o f  S .  



Remark 5.2. A point y' E S is said to be the properly P-minimal point o f  S i f  

I f  y' i s  a properly P-minimal point o f  a convex set ,  there exists a vector 

p E A(S+p(y') n i n t  P O .  The relation (5.7) is a stronger requirement than the ex- 

istence o f  such p as long as y' € MinpS. In other words, the normal P-minimality 

is a stronger concept than the proper P-minimality. From the geometric 

viewpoint, the latter implies the existence o f  the supporting hyperplane to S at y^ 

with the normal vector p in i n t  P O  and, on the other hand, the former implies that 

all the normal vectors o f  the supporting hyperplanes to S at y' belong to i n t  P O .  

(The existence o f  such a hyperplane is guaranteed by the fact that y' E MinpS). 

Remark 5.3. I t  is not difficult to  show that the normal P-minimality o f  y' to  a 

convex set S is equivalent to the following condition: 

i n t  T S + ~ ( Y ^ )  101 3 P  . (5.9) 

Theorem 5.2. I f  6 E i n t  (dom Y) and y^ is a normally P-minimal point o f  Y ( i ) .  

then 

DW(i ,y^)  ( u )  c ~ i n ~ D Y ( i , y ^ )  ( u )  for  W E Rm (5.10) 

(Proof)  Let y E DW(i.y^)  ( u ) .  O f  course y E DY(6 ,y^)  ( u ) .  Hence i f  we as- 

sume that y < MinpDY(6 ,y^)  ( u ) ,  there exists y E DY(6 ,c) (u ) such that 

Y - y E P \ [ O { .  Since ~ E D Y ( G , G ) ( U ) ,  there exist sequences 
-k [h;{ cR+,  [uk1 c R m a n d [ y k j  C R P  such tha th ;  -+O,ut + u ,  y + c a n d  

y ^ + & y k  E Y ( G  + h ; i i k )  for  w 

On the other hand, since y E D W ( c , y ^ ) ( u ) ,  there exist sequences 

[ h k {  E;+,  [ u k {  c R m a n d  [ y k l  CRP suchthathk  + 0 ,  u k  + u ,  y k  + y  and 

y ^ + h k y k  E W ( C  + h k u k )  for  w , 

Since hk  + 0 ,  we may assume that hk <= h; by taking a subsequence i f  necessary. 

Since y^ + hk Y k  E W ( i  + hk u k ) ,  (U^  + y^ + hk y k )  is a boundary point o f  

the convex set graph (Y + P ) .  Hence there exist a vector ( A ~ , ~ ~ )  E Rm x RP 

such that 

+ There a r e  s e v e r a l  de f in l t lons  of the  proper P-tninlmal l ty  ( s e e ,  e.g. [51)  However t h e y  coincide 
under the  convexity assumption. 



< h k , i i  + hkuk > + < @k.y^ + h k y k  > >= < h k , u '  > + < g k , y '  > 

f o r  V ( u 8 , y  I )  E graph (Y + P )  (5.11) 

for e a c h  k .  S i n c e  we may normal ize  t h e s e  v e c t o r s  so t h a t  ( I (hk,gk)( l  = 1, we may 

a s sume  t h a t  [ ( ~ ~ , @ ~ ) j  c o n v e r g e s  to a nonzero v e c t o r  ( A , @ )  E Rm X R P .  By t ak ing  

t h e  limit o f  (5.11) as k + -, w e  see t h a t  

f o r  V ( u ' , y ' )  E graph (Y + P )  . (5.12) 

S i n c e  ti E int (dom Y), @ f 0. T a k e  an a r b i t r a r y  c E Y ( C )  + P. From Lemma 2.3, 

t h e  se t -va lued  map Y  + P i s  l ower  semicont inuous at C a n d  so t h e r e  e x i s t  a se- 

q u e n c e  lck C Rp a n d  a n u m b e r  K > 0 s u c h  t h a t  y"' -. y" a n d  

ck E Y(r i  + h k u k )  + P f o r  k >= K . (5.13) 

From (5.11), f o r  k >= K 

Let t ing  k + -, we h a v e  t h a t  

< @,y^ > >= < @.g > . 

Thi s  implies  t h a t  f i  E N y ( ; ) + p ( y ^ ) .  S i n c e  j i s  a normally P-minlmal po in t  o f  Y ( C ) ,  

@ E int PO. S i n c e  y  - y E P\  lo{. 

< P , Y  > < <@,C > (5.14) 

Reca l l ing  t h a t  j + Ckyk E Y ( 6  + Gut) ,  y E Y(u^) a n d  hk zh; ,  w e  o b t a i n  t h a t  

y^ + hkgk E Y(C + hkzk) + P 

f r o m  t h e  P -convex i t y  of Y .  H e n c e ,  f r o m  (5.11), 

< h k . r i  +hkuk  > + < k k , j  + h k y k  > 2 < h k , C  + h k U k  > ~ < @ ~ , j  +hkGk  > , 

i . e .  

< h k . u k  > + < k k S y k  > >= < hk,Uk > + < > . 

By t ak ing  t h e  limit as k -' a, we h a v e  t h a t  

< X,u > + < k,Y > >= < X,u > + < @.C > 



which c o n t r a d i c t s  (5.14). T h e r e f o r e  y E MinpDY(ii ,c) ( u ) ,  as was Lo b e  proved.  8 

R e m a r k  5.4. The  following examples show t h a t  t h e  condit ions i n  Theorem 5 .2  

are es sen t i a l .  

1 )  (i~ e i n t  (dom Y)). Let  m = 2, n = p  = 1, P = R + ,  

fzlz L O {  if "1 2 0 ,  ~ 2 ' 0  

2 ul{ if u1 2 0 , u 2  = 0 

o therwise  

a n d  f ( z  ,u ) = z. Then Y ( u  ) = X(U ) a n d  

I 1 0 j  if u l  2 0 ,  u 2  > 0 

W ( u )  = lull if u l  20 ,  u 2  = 0 

L o the rwise  

L e t  G = (0,O) e int (dom Y), 5 = 0 a n d  u = (1,O). Then DW(; ,y^)(u ) = j O , l j  
- p ~ ~  

a n d  DY(G,y^ ) (u )  = fyly 2 0 1 .  Hence  D W ( & , ~ ^ )  ( u )  k ~ i n ~ ~ ~ ( t , y ^ )  ( u ) .  

2 2)  (y^ i s  not  normally P-minimal). L e t  m = 1, n = p  = 2,  P = R +  . 

and f ( u  , u  ) = ( z  1.2 2). Then Y ( u  ) = X ( u  ) and 

Le t  t = 0 a n d  y^ = (0.0). Then y^ i s  n o t  a normally P-minimal poin t  of I'(G), though 

i t  i s  p r o p e r l y  P-minimal. In t h i s  case (0,O) E DW(t ,y^ )  (0) c DY(G,y^) (0) a n d  

(1,O) E DW(G,y^) (0).  HenceLW(6,y^)(O) k MinpDY(G,y^) (0). 

Now we c a n  cons ide r  t h e  case in which e v e r y  ob jec t ive  funct ion  ft i s  d i f f e r e n -  

t iab le .  

& f i n i t i o n  5.5. Le t  F b e  a set-valued map from R m  to RP a n d  y E F ( z ) .  F i s  

s a i d  to b e  u p p e r  pseudo-Lipschitzian at ( c , y )  if t h e r e  e x i s t  ne ighborhood N 1  a n d  

N2 of a n d  y respec t ive Iy ,  and  a posi t ive number  M such  t h a t  



F(u) n NZ c F ( C )  + MlIu - GID f o r  \SLL E N 1  . (5.15) 

A o p o s i t i o n  5.1. If X(C) is a closed set and ?(t i ,Q) is  bounded, then ? is  uni- 

formly compact n e a r  (ti ,y^ ) .  

(Proof)  Suppose t h a t  the  conclusion of t h e  proposition is  not t rue .  Then 

t h e r e  exist  sequences Iuk j C R m ,  [ y k  1 C RP and [zk I C R n  such tha t  

u k  + C ,  y k  + y k  + y ^ ,  llzkll + +-and 

zk  €x(uk)  and f ( z k , u k )  = y k  f o r  b% 

zt 
W e  may assume without loss of generali ty tha t  converges to a nonzero vec- 

llz II 
a 

tor z .  Let a > 0. Since 112'11 + + -, 0 < - <_ 1 f o r  a l l  k sufficiently large .  
llzkII - 

Hence, from t h e  convexity of X, 

Since X i s  upper  semicontinuous at C  from Lemma 2.4. by taking t h e  limit of (5.16) 

as k + -, w e  see tha t  

Since f is P-convex, 

Letting k 4 - , w e  have 

Since y^ E ~ ( i i ) , f  (2 + az .u^)  = y^.  Hence ẑ  + az E ?(C ,y^)  for any a > 0 .  HOW- 

e v e r  th is  contradic ts  the  boundedness of ?(ti ,y^).  Therefore  2 i s  uniformly com- 

pact  n e a r  (C ,y^). 

A o p o s i t i o n  5.2. If X(6)  is  a closed s e t ,  if ?(ii,c) is a singleton, i.e. 

?(C ,y^)  = [z^ I and if .? i s  u p p e r  pseudo-Lipschitzian at (C .Q ,i), then 

D Y ( C , ~ ^ )  ( u )  = V , f ( i , C ) .  DX(;,~^) ( u )  + V , p ( i , C ) .  u f o r  W ~ ~ m ( 5 . 1 7 )  

(Proof) I t  has  been a l ready proved t h a t  



( [ 6 ] ,  Proposition 4.1). S o  we shall  prove t h e  converse  inclusion h e r e .  Let 

y  E DY(6 , y^ )  ( u ) ,  Then t h e r e  exist  sequences fhk C ;+, fuk 1 C Rm and 

f y k j  CRp such tha t  hk + O ,  uk  + u ,  y k  + y  and y^ + h k y k  E Y ( C  + h k u k )  f o r  

al l  k . Hence t h e r e  exis ts  ano ther  sequence f z k  1 c Rn such t h a t  

2 + h k z k  ~ J ? ( i i  + h k u k , y ^  + h k y k )  for M 

From Proposition 5.1,  t h e  sequence f h k z k ]  is  bounded and s o  has  a convergent 

subsequence. We may assume from t h e  f i r s t  t h a t  hkzk  + z E R n .  Since X is  u p p e r  

semicontinuous at ti and p i s  continuous, 

Since J?(C , y^ )  = 12 1, z = 0 ,  Namely hkzk  + 0 .  Since J? is  upper  pseudo- 

Lipschitzian at (% ,y^ ,2) ,  t h e r e  exis ts  M > 0 such tha t ,  f o r  any k sufficiently l a r g e ,  

112 + hkzk  -211 $ M l l ( i i  + h k u k ,  y^ + h k u k )  - ( i i . y ^ ) J I  

Since u k  + u and y k  + y  , f z k  1 i s  bounded. Hence w e  may assume tha t  zk  + 5 .  

Then c lear ly  Z E DX(C , y^ )  ( u )  and 

p ( i + h k z k . i i + h k u k )  - p ( i , t i )  
y  = lim y k  = lim 

k +- k +- h k 

There fore  y  E V,p ( i , c )  . DX(G.2)  ( u )  + Vup(z^ ,u^ )  . u . This completes t h e  

proof.  

Thus, from Theorem 5.1. Theorem 5.2 and Proposition 5.2, w e  have t h e  follow- 

ing theorem which provides a complete character izat ion of t h e  contingent der iva-  

t ive of t h e  per turbat ion map W .  

Theorem 5.3. If t h e  following conditions (1)-(5)  are satisfied,  then 

E W ( c , c )  ( u )  = M i n p [ V z f ( i , c ) .  DX(c , z ^ )  ( u ) +  V k f ( 2 , i i ) .  U ]  



(1) 6 E i n l ( d o m  Y), 

(2) y^ is  a normally P-minimal point of Y ( 6 ) ,  

(3) X ( u )  is  a closed s e t  f o r  every u in a neighborhood of 1; , 

(4) X"(6 .y^) is  a singleton, i .e .  T ( 6  , Q )  = 15 j, 

(5) 2 is u p p e r  pseudo-Lipschitzian at (c.Q.z^). 

Finally we br ief ly  mention sufficient conditions f o r  t h e  pseudo-Lipschitzian 

p roper ty  of 2. The following proposition can b e  obtained by applying Theorem 

4.12 in Rockafellar  [4]. 

R o p o s i l i o n  5.3. If the  following two conditions are satisfied,  then 2 is  

(upper) pseudo-Lipschitzian at ( 6  .y^ - 2 ) :  

(1) X ( u )  is  a closed set f o r  e v e r y  u in a neighborhood of 6 ,  

(2) ~f 5 a,V,f t (5 , i i )  + v = 0 f o r  some (A,v) E N,,rmphX(c.5)o then 
t =1 

ai = 0 f o r  i = 1 ,  ....p and X = 0 

Remark 5.5. When X ( u )  is  specified by inequality const ra ints  as 

t h e  above condition (5.19) is  nothing but  the  Mangasarian-Fromovitz const ra int  

qualification a t  2 f o r  t h e  set 

In view of Proposit ion 5.3, w e  can rep lace  the  condition (5) in Theorem 5.3 by 

(5.19). 

6. Conclusion 

We have obtained sufficient conditions f o r  the  upper  and lower semicontinuity 

of the  per turbat ion map, which provides the  s e t  of al l  cone minimal points depend- 

ing upon the  pa ramete r  vec to r ,  in convex vec to r  optimization. I t  has  been shown 

tha t  t h e  convexity assumption considerably simplifies the  resu l t s  in t h e  general  

case .  We have a lso  provided a complete character izat ion of the  contingent deriva- 

tive of t h e  per turbat ion map when the  nominal point is  normally minimal. 
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